Performance of Message Authentication Codes for Secure Ethernet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FIPS 140-2 Non-Proprietary Security Policy
Kernel Crypto API Cryptographic Module version 1.0 FIPS 140-2 Non-Proprietary Security Policy Version 1.3 Last update: 2020-03-02 Prepared by: atsec information security corporation 9130 Jollyville Road, Suite 260 Austin, TX 78759 www.atsec.com © 2020 Canonical Ltd. / atsec information security This document can be reproduced and distributed only whole and intact, including this copyright notice. Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy Table of Contents 1. Cryptographic Module Specification ..................................................................................................... 5 1.1. Module Overview ..................................................................................................................................... 5 1.2. Modes of Operation ................................................................................................................................. 9 2. Cryptographic Module Ports and Interfaces ........................................................................................ 10 3. Roles, Services and Authentication ..................................................................................................... 11 3.1. Roles .......................................................................................................................................................11 3.2. Services ...................................................................................................................................................11 -
Argon and Argon2
Argon and Argon2 Designers: Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich University of Luxembourg, Luxembourg [email protected], [email protected], [email protected] https://www.cryptolux.org/index.php/Password https://github.com/khovratovich/Argon https://github.com/khovratovich/Argon2 Version 1.1 of Argon Version 1.0 of Argon2 31th January, 2015 Contents 1 Introduction 3 2 Argon 5 2.1 Specification . 5 2.1.1 Input . 5 2.1.2 SubGroups . 6 2.1.3 ShuffleSlices . 7 2.2 Recommended parameters . 8 2.3 Security claims . 8 2.4 Features . 9 2.4.1 Main features . 9 2.4.2 Server relief . 10 2.4.3 Client-independent update . 10 2.4.4 Possible future extensions . 10 2.5 Security analysis . 10 2.5.1 Avalanche properties . 10 2.5.2 Invariants . 11 2.5.3 Collision and preimage attacks . 11 2.5.4 Tradeoff attacks . 11 2.6 Design rationale . 14 2.6.1 SubGroups . 14 2.6.2 ShuffleSlices . 16 2.6.3 Permutation ...................................... 16 2.6.4 No weakness,F no patents . 16 2.7 Tweaks . 17 2.8 Efficiency analysis . 17 2.8.1 Modern x86/x64 architecture . 17 2.8.2 Older CPU . 17 2.8.3 Other architectures . 17 3 Argon2 19 3.1 Specification . 19 3.1.1 Inputs . 19 3.1.2 Operation . 20 3.1.3 Indexing . 20 3.1.4 Compression function G ................................. 21 3.2 Features . 22 3.2.1 Available features . 22 3.2.2 Server relief . 23 3.2.3 Client-independent update . -
IMPLEMENTATION and BENCHMARKING of PADDING UNITS and HMAC for SHA-3 CANDIDATES in FPGAS and ASICS by Ambarish Vyas a Thesis Subm
IMPLEMENTATION AND BENCHMARKING OF PADDING UNITS AND HMAC FOR SHA-3 CANDIDATES IN FPGAS AND ASICS by Ambarish Vyas A Thesis Submitted to the Graduate Faculty of George Mason University in Partial Fulfillment of The Requirements for the Degree of Master of Science Computer Engineering Committee: Dr. Kris Gaj, Thesis Director Dr. Jens-Peter Kaps. Committee Member Dr. Bernd-Peter Paris. Committee Member Dr. Andre Manitius, Department Chair of Electrical and Computer Engineering Dr. Lloyd J. Griffiths. Dean, Volgenau School of Engineering Date: ---J d. / q /9- 0 II Fall Semester 2011 George Mason University Fairfax, VA Implementation and Benchmarking of Padding Units and HMAC for SHA-3 Candidates in FPGAs and ASICs A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at George Mason University By Ambarish Vyas Bachelor of Science University of Pune, 2009 Director: Dr. Kris Gaj, Associate Professor Department of Electrical and Computer Engineering Fall Semester 2011 George Mason University Fairfax, VA Copyright c 2011 by Ambarish Vyas All Rights Reserved ii Acknowledgments I would like to use this oppurtunity to thank the people who have supported me throughout my thesis. First and foremost my advisor Dr.Kris Gaj, without his zeal, his motivation, his patience, his confidence in me, his humility, his diverse knowledge, and his great efforts this thesis wouldn't be possible. It is difficult to exaggerate my gratitude towards him. I also thank Ekawat Homsirikamol for his contributions to this project. He has significantly contributed to the designs and implementations of the architectures. Additionally, I am indebted to my student colleagues in CERG for providing a fun environment to learn and giving invaluable tips and support. -
PHC: Status Quo
PHC: status quo JP Aumasson @veorq / http://aumasson.jp academic background principal cryptographer at Kudelski Security, .ch applied crypto research and outreach BLAKE, BLAKE2, SipHash, NORX Crypto Coding Standard Password Hashing Competition Open Crypto Audit Project board member do you use passwords? this talk might interest you! Oct 2013 "hash" = 3DES-ECB( static key, password ) users' hint made the guess game easy... (credit Jeremi Gosney / Stricture Group) May 2014; "encrypted passwords" (?) last week that's only the reported/published cases Lesson if Adobe, eBay, and Avast fail to protect their users' passwords, what about others? users using "weak passwords"? ITsec people using "weak defenses"? developers using "weak hashes"? cryptographers, who never bothered? agenda 1. how (not) to protect passwords 2. the Password Hashing Competition (PHC) 3. the 24-2 PHC candidates 4. next steps, and how to contribute WARNING this is NOT about bikeshed topics as: password policies password managers password-strength meters will-technology-X-replace-passwords? 1. how (not) to protect passwords solution of the 60's store "password" or the modern alternative: obviously a bad idea (assuming the server and its DB are compromised) solution of the early 70's store hash("password") "one-way": can't be efficiently inverted vulnerable to: ● efficient dictionary attacks and bruteforce ● time-memory tradeoffs (rainbow tables, etc.) solution of the late 70's store hash("password", salt) "one-way": can't be efficiently inverted immune to time-memory tradeoffs vulnerable to: ● dictionary attacks and bruteforce (but has to be repeated for different hashes) solution of the 2000's store hash("password", salt, cost) "one-way": can't be efficiently inverted immune to time-memory tradeoffs inefficient dictionary attacks and bruteforce main ideas: ● be "slow" ● especially on attackers' hardware (GPU, FPGA) => exploit fast CPU memory access/writes PBKDF2 (Kaliski, 2000) NIST and PKCS standard in Truecrypt, iOS, etc. -
Lecture9.Pdf
Merkle- Suppose H is a Damgaord hash function built from a secure compression function : several to build a function ways keyed : m : = H Ilm 1 . end FCK ) (k ) Prep key , " " ↳ - Insecure due to structure of Merkle : can mount an extension attack: H (KH m) can Barnyard given , compute ' Hlkllmllm ) by extending Merkle- Danged chain = : m : 2 . FCK ) 11k) Append key , Hlm ↳ - - to : Similar to hash then MAC construction and vulnerable same offline attack adversary finds a collision in the - - > Merkle and uses that to construct a for SHA I used PDF files Barnyard prefix forgery f , they ↳ - Structure in SHA I (can matches exploited collision demonstration generate arbitrary collisions once prefix ) ' = : FCK m - H on h 3. method , ) ( K HMH K) for reasonable randomness ( both Envelope pseudo assumptions e.g , : = - = i - - : F ( m m } : h K m h m k 4. nest ( ki ) H Ck H (k m ( , and m ( ) is a PRF both Two , kz , ) (ka HH , )) F- , ) ) Falk , ) , ) key , - of these constructions are secure PRFS on a variable size domain hash- based MAC ✓ a the - nest with correlated : HMAC is PRF / MAC based on two key (though keys) : = m H H ka m HMACCK ( K H ( , )) , ) , where k ← k ④ and kz ← k to , ipad opad and and are fixed ( in the HMAC standard) ipad opad strings specified I 0×36 repeated %x5C repeated : k . a Since , and ka are correlated need to make on h remains under Sety , stronger assumption security leg , pseudorandom related attack) Instantiations : denoted HMAC- H where H is the hash function Typically , HMAC- SHAI %" - - HMAC SHA256 -
Authenticated Key-Exchange: Protocols, Attacks, and Analyses
The HMAC construction: A decade later Ran Canetti IBM Research What is HMAC? ● HMAC: A Message Authentication Code based on Cryptographic Hash functions [Bellare-C-Krawczyk96]. ● Developed for the IPSec standard of the Internet Engineering Task Force (IETF). ● Currently: - incorporated in IPSec, SSL/TLS, SSH, Kerberos, SHTTP, HTTPS, SRTP, MSEC, ... - ANSI and NIST standards - Used daily by all of us. Why is HMAC interesting? ● “Theoretical” security analysis impacts the security of real systems. ● Demonstrates the importance of modelling and abstraction in practical cryptography. ● The recent attacks on hash functions highlight the properties of the HMAC design and analysis. ● Use the HMAC lesson to propose requirements for the next cryptographic hash function. Organization ● Authentication, MACs, Hash-based MACs ● HMAC construction and analysis ● Other uses of HMAC: ● Pseudo-Random Functions ● Extractors ● What properties do we want from a “cryptographic hash function”? Authentication m m' A B The goal: Any tampering with messages should be detected. “If B accepts message m from A then A has sent m to B.” • One of the most basic cryptographic tasks • The basis for any security-conscious interaction over an open network Elements of authentication The structure of typical cryptographic solutions: • Initial entity authentication: The parties perform an initial exchange, bootstrapping from initial trusted information on each other. The result is a secret key that binds the parties to each other. • Message authentication: The parties use the key to authenticate exchanged messages via message authentication codes. Message Authentication Codes m,t m',t' A B t=FK(m) t' =? FK(m') • A and B obtain a common secret key K • A and B agree on a keyed function F • A sends t=FK(m) together with m • B gets (m',t') and accepts m' if t'=FK(m'). -
Fast Hashing and Stream Encryption with Panama
Fast Hashing and Stream Encryption with Panama Joan Daemen1 and Craig Clapp2 1 Banksys, Haachtesteenweg 1442, B-1130 Brussel, Belgium [email protected] 2 PictureTel Corporation, 100 Minuteman Rd., Andover, MA 01810, USA [email protected] Abstract. We present a cryptographic module that can be used both as a cryptographic hash function and as a stream cipher. High performance is achieved through a combination of low work-factor and a high degree of parallelism. Throughputs of 5.1 bits/cycle for the hashing mode and 4.7 bits/cycle for the stream cipher mode are demonstrated on a com- mercially available VLIW micro-processor. 1 Introduction Panama is a cryptographic module that can be used both as a cryptographic hash function and a stream cipher. It is designed to be very efficient in software implementations on 32-bit architectures. Its basic operations are on 32-bit words. The hashing state is updated by a parallel nonlinear transformation, the buffer operates as a linear feedback shift register, similar to that applied in the compression function of SHA [6]. Panama is largely based on the StepRightUp stream/hash module that was described in [4]. Panama has a low per-byte work factor while still claiming very high security. The price paid for this is a relatively high fixed computational overhead for every execution of the hash function. This makes the Panama hash function less suited for the hashing of messages shorter than the equivalent of a typewritten page. For the stream cipher it results in a relatively long initialization procedure. Hence, in applications where speed is critical, too frequent resynchronization should be avoided. -
MD5 Collisions the Effect on Computer Forensics April 2006
Paper MD5 Collisions The Effect on Computer Forensics April 2006 ACCESS DATA , ON YOUR RADAR MD5 Collisions: The Impact on Computer Forensics Hash functions are one of the basic building blocks of modern cryptography. They are used for everything from password verification to digital signatures. A hash function has three fundamental properties: • It must be able to easily convert digital information (i.e. a message) into a fixed length hash value. • It must be computationally impossible to derive any information about the input message from just the hash. • It must be computationally impossible to find two files to have the same hash. A collision is when you find two files to have the same hash. The research published by Wang, Feng, Lai and Yu demonstrated that MD5 fails this third requirement since they were able to generate two different messages that have the same hash. In computer forensics hash functions are important because they provide a means of identifying and classifying electronic evidence. Because hash functions play a critical role in evidence authentication, a judge and jury must be able trust the hash values to uniquely identify electronic evidence. A hash function is unreliable when you can find any two messages that have the same hash. Birthday Paradox The easiest method explaining a hash collision is through what is frequently referred to as the Birthday Paradox. How many people one the street would you have to ask before there is greater than 50% probability that one of those people will share your birthday (same day not the same year)? The answer is 183 (i.e. -
Modern Password Security for System Designers What to Consider When Building a Password-Based Authentication System
Modern password security for system designers What to consider when building a password-based authentication system By Ian Maddox and Kyle Moschetto, Google Cloud Solutions Architects This whitepaper describes and models modern password guidance and recommendations for the designers and engineers who create secure online applications. A related whitepaper, Password security for users, offers guidance for end users. This whitepaper covers the wide range of options to consider when building a password-based authentication system. It also establishes a set of user-focused recommendations for password policies and storage, including the balance of password strength and usability. The technology world has been trying to improve on the password since the early days of computing. Shared-knowledge authentication is problematic because information can fall into the wrong hands or be forgotten. The problem is magnified by systems that don't support real-world secure use cases and by the frequent decision of users to take shortcuts. According to a 2019 Yubico/Ponemon study, 69 percent of respondents admit to sharing passwords with their colleagues to access accounts. More than half of respondents (51 percent) reuse an average of five passwords across their business and personal accounts. Furthermore, two-factor authentication is not widely used, even though it adds protection beyond a username and password. Of the respondents, 67 percent don’t use any form of two-factor authentication in their personal life, and 55 percent don’t use it at work. Password systems often allow, or even encourage, users to use insecure passwords. Systems that allow only single-factor credentials and that implement ineffective security policies add to the problem. -
The Boomerang Attacks on the Round-Reduced Skein-512 *
The Boomerang Attacks on the Round-Reduced Skein-512 ? Hongbo Yu1, Jiazhe Chen3, and Xiaoyun Wang2;3 1 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China 2 Institute for Advanced Study, Tsinghua University, Beijing 100084, China fyuhongbo,[email protected] 3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, School of Mathematics, Shandong University, Jinan 250100, China [email protected] Abstract. The hash function Skein is one of the ¯ve ¯nalists of the NIST SHA-3 competition; it is based on the block cipher Three¯sh which only uses three primitive operations: modular addition, rotation and bitwise XOR (ARX). This paper studies the boomerang attacks on Skein-512. Boomerang distinguishers on the compression function reduced to 32 and 36 rounds are proposed, with complexities 2104:5 and 2454 respectively. Examples of the distinguishers on 28-round and 31- round are also given. In addition, the boomerang distinguishers are applicable to the key-recovery attacks on reduced Three¯sh-512. The complexities for key-recovery attacks reduced to 32-/33- /34-round are about 2181, 2305 and 2424. Because Laurent et al. [14] pointed out that the previous boomerang distinguishers for Three¯sh-512 are in fact not compatible, our attacks are the ¯rst valid boomerang attacks for the ¯nal round Skein-512. Key words: Hash function, Boomerang attack, Three¯sh, Skein 1 Introduction Cryptographic hash functions, which provide integrity, authentication and etc., are very impor- tant in modern cryptology. In 2005, as the most widely used hash functions MD5 and SHA-1 were broken by Wang et al. -
BLAKE2: Simpler, Smaller, Fast As MD5
BLAKE2: simpler, smaller, fast as MD5 Jean-Philippe Aumasson1, Samuel Neves2, Zooko Wilcox-O'Hearn3, and Christian Winnerlein4 1 Kudelski Security, Switzerland [email protected] 2 University of Coimbra, Portugal [email protected] 3 Least Authority Enterprises, USA [email protected] 4 Ludwig Maximilian University of Munich, Germany [email protected] Abstract. We present the hash function BLAKE2, an improved version of the SHA-3 finalist BLAKE optimized for speed in software. Target applications include cloud storage, intrusion detection, or version control systems. BLAKE2 comes in two main flavors: BLAKE2b is optimized for 64-bit platforms, and BLAKE2s for smaller architectures. On 64- bit platforms, BLAKE2 is often faster than MD5, yet provides security similar to that of SHA-3: up to 256-bit collision resistance, immunity to length extension, indifferentiability from a random oracle, etc. We specify parallel versions BLAKE2bp and BLAKE2sp that are up to 4 and 8 times faster, by taking advantage of SIMD and/or multiple cores. BLAKE2 reduces the RAM requirements of BLAKE down to 168 bytes, making it smaller than any of the five SHA-3 finalists, and 32% smaller than BLAKE. Finally, BLAKE2 provides a comprehensive support for tree-hashing as well as keyed hashing (be it in sequential or tree mode). 1 Introduction The SHA-3 Competition succeeded in selecting a hash function that comple- ments SHA-2 and is much faster than SHA-2 in hardware [1]. There is nev- ertheless a demand for fast software hashing for applications such as integrity checking and deduplication in filesystems and cloud storage, host-based intrusion detection, version control systems, or secure boot schemes. -
Optimizing a Password Hashing Function with Hardware-Accelerated Symmetric Encryption
S S symmetry Article Optimizing a Password Hashing Function with Hardware-Accelerated Symmetric Encryption Rafael Álvarez 1,* , Alicia Andrade 2 and Antonio Zamora 3 1 Departamento de Ciencia de la Computación e Inteligencia Artificial (DCCIA), Universidad de Alicante, 03690 Alicante, Spain 2 Fac. Ingeniería, Ciencias Físicas y Matemática, Universidad Central, Quito 170129, Ecuador; [email protected] 3 Departamento de Ciencia de la Computación e Inteligencia Artificial (DCCIA), Universidad de Alicante, 03690 Alicante, Spain; [email protected] * Correspondence: [email protected] Received: 2 November 2018; Accepted: 22 November 2018; Published: 3 December 2018 Abstract: Password-based key derivation functions (PBKDFs) are commonly used to transform user passwords into keys for symmetric encryption, as well as for user authentication, password hashing, and preventing attacks based on custom hardware. We propose two optimized alternatives that enhance the performance of a previously published PBKDF. This design is based on (1) employing a symmetric cipher, the Advanced Encryption Standard (AES), as a pseudo-random generator and (2) taking advantage of the support for the hardware acceleration for AES that is available on many common platforms in order to mitigate common attacks to password-based user authentication systems. We also analyze their security characteristics, establishing that they are equivalent to the security of the core primitive (AES), and we compare their performance with well-known PBKDF algorithms, such as Scrypt and Argon2, with favorable results. Keywords: symmetric; encryption; password; hash; cryptography; PBKDF 1. Introduction Key derivation functions are employed to obtain one or more keys from a master secret. This is especially useful in the case of user passwords, which can be of arbitrary length and are unsuitable to be used directly as fixed-size cipher keys, so, there must be a process for converting passwords into secret keys.