Atmospheric Composition Change – Global and Regional Air Quality
Total Page:16
File Type:pdf, Size:1020Kb
Atmospheric Environment 43 (2009) 5268–5350 Contents lists available at ScienceDirect Atmospheric Environment journal homepage: www.elsevier.com/locate/atmosenv Atmospheric composition change – global and regional air quality P.S. Monks a,*, C. Granier b,c,d, S. Fuzzi e, A. Stohl f, M.L. Williams g, H. Akimoto h, M. Amann i, A. Baklanov j, U. Baltensperger k, I. Bey l, N. Blake m, R.S. Blake a, K. Carslaw n, O.R. Cooper c,d, F. Dentener o, D. Fowler p, E. Fragkou q, G.J. Frost c,d, S. Generoso r, P. Ginoux s,V.Grewet, A. Guenther u, H.C. Hansson v, S. Henne w, J. Hjorth o, A. Hofzumahaus x, H. Huntrieser t, I.S.A. Isaksen y,z, M.E. Jenkin aa, J. Kaiser bb, M. Kanakidou cc, Z. Klimont i, M. Kulmala dd, P. Laj ee,ff, M.G. Lawrence gg, J.D. Lee hh, C. Liousse ii, M. Maione jj, G. McFiggans kk, A. Metzger ll, A. Mieville b, N. Moussiopoulos q, J.J. Orlando u, C.D. O’Dowd mm, P.I. Palmer nn, D.D. Parrish c, A. Petzold t, U. Platt oo,U.Po¨schl gg, A.S.H. Pre´voˆt k, C.E. Reeves bb, S. Reimann w, Y. Rudich pp, K. Sellegri ee, R. Steinbrecher qq, D. Simpson rr,ss, H. ten Brink tt, J. Theloke uu, G.R. van der Werf vv, R. Vautard ww, V. Vestreng xx, Ch. Vlachokostas q, R. von Glasow bb a Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK b UPMC Univ. Paris 6; CNRS-INSU, LATMOS-IPSL, 75005 Paris, France c NOAA Earth System Research Laboratory, 80305-3337 Boulder, USA d Cooperative Institute for Research in Environmental Sciences, University of Colorado, 80309-0216 Boulder, USA e Istituto di Scienze dell’Atmosfera e del Clima – CNR, 40129 Bologna, Italy f Norwegian Institute for Air Research, 2027 Kjeller, Norway g Air Quality and Industrial Pollution Programme, DEFRA, SW1P 2AL London, UK h Frontier Research System for Global Change, JAMSTEC, 236-0001 Yokohama, Japan i International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria j Danish Meteorological Institute, 2100 Copenhagen, Denmark k Paul Scherrer Institut, Laboratory of Atmospheric Chemistry, 5232 Villigen, Switzerland l ETH Zurich, 8092 Zu¨rich, Switzerland m University of California Irvine, 92697 Irvine, USA n School of Earth and Environmental Science, University of Leeds, Leeds LS2 9JT, UK o European Commission, Joint Research Centre, Institute for Environment and Sustainability, 21020 Ispra, Italy p Centre for Ecology and Hydrology, EH26 0QB Penicuik Midlothian, UK q Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece r Ecole Polytechnique Fe´de´rale de Lausanne (EPFL), Laboratoire de Mode´lisation de la Chimie Atmosphe´rique (LMCA), 1015 Lausanne, Switzerland s Geophysical Fluid Dynamics Laboratory, Princeton University Forrestal Campus, 08540-6649 Princeton, USA t DLR Institut fu¨r Physik der Atmospha¨re, 82230 Wessling, Germany u National Center for Atmospheric Research, 80307-3000 Boulder, USA v Department of Applied Environmental Science, Atmospher Science Unit, Stockholm University, 10691 Stockholm, Sweden w Empa, Swiss Federal Laboratories for Materials Testing and Research, 8600 Du¨bendorf, Switzerland x Institut fu¨r Chemie und Dynamik der Geospha¨re, ICG-2: Troposphere, Forschungszentrum Ju¨lich, 52425 Ju¨lich, Germany y Department of Geosciences, University of Oslo, 0316 Oslo, Norway z Center for International Climate and Environmental Research – Oslo (CICERO), 0318 Oslo, Norway aa Atmospheric Chemistry Services, EX20 1FB Okehampton, UK bb School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK cc Department of Chemistry, University of Crete, 71003 Voutes – Heraklion, Greece dd Department of Physics, University of Helsinki, 00014 Helsinki, Finland ee Laboratoire de Me´te´orologie Physique, Observatoire de Physique du Globe de Clermont-Ferrand, Universite´ Blaise Pascal – CNRS, 63177 Aubie`re, France ff Universite´ Joseph Fourier d Grenoble 1 / CNRS, Laboratoire de Glaciologie et Ge´ophysique de l’Environnement, 38400 St Martin d’Heres, France gg Max-Planck-Institut fu¨r Chemie, 55128 Mainz, Germany hh School of Chemistry, University of York, YO10 5DD Heslington, UK ii Laboratoire d’Ae´rologie, Universite´ de Toulouse III, UMR 5560, 31400 Toulouse, France jj Universita’ di Urbino, Istituto di Scienze Chimiche ‘‘F. Bruner’’, 61029 Urbino, Italy kk School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, M13 9PL Manchester, UK ll Ionicon Analytik Ges.m.b.H., 6020 Innsbruck, Austria * Corresponding author. Tel.: þ44 (0) 116 252 2141/3403; fax: þ44 0 116 252 3789. 1352-2310/$ – see front matter Ó 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.atmosenv.2009.08.021 P.S. Monks et al. / Atmospheric Environment 43 (2009) 5268–5350 5269 mm School of Physics and Centre for Climate & Air Pollution Studies, Environmental Change Institute, National University of Ireland, Galway, University Road, Galway, Ireland nn School of GeoSciences, University of Edinburgh, EH9 3JN Edinburgh, UK oo University of Heidelberg, 69120 Heidelberg, Germany pp Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, 76100 Rehovot, Israel qq Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Forschungszentrum Karlsruhe GmbH, 82467 Garmisch-Partenkirchen, Germany rr EMEP MSC-W, Norwegian Meteorological Institute, 0313 Oslo, Norway ss Department of Radio and Space Science, Chalmers University of Technology, 41296 Gothenburg, Sweden tt Energy Research Centre of The Netherlands (ECN), 1755 LE Petten, The Netherlands uu University of Stuttgart, 70049 Stuttgart, Germany vv VU University, Amsterdam, 1081 HV Amsterdam, The Netherlands ww Laboratoire des Sciences du Climat et de l’Environnement, IPSL/CEA/CNRS/UVSQ, 91190 Gif sur Yvette, France xx Norwegian Pollution Control Authority, 0032 Oslo, Norway article info abstract Article history: Air quality transcends all scales with in the atmosphere from the local to the global with handovers and Received 29 January 2009 feedbacks at each scale interaction. Air quality has manifold effects on health, ecosystems, heritage and Received in revised form climate. In this review the state of scientific understanding in relation to global and regional air quality is 17 July 2009 outlined. The review discusses air quality, in terms of emissions, processing and transport of trace gases Accepted 12 August 2009 and aerosols. New insights into the characterization of both natural and anthropogenic emissions are reviewed looking at both natural (e.g. dust and lightning) as well as plant emissions. Trends in Keywords: anthropogenic emissions both by region and globally are discussed as well as biomass burning emissions. Atmosphere Troposphere In terms of chemical processing the major air quality elements of ozone, non-methane hydrocarbons, Air quality nitrogen oxides and aerosols are covered. A number of topics are presented as a way of integrating the Emissions process view into the atmospheric context; these include the atmospheric oxidation efficiency, halogen Climate and HOx chemistry, nighttime chemistry, tropical chemistry, heat waves, megacities, biomass burning Co-benefit and the regional hot spot of the Mediterranean. New findings with respect to the transport of pollutants Oxidation chemistry across the scales are discussed, in particular the move to quantify the impact of long-range transport on Aerosols regional air quality. Gaps and research questions that remain intractable are identified. The review Transport of pollutants concludes with a focus of research and policy questions for the coming decade. In particular, the policy Ozone challenges for concerted air quality and climate change policy (co-benefit) are discussed. Ó 2009 Elsevier Ltd. All rights reserved. Contents 1. Introduction . ................................................5270 2. Trace gases and aerosol emissions . ...........................................5271 2.1. Natural emissions . ......................5271 2.1.1. Biogenic volatile organic compounds (BVOCs) . ......................5271 2.1.2. Dust emissions . ......................5273 2.1.3. Lightning emissions . ......................5274 2.2. Anthropogenic emissions and trends . ......................5274 2.2.1. Inventories of global anthropogenic emissions . ......................5274 2.2.2. Primary emissions of anthropogenic particulate matter . ......................5277 2.2.3. Uncertainties in fossil fuel emissions . ......................5277 2.2.4. Trends in European emissions . ......................5278 2.2.5. Trends in US emissions . ......................5278 2.2.6. Trends in Asian emissions . ......................5280 2.2.7. Comparison of European, North American and global emission trends . ......................5280 2.2.8. VOC speciation . ......................5280 2.3. Biomass burning . ......................5282 2.3.1. Fire products: active fires, burned areas, fire radiative energy . ......................5282 2.3.2. Use of fire products to calculate biomass burning emissions . ......................5285 2.4. Vertical profiles of emissions . ......................5286 2.5. Availability of emission datasets . ......................5287 3. Atmospheric processing . ............................................... 5287 3.1. Ozone and its precursors . ......................5287 3.1.1. Hydrocarbons . ......................5287 3.1.1.1. Chemical mechanisms for VOC degradation . ......................5287 3.1.1.2. Oxygenated volatile organic compounds (OVOCs) . ......................5289 3.1.1.3. Biogenic VOC oxidation . ......................5290 3.1.2. New insights into nitrogen chemistry . ......................5292 3.1.2.1. Chemical sinks for oxidized nitrogen . ......................5292 3.1.2.2. HONO formation . ......................5292 3.1.3. Radical chemistry . ......................5293 3.1.4. Tropospheric ozone . ......................5295 3.1.5. Isotope chemistry . ......................5297 5270 P.S. Monks et al. / Atmospheric Environment 43 (2009) 5268–5350 3.2. Aerosol . .................................................5298 3.2.1. Overview of aerosol types, sources, atmospheric burdens and processing . .....................5298 3.2.2. Inorganic aerosol . ......................................5299 3.2.3. Organic aerosol . ..