Experimental Study on the Performance and Resource Utilization of Data Streaming Frameworks Subarna Chatterjee, Christine Morin

Total Page:16

File Type:pdf, Size:1020Kb

Experimental Study on the Performance and Resource Utilization of Data Streaming Frameworks Subarna Chatterjee, Christine Morin Experimental Study on the Performance and Resource Utilization of Data Streaming Frameworks Subarna Chatterjee, Christine Morin To cite this version: Subarna Chatterjee, Christine Morin. Experimental Study on the Performance and Resource Uti- lization of Data Streaming Frameworks. CCGrid 2018 - 18th IEEE/ACM Symposium on Cluster, Cloud and Grid Computing, May 2018, Washington, DC, United States. pp.143-152, 10.1109/CC- GRID.2018.00029. hal-01823697 HAL Id: hal-01823697 https://hal.inria.fr/hal-01823697 Submitted on 26 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Experimental Study on the Performance and Resource Utilization of Data Streaming Frameworks Subarna Chatterjee and Christine Morin INRIA Centre Rennes - Bretagne Atlantique Email: {subarna.chatterjee, christine.morin}@inria.fr Abstract—With the advent of the Internet of Things (IoT), data can possibly offer. Despite the existence of several work that stream processing have gained increased attention due to the present a comparative study of data stream processing frame- ever-increasing need to process heterogeneous and voluminous works, such type of analysis regarding “how to efficiently data streams. This work addresses the problem of selecting a correct stream processing framework for a given application to choose a streaming platform for an application” is still to be executed within a specific physical infrastructure. For this be discovered. Therefore, deriving such knowledge towards purpose, we focus on a thorough comparative analysis of three selection of application- and infrastructure-based streaming data stream processing platforms – Apache Flink, Apache Storm, frameworks induces research interest and attention. and Twitter Heron (the enhanced version of Apache Storm), In this work, we focus on thoroughly comparing and that are chosen based on their potential to process both streams and batches in real-time. The goal of the work is to enlighten analyzing the performance and resource utilization of three the cloud-clients and the cloud-providers with the knowledge streaming platforms and eventually make an inference about of the choice of the resource-efficient and requirement-adaptive the various applications that are suitable to be launched within streaming platform for a given application so that they can plan each of these platforms and the various aspects of the physical during allocation or assignment of Virtual Machines for applica- infrastructure that each can support. Based on the potential tion execution. For the comparative performance analysis of the chosen platforms, we have experimented using 8-node clusters to process both streams and batches in real-time and the on Grid5000 experimentation testbed and have selected a wide popularity of usage, in this work, we have chosen Apache variety of applications ranging from a conventional benchmark Flink [5], Apache Storm [6], and Twitter Heron [7] as the to sensor-based IoT application and statistical batch processing stream processing frameworks to be studied. application. In addition to the various performance metrics related to the elasticity and resource usage of the platforms, A. Motivation this work presents a comparative study of the “green-ness” of the streaming platforms by analyzing their power consumption As mentioned earlier, several prior works exist on compara- – one of the first attempts of its kind. The obtained results are tive study and analysis of streaming platforms. However, there thoroughly analyzed to illustrate the functional behavior of these are some observed limitations of each of these works which platforms under different computing scenarios. are discussed as follows: Index terms— Stream processing, Apache Flink, Apache (i) Recent release of Heron: The open-source version of Spark, Twitter Heron, Internet of Things Twitter Heron was released in 2016. Therefore, the existing literature on comparative studies of streaming frameworks I. INTRODUCTION does not include any analysis of the performance of Heron. The inception of the Internet of Things (IoT) has witnessed Heron was introduced as an enhanced version of Apache massive data explosion due to the exponential growth of Storm and so it is extremely important to analyze and compare devices and the innumerable applications running within them its performance with the other streaming frameworks. [1], [2]. Therefore, data-intensive systems are gaining increas- (ii) Analysis of energy-efficiency: Existing works illustrate the ing importance today. Data stream processing comprises the comparison of the streaming frameworks in terms of the data heart of such systems which is why several stream processing throughput, the utilization of the communication network, the frameworks co-exist today [3], [4]. Every stream processing processing latency, and the fault-tolerance. However, a study framework is different in terms of the set of applications that and analysis on the energy consumption of the platforms is still it can serve, the unit (batch, or micro-batch, or streams) and to be found. The energy efficiency of a streaming platform is nature (bounded or persistent) of dataset that it can handle, the extremely important owing to the global responsibility towards type of processing it offers (at-least-once or at-most-once or the eco-friendly use of computers and thereby reducing the exactly-once), the hardware requirements, and the scalability environmental impact of the IT operations. potential. Thus, it is extremely important to choose the correct (iii) Choice of framework for different scenarios: A streaming streaming platform that would serve a specific application in platform cannot be categorized as ”good” or ”bad” as every a given available cluster. It is extremely difficult to choose platform is differently designed to process specific stream “the” streaming framework that would suit the needs of an types. Each platform is unique about the nature of data sets, application and as well would have resource requirements the variable message processing semantics, and the differential within the limits that the underlying physical infrastructure hardware expectations. Therefore, it is extremely difficult, yet crucial, to judicially select the streaming platform that et al. [12] focused on the comparison among Storm, Spark, not only suits the application requirements but also abides Samza, and Hadoop ecosystems. Another work [13] on com- by the resource offerings of the physical infrastructure of parative experimentation between Flink and Spark proposed the host organization (or an end-user). This might be of benchmarks for the platforms and validated the performance particular interest for cloud end-users while choosing Virtual of the frameworks on the proposed benchmarks. But, since Machines (VMs) in an infrastructure cloud for Infrastructure- Spark is essentially a batch-processing platform, the effective as-a-Service (IaaS) or for cloud providers while allocating comparative analysis among real-streaming platforms was still VMs to end-users in a Platform-as-a-Service (PaaS) cloud. absent. Over time, both Flink and Storm gained popularity An insight of the rationale behind the choice of a streaming as real-streaming frameworks and consequently had a wide platform is not yet discussed in prior existing works and is spectrum of usage within organizations and end-users [14], therefore one of the major focus of this work. [15]. Based on the popularity of usage, in this work, we have B. Contributions chosen both Flink and Storm along with the latest platform Heron [7] for analysis. The contributions of the work are multi-fold and are dis- Of late, some works specifically compared Flink and Storm. cussed as follows: For example, Chintapalli et al. [16] developed a streaming (i) Heron is included: The proposed work is one of the first benchmark for Storm, Flink and Spark and provided a perfor- attempts towards a Heron-inclusive comparative study and mance comparison of the engines. However, the work mainly analysis of the popular streaming frameworks. In this work, focused on the processing latency of the tuples but did not we have selected Apache Flink, Apache Storm, and Twitter consider other parameters related to the performance. Lopez Heron as the frameworks for comparison. The rationale behind et al. [17] also analyzed the architecture of Storm, Flink and this choice is that, in addition to being open-source and the Spark. The authors performed a study on the throughput and popularity of their usage, all these platforms have the ability fault-tolerance of the platforms, however, the work did not to process true streams in real-time. study the scalability of operators of each platforms and how (ii) Metrics studied: This work compares Flink, Storm, and that hugely affects the throughput of the incoming streams. Heron with respect to a multitude of parameters. The work The work also did not analyze the rseource consumption of the focuses to analyze the performance of the frameworks in platform in terms of CPU or memory. In 2016, the open-source
Recommended publications
  • Apache Flink™: Stream and Batch Processing in a Single Engine
    Apache Flink™: Stream and Batch Processing in a Single Engine Paris Carboney Stephan Ewenz Seif Haridiy Asterios Katsifodimos* Volker Markl* Kostas Tzoumasz yKTH & SICS Sweden zdata Artisans *TU Berlin & DFKI parisc,[email protected][email protected][email protected] Abstract Apache Flink1 is an open-source system for processing streaming and batch data. Flink is built on the philosophy that many classes of data processing applications, including real-time analytics, continu- ous data pipelines, historic data processing (batch), and iterative algorithms (machine learning, graph analysis) can be expressed and executed as pipelined fault-tolerant dataflows. In this paper, we present Flink’s architecture and expand on how a (seemingly diverse) set of use cases can be unified under a single execution model. 1 Introduction Data-stream processing (e.g., as exemplified by complex event processing systems) and static (batch) data pro- cessing (e.g., as exemplified by MPP databases and Hadoop) were traditionally considered as two very different types of applications. They were programmed using different programming models and APIs, and were exe- cuted by different systems (e.g., dedicated streaming systems such as Apache Storm, IBM Infosphere Streams, Microsoft StreamInsight, or Streambase versus relational databases or execution engines for Hadoop, including Apache Spark and Apache Drill). Traditionally, batch data analysis made up for the lion’s share of the use cases, data sizes, and market, while streaming data analysis mostly served specialized applications. It is becoming more and more apparent, however, that a huge number of today’s large-scale data processing use cases handle data that is, in reality, produced continuously over time.
    [Show full text]
  • Evaluation of SPARQL Queries on Apache Flink
    applied sciences Article SPARQL2Flink: Evaluation of SPARQL Queries on Apache Flink Oscar Ceballos 1 , Carlos Alberto Ramírez Restrepo 2 , María Constanza Pabón 2 , Andres M. Castillo 1,* and Oscar Corcho 3 1 Escuela de Ingeniería de Sistemas y Computación, Universidad del Valle, Ciudad Universitaria Meléndez Calle 13 No. 100-00, Cali 760032, Colombia; [email protected] 2 Departamento de Electrónica y Ciencias de la Computación, Pontificia Universidad Javeriana Cali, Calle 18 No. 118-250, Cali 760031, Colombia; [email protected] (C.A.R.R.); [email protected] (M.C.P.) 3 Ontology Engineering Group, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain; ocorcho@fi.upm.es * Correspondence: [email protected] Abstract: Existing SPARQL query engines and triple stores are continuously improved to handle more massive datasets. Several approaches have been developed in this context proposing the storage and querying of RDF data in a distributed fashion, mainly using the MapReduce Programming Model and Hadoop-based ecosystems. New trends in Big Data technologies have also emerged (e.g., Apache Spark, Apache Flink); they use distributed in-memory processing and promise to deliver higher data processing performance. In this paper, we present a formal interpretation of some PACT transformations implemented in the Apache Flink DataSet API. We use this formalization to provide a mapping to translate a SPARQL query to a Flink program. The mapping was implemented in a prototype used to determine the correctness and performance of the solution. The source code of the Citation: Ceballos, O.; Ramírez project is available in Github under the MIT license.
    [Show full text]
  • Portable Stateful Big Data Processing in Apache Beam
    Portable stateful big data processing in Apache Beam Kenneth Knowles Apache Beam PMC Software Engineer @ Google https://s.apache.org/ffsf-2017-beam-state [email protected] / @KennKnowles Flink Forward San Francisco 2017 Agenda 1. What is Apache Beam? 2. State 3. Timers 4. Example & Little Demo What is Apache Beam? TL;DR (Flink draws it more like this) 4 DAGs, DAGs, DAGs Apache Beam Apache Flink Apache Cloud Hadoop Apache Apache Dataflow Spark Samza MapReduce Apache Apache Apache (paper) Storm Gearpump Apex (incubating) FlumeJava (paper) Heron MillWheel (paper) Dataflow Model (paper) 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Apache Flink local, on-prem, The Beam Vision cloud Cloud Dataflow: Java fully managed input.apply( Apache Spark Sum.integersPerKey()) local, on-prem, cloud Sum Per Key Apache Apex Python local, on-prem, cloud input | Sum.PerKey() Apache Gearpump (incubating) ⋮ ⋮ 6 Apache Flink local, on-prem, The Beam Vision cloud Cloud Dataflow: Python fully managed input | KakaIO.read() Apache Spark local, on-prem, cloud KafkaIO Apache Apex ⋮ local, on-prem, cloud Apache Java Gearpump (incubating) class KafkaIO extends UnboundedSource { … } ⋮ 7 The Beam Model PTransform Pipeline PCollection (bounded or unbounded) 8 The Beam Model What are you computing? (read, map, reduce) Where in event time? (event time windowing) When in processing time are results produced? (triggers) How do refinements relate? (accumulation mode) 9 What are you computing? Read ParDo Grouping Composite Parallel connectors to Per element Group
    [Show full text]
  • Apache Flink Fast and Reliable Large-Scale Data Processing
    Apache Flink Fast and Reliable Large-Scale Data Processing Fabian Hueske @fhueske 1 What is Apache Flink? Distributed Data Flow Processing System • Focused on large-scale data analytics • Real-time stream and batch processing • Easy and powerful APIs (Java / Scala) • Robust execution backend 2 What is Flink good at? It‘s a general-purpose data analytics system • Real-time stream processing with flexible windows • Complex and heavy ETL jobs • Analyzing huge graphs • Machine-learning on large data sets • ... 3 Flink in the Hadoop Ecosystem Libraries Dataflow Table API Table ML Library ML Gelly Library Gelly Apache MRQL Apache SAMOA DataSet API (Java/Scala) DataStream API (Java/Scala) Flink Core Optimizer Stream Builder Runtime Environments Embedded Local Cluster Yarn Apache Tez Data HDFS Hadoop IO Apache HBase Apache Kafka Apache Flume Sources HCatalog JDBC S3 RabbitMQ ... 4 Flink in the ASF • Flink entered the ASF about one year ago – 04/2014: Incubation – 12/2014: Graduation • Strongly growing community 120 100 80 60 40 20 0 Nov.10 Apr.12 Aug.13 Dec.14 #unique git committers (w/o manual de-dup) 5 Where is Flink moving? A "use-case complete" framework to unify batch & stream processing Data Streams • Kafka Analytical Workloads • RabbitMQ • ETL • ... • Relational processing Flink • Graph analysis • Machine learning “Historic” data • Streaming data analysis • HDFS • JDBC • ... Goal: Treat batch as finite stream 6 Programming Model & APIs HOW TO USE FLINK? 7 Unified Java & Scala APIs • Fluent and mirrored APIs in Java and Scala • Table API
    [Show full text]
  • The Ubiquity of Large Graphs and Surprising Challenges of Graph Processing: Extended Survey
    The VLDB Journal https://doi.org/10.1007/s00778-019-00548-x SPECIAL ISSUE PAPER The ubiquity of large graphs and surprising challenges of graph processing: extended survey Siddhartha Sahu1 · Amine Mhedhbi1 · Semih Salihoglu1 · Jimmy Lin1 · M. Tamer Özsu1 Received: 21 January 2019 / Revised: 9 May 2019 / Accepted: 13 June 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Graph processing is becoming increasingly prevalent across many application domains. In spite of this prevalence, there is little research about how graphs are actually used in practice. We performed an extensive study that consisted of an online survey of 89 users, a review of the mailing lists, source repositories, and white papers of a large suite of graph software products, and in-person interviews with 6 users and 2 developers of these products. Our online survey aimed at understanding: (i) the types of graphs users have; (ii) the graph computations users run; (iii) the types of graph software users use; and (iv) the major challenges users face when processing their graphs. We describe the participants’ responses to our questions highlighting common patterns and challenges. Based on our interviews and survey of the rest of our sources, we were able to answer some new questions that were raised by participants’ responses to our online survey and understand the specific applications that use graph data and software. Our study revealed surprising facts about graph processing in practice. In particular, real-world graphs represent a very diverse range of entities and are often very large, scalability and visualization are undeniably the most pressing challenges faced by participants, and data integration, recommendations, and fraud detection are very popular applications supported by existing graph software.
    [Show full text]
  • Introduction to the Flank Stack
    Introduction to the FLaNK Stack Timothy Spann Principal DataFlow Field Engineer Cloudera @PaasDev Tim Spann Who am I? Cloudera Principal DataFlow Field Engineer DZone Zone Leader and Big Data MVB Future of Data Meetup Leader ex-Pivotal Field Engineer https://github.com/tspannhw https://www.datainmotion.dev/ @PaasDev © 2020 Cloudera, Inc. All rights reserved. 2 Welcome to Future of Data - Princeton - Virtual https://www.meetup.com/futureofdata-princeton/ From Big Data to AI to Streaming to Containers to Cloud to Analytics to Cloud Storage to Fast Data to Machine Learning to Microservices to ... @PaasDev © 2020 Cloudera, Inc. All rights reserved. 3 Where Can I Run Edge AI Easily? Web service hosted and managed by Cloudera Flow Management Streams Messaging Streaming Analytics Hosted in the your cloud environment, but managed by the CDP Management Console Shared Data Experience (SDX) technologies form a secure and governed data lake backed by object storage (S3, ADLS, GCS) CDP services are optimized for the elastic compute & ‘always-on’ storage services provided by any cloud provider 4 Edge AI for Big Data Engineers Multiple users, frameworks, languages, devices, data sources & clusters CLOUD DATA ENGINEER CAT AI / Deep Learning / ML / DS • Experience in ETL/ELT • Expert in ETL (Eating, Ties • Can run in Apache NiFi and Laziness) • Coding skills in Python or • Can run in Kafka Streams Java • Edge Camera Interaction • Typical User • Can run in Apache Flink • Knowledge of database • No Coding Skills query languages such as • Can run in MiNiFi SQL • Can use NiFi • Can run in Cloudera • Experience with Streaming • Questions your cloud Machine Learning • Knowledge of Cloud Tools spend • Use Native ML/DL in Jetson, Movidius, Coral, TPU/GPU on Edge Devices Streaming Data Pipelines with Apache NiFi + Kafka + Flink © 2020 Cloudera, Inc.
    [Show full text]
  • Spring 2020 1/21
    CS 591 K1: Data Stream Processing and Analytics Spring 2020 1/21: Introduction Vasiliki (Vasia) Kalavri [email protected] Vasiliki Kalavri | Boston University 2020 Course Information • Instructor: Vasiliki Kalavri • Office: MCS 206 • Contact: [email protected] • Course Time & Location: Tue,Thu 9:30-10:45, MCS B33 • Office Hours: Tue,Thu 11:00-12:30, MCS 206 2 Vasiliki Kalavri | Boston University 2020 Announcements, updates, discussions • Website: vasia.github.io/dspa20 • Syllabus: /syllabus.html • Class schedule: /lectures.html • including today’s slides • Piazza: piazza.com/bu/spring2020/cs591k1/home • For questions & discussions • Blackboard: learn.bu.edu/... • For quizzes, assignment announcements & submissions 3 Vasiliki Kalavri | Boston University 2020 What is this course about? The design Operator semantics and architecture of modern Window optimizations distributed streaming Systems Filtering, counting, sampling Graph streaming algorithms Architecture and design Scheduling and load management Scalability and elasticity Fundamental Algorithms Fault-tolerance and guarantees for representing, summarizing, State management and analyzing data streams 4 Vasiliki Kalavri | Boston University 2020 Tools Apache Flink: flink.apache.org Apache Kafka: kafka.apache.org Apache Beam: beam.apache.org Google Cloud Platform: cloud.google.com 5 Vasiliki Kalavri | Boston University 2020 Outcomes At the end of the course, you will hopefully: • know when to use stream processing vs other technology • be able to comprehensively compare features and processing
    [Show full text]
  • HPC-ABDS High Performance Computing Enhanced Apache Big Data Stack
    HPC-ABDS High Performance Computing Enhanced Apache Big Data Stack Geoffrey C. Fox, Judy Qiu, Supun Kamburugamuve Shantenu Jha, Andre Luckow School of Informatics and Computing RADICAL Indiana University Rutgers University Bloomington, IN 47408, USA Piscataway, NJ 08854, USA fgcf, xqiu, [email protected] [email protected], [email protected] Abstract—We review the High Performance Computing En- systems as they illustrate key capabilities and often motivate hanced Apache Big Data Stack HPC-ABDS and summarize open source equivalents. the capabilities in 21 identified architecture layers. These The software is broken up into layers so that one can dis- cover Message and Data Protocols, Distributed Coordination, Security & Privacy, Monitoring, Infrastructure Management, cuss software systems in smaller groups. The layers where DevOps, Interoperability, File Systems, Cluster & Resource there is especial opportunity to integrate HPC are colored management, Data Transport, File management, NoSQL, SQL green in figure. We note that data systems that we construct (NewSQL), Extraction Tools, Object-relational mapping, In- from this software can run interoperably on virtualized or memory caching and databases, Inter-process Communication, non-virtualized environments aimed at key scientific data Batch Programming model and Runtime, Stream Processing, High-level Programming, Application Hosting and PaaS, Li- analysis problems. Most of ABDS emphasizes scalability braries and Applications, Workflow and Orchestration. We but not performance and one of our goals is to produce summarize status of these layers focusing on issues of impor- high performance environments. Here there is clear need tance for data analytics. We highlight areas where HPC and for better node performance and support of accelerators like ABDS have good opportunities for integration.
    [Show full text]
  • DSP Frameworks
    Università degli Studi di Roma “Tor Vergata” Dipartimento di Ingegneria Civile e Ingegneria Informatica DSP Frameworks Corso di Sistemi e Architetture per Big Data A.A. 2016/17 Valeria Cardellini DSP frameworks we consider • Apache Storm • Twitter Heron – From Twitter as Storm and compatible with Storm • Apache Spark Streaming – Reduce the size of each stream and process streams of data (micro-batch processing) – Lab on Spark Streaming • Apache Flink • Cloud-based frameworks – Google Cloud Dataflow – Amazon Kinesis Valeria Cardellini - SABD 2016/17 1 Twitter Heron • Realtime, distributed, fault-tolerant stream processing engine from Twitter • Developed as direct successor of Storm – Released as open source in 2016 https://twitter.github.io/heron/ – De facto stream data processing engine inside Twitter, but still in beta • Goal of overcoming Storm’s performance, reliability, and other shortcomings • Compatibility with Storm – API compatible with Storm: no code change is required for migration Valeria Cardellini - SABD 2016/17 2 Heron: in common with Storm • Same terminology of Storm – Topology, spout, bolt • Same stream groupings – Shuffle, fields, all, global • Example: WordCount topology Valeria Cardellini - SABD 2016/17 3 Heron: design goals • Isolation – Process-based topologies rather than thread-based – Each process should run in isolation (easy debugging, profiling, and troubleshooting) – Goal: overcoming Storm’s performance, reliability, and other shortcomings • Resource constraints – Safe to run in shared infrastructure: topologies
    [Show full text]
  • Introduction to Apache Beam
    Introduction to Apache Beam Dan Halperin JB Onofré Google Talend Beam podling PMC Beam Champion & PMC Apache Member Apache Beam is a unified programming model designed to provide efficient and portable data processing pipelines What is Apache Beam? The Beam Programming Model Other Beam Beam Java Languages Python SDKs for writing Beam pipelines •Java, Python Beam Model: Pipeline Construction Beam Runners for existing distributed processing backends Apache Apache Apache Apache Cloud Apache Apache Apex Flink Gearpump Spark Dataflow Apex Apache Gearpump Apache Beam Model: Fn Runners Google Cloud Dataflow Execution Execution Execution What’s in this talk • Introduction to Apache Beam • The Apache Beam Podling • Beam Demos Quick overview of the Beam model PCollection – a parallel collection of timestamped elements that are in windows. Sources & Readers – produce PCollections of timestamped elements and a watermark. ParDo – flatmap over elements of a PCollection. (Co)GroupByKey – shuffle & group {{K: V}} → {K: [V]}. Side inputs – global view of a PCollection used for broadcast / joins. Window – reassign elements to zero or more windows; may be data-dependent. Triggers – user flow control based on window, watermark, element count, lateness - emitting zero or more panes per window. 1.Classic Batch 2. Batch with 3. Streaming Fixed Windows 4. Streaming with 5. Streaming With 6. Sessions Speculative + Late Data Retractions Simple clickstream analysis pipeline Data: JSON-encoded analytics stream from site •{“user”:“dhalperi”, “page”:“blog.apache.org/feed/7”,
    [Show full text]
  • A Survey of State Management in Big Data Processing Systems
    A Survey of State Management in Big Data Processing Systems Quoc-Cuong To1 Juan Soto1,2 Volker Markl1,2 1 German Research Center for 2 Technische Universität Berlin Artificial Intelligence (DFKI) FG DIMA, Sekr. EN-7 Raum 728, Alt-Moabit 91c Einsteinufer 17 10559 Berlin, Germany 10587 Berlin, Germany [email protected] [email protected] [email protected] ABSTRACT graphs or trees (in the absence of iterations or shared results). From The concept of state and its applications vary widely across big data this perspective, the analysis results are the roots, operators are the processing systems. This is evident in both the research literature intermediate nodes, and data are the leaves. Each operator node and existing systems, such as Apache Flink, Apache Heron, Apache performs an operation that transforms inputs flowing through it into Samza, Apache Spark, and Apache Storm. Given the pivotal role outputs. Data flows from the leaves through the operator nodes to that state management plays, particularly, for iterative batch and the roots. stream processing, in this survey, we present examples of state as Operators come in two varieties. Stateless operators are an enabler, discuss the alternative approaches used to handle and purely functional and they produce output, solely based on their implement state, capture the many facets of state management, and input. Examples of stateless operators include relational selection, highlight new research directions. Our aim is to provide insight into relational projection without duplicate elimination, or merging two disparate state management techniques, motivate others to pursue inputs. In contrast, stateful operators compute their output on a research in this area, and draw attention to open problems.
    [Show full text]
  • Apache Calcite for Enabling SQL Access to Nosql Data Systems Such As Apache Geode Christian Tzolov Whoami Christian Tzolov
    Apache Calcite for Enabling SQL Access to NoSQL Data Systems such as Apache Geode Christian Tzolov Whoami Christian Tzolov Engineer at Pivotal, Big-Data, Hadoop, Spring Cloud Dataflow, Apache Geode, Apache HAWQ, Apache Committer, Apache Crunch PMC member [email protected] blog.tzolov.net twitter: @christzolov https://nl.linkedin.com/in/tzolov Disclaimer This talk expresses my personal opinions. It is not read or approved by Pivotal and does not necessarily reflect the views and opinions of Pivotal nor does it constitute any official communication of Pivotal. Pivotal does not support any of the code shared here. 2 Big Data Landscape 2016 • Volume • Velocity • Varity • Scalability • Latency • Consistency vs. Availability (CAP) 3 Data Access • {Old | New} SQL • Custom APIs – Key / Value – Fluent APIs – REST APIs • {My} Query Language Unified Data Access? At What Cost? 4 SQL? • Apache Apex • SQL-Gremlin • Apache Drill … • Apache Flink • Apache Geode • Apache Hive • Apache Kylin • Apache Phoenix • Apache Samza • Apache Storm • Cascading • Qubole Quark 5 Geode Adapter - Overview SQL/JDBC/ODBC Parse SQL, converts into relational expression and Apache Calcite optimizes Push down the relational expressions supported by Geode Spring Data API for Enumerable OQL and falls back to the Calcite interacting with Geode Adapter Enumerable Adapter for the rest Convert SQL relational Spring Data Geode Adapter expressions into OQL queries Geode (Geode Client) Geode API and OQL Geode Server Geode Server Geode Server Data Data Data SQL Relational Expressions
    [Show full text]