The Systems View of Life I. Living Systems

Total Page:16

File Type:pdf, Size:1020Kb

The Systems View of Life I. Living Systems Fritjof Capra Bodø Seminar May 19, 2015 The Systems View of Life I. Living Systems Ecological Sustainability A sustainable human community is designed in such a manner that its ways of life, businesses, economy, physical structures, and technologies respect, honor, and cooperate with nature’s inherent ability to sustain life. A New Scientific Understanding of Life The material world, ultimately is a network of inseparable patterns of relationship. A New Scientific Understanding of Life The material world, ultimately is a network of inseparable patterns of relationship. The planet as a whole is a living, self-regulating system. A New Scientific Understanding of Life The material world, ultimately is a network of inseparable patterns of relationship. The planet as a whole is a living, self-regulating system. The brain, the immune system, the bodily tissues, and even each cell is a living, cognitive system. A New Scientific Understanding of Life The material world, ultimately is a network of inseparable patterns of relationship. The planet as a whole is a living, self-regulating system. The brain, the immune system, the bodily tissues, and even each cell is a living, cognitive system. Evolution is a cooperative dance in which creativity and the constant emergence of novelty are the driving forces. A New Scientific Understanding of Life With the new emphasis on complexity, networks and patterns of organization, a new science of qualities is slowly emerging. Ueda attractor Living Systems A living system — organism, ecosystem, or social system — is an integrated whole whose properties cannot be reduced to those of smaller parts. “The whole is more than the sum of its parts.” Barnraising in an Amish community Living Systems Systems theory tells us that all living systems share a set of common properties and principles of organization. Systems thinking can be applied to integrate academic disciplines and to discover similarities between different phenomena within the broad range of living systems. Complexity Theory A new mathematical language for dealing with the complexity of living systems — a nonlinear mathematics. Chaos theory: a theory of a new kind of order, revealed by the new mathematics of complexity. Complexity Theory The new mathematics is a mathematics of patterns, of relationships. Strange attractors and fractals are visual descriptions of the system’s complex dynamics. Metabolism — The Breath of Life Metabolism is the ceaseless flow of energy and matter through a network of chemical reactions, which enables a living organism to continually generate, repair, and perpetuate itself. Metabolism The understanding of metabolism involves two aspects: (1) the flow of energy and matter; (2) the network of chemical reactions. Living Networks Networks are the basic pattern of life. Ecosystems are networks of organisms; organisms are networks of cells, organs and organ systems; cells are networks of molecules. Wherever we see life, we see networks. molecules cells organisms ecosystems Living Networks Living networks are self-generating. They continually create, or recreate, themselves by transforming or replacing their components. Humberto Maturana Francisco Varela Theory of Autopoiesis Coexistence of Stability and Change What remains stable is the system’s pattern of organization; what continually changes is the organism’s structure. Two types of structural changes: • changes of self-renewal, • developmental changes. Self-organization A living system responds to a disturbance ion its own, autonomous way. You can never direct a living system; you can only disturb it. Choosing to Be Disturbed The system not only specifies its structural changes; it also specifies which disturbances will trigger them. A living system maintains the freedom to decide what to notice and what will disturb it. Structural Coupling The system is coupled with its environment in such a way that each interaction, each disturbance, results in structural changes. Structural Coupling Over time, a living organism will form its own pathway of structural coupling. The structure of a living organism is a record of previous structural changes: all living beings have a history. Structural Determinism The behavior of a living organism is determined by its own structure. Being determined by its own structure, rather than by outside forces, the behavior of a living organism is both determined and free. Social Networks Living networks in human society are networks of communications. Like biological networks, they are self- generating. Each communication creates thoughts and meaning, which give rise to further communications, and thus the entire network generates itself. Meaning The dimension of meaning is crucial to understand social networks. Material structures are usually produced for a purpose, according to some design, and they embody some meaning. Culture Over time, social networks produce a shared system of beliefs, explanations, and values — a common context of meaning, known as culture. Through culture individuals acquire identities as members of the social network, and in this way the network generates its own boundary. Biol. Networks Social Networks Operate in the realm Operate in the realm of of matter; meaning; produce material also produce the nonmaterial structures; characteristics of culture; exchange molecules exchange information and in networks of ideas in networks of chemical reactions; communications; produce and sustain a produce and sustain a material boundary that nonmaterial cultural boundary imposes constraints on that imposes constraints on the chemistry that the behavior of its members. takes place inside it. The Emergence of Novelty Creativity—the generation of new forms—is a key property of all living systems. Emergent Structures The creativity of life expresses itself through the process of emergence. The structures created in this process — biological structures as well as social structures — may be called “emergent structures.” Designed and Emergent Structures Human beings also create structures by design. But even these designed structures, ultimately, emerge in a creative process from the minds of one or several designers. René Descartes Mind — the “thinking thing” (res cogitans) Matter — the “extended thing” (res extensa) Gregory Bateson Humberto Maturana “mental process” “cognition” Mind is a ! Santiago Theory of Cognition Humberto Maturana Francisco Varela Santiago Theory of Cognition Cognition is the activity involved in the self-generation and self- perpetuation of living networks — the very process of life. Mind is immanent in matter at all levels of life. Thank you.
Recommended publications
  • Autopoiesis and Heidegger’S Phenomenology
    A Biological Basis for Being-in-the-World Autopoiesis and Heidegger’s Phenomenology Jon R. Lindsay Senior Honors Thesis Symbolic Systems Program Stanford University June 10, 1995 To Picacho Del Diablo, the Middle Fork of the Eel, and other wild philosophers who helped me through this project TABLE OF CONTENTS INTRODUCTION 1 THE METAPHYSICS OF THE SUBJECT 1 TOWARDS AN ALTERNATIVE ONTOLOGY 6 DASEIN AND THE HUMAN ORGANISM 8 HOW TO GET THERE 11 CHAPTER 1: DASEIN 12 HUSSERL’S PHENOMENOLOGICAL REDUCTION 13 ONTOLOGICAL AND ONTIC DESCRIPTION 16 BEING-IN-THE-WORLD 19 THE WORLD 22 THE ANYONE 27 BEING-IN 29 A HEIDEGGERIAN CRITIQUE OF COGNITIVISM 32 CARE 37 CHAPTER 2: AUTOPOIESIS 42 ORGANIZATION AND STRUCTURE 43 THE OBSERVER’S DESCRIPTION 45 ONTOLOGY AND ORGANIZATION 46 AUTOPOIETIC ORGANIZATION 47 LIVING SYSTEMS 49 AUTOPOIESIS AND ALLOPOIESIS 50 THE COGNITIVE DOMAIN 53 STRUCTURAL COUPLING 55 ORGANIZATIONAL CLOSURE 56 THE NERVOUS SYSTEM 57 THE NEURON 58 THE NERVOUS SYSTEM AS A CLOSED NETWORK. 58 AN AUTOPOIETIC CRITIQUE OF COGNITIVISM 60 HIGHER ORDER ENTITIES 64 LANGUAGE 67 THE OBSERVER AS ORGANISM 69 CHAPTER 3: AUTOPOIETIC MACHINES ARE CARING MACHINES! 71 PHENOMENOLOGICAL UNITY AND ORGANIZATIONAL CLOSURE 73 PROJECTION AND THE COGNITIVE DOMAIN 75 THROWNNESS AND STRUCTURAL COUPLING 78 EXISTENZ AND LIVING 85 FURTHER PROBLEMS 89 APPENDIX: AUTOPOIESIS, DASEIN, AND SCIENTIFIC OBJECTIVITY 97 WORKS CITED 103 Introduction This introduction is rather long, even though the thesis that it introduces can be stated in a single sentence: Dasein is an autopoietic organism. The general problem, however, is not as compact: the problem of human subjectivity. What is it that we are— this subjectivity—that is at all times closest to us, and yet seems to elude any consensus as to what it is? Part of the difficulty with “subjectivity” lies in the fact that we can hardly think of it without thinking of its counterpart, objectivity.
    [Show full text]
  • I690/H699 Cybernetics and Revolution: International Histories of Science, Technology, and Political Change
    I690/H699 Cybernetics and Revolution: International Histories of Science, Technology, and Political Change Prof. Eden Medina Office: Informatics 305 Email: [email protected] Class Times: W 1:00-3:30 Room: Info 001 Class Description Norbert Wiener used the term cybernetics for studies of communication and control in the animal and the machine. Cybernetics brought together ideas from biology, psychology, math, computation, and engineering and looked for underlying commonalities in areas as diverse as neurology, electronics, and the study of social systems. Historical studies of cybernetics often cite the research activity that took place in the United States during 1940s and 1950s as the peak moment of this interdisciplinary field. However, these ideas also took root in other parts of the world, where they intertwined with other national histories and political ideologies. This class will bring an international perspective to the study of cybernetics. Different geographical, political, and cultural contexts shaped the language, content, and application of cybernetic science outside of the United States. Cybernetics also offered new ways for imagining social and political change. The class will study individuals such as Norbert Wiener, Ross Ashby, Stafford Beer, Humberto Maturana, and Viktor Glushkov, among others. Since most histories of cybernetics are set in the United States and Western Europe, special attention will be given to the evolution and application of cybernetic ideas in Latin America. Required Reading Paul Edwards, The Closed
    [Show full text]
  • Biology of Love
    BIOLOGY OF LOVE By Humberto Maturana Romesin and Gerda Verden-Zoller, Opp, G.: Peterander, F. (Hrsg.): Focus Heilpadagogik, Ernst Reinhardt, Munchen/Basel 1996. We human beings are love dependent animals. This is apparent in that we become ill when we are deprived of love at whatever age. No doubt we live a culture in which we are frequently in war and kill each other on different rational grounds that justify our mutual total denial as human beings. But doing that does not bring to us happiness, or spiritual comfort and harmony. Love and aggression - are they polar features of our biology or, of our cultural human existence? Are we genetically aggressive animals that love occassionally, or are we loving animals that cultivate aggression culturally? Our purpose in this article is to maintain that we are loving animals that cultivate aggression in a cultural alienation that may eventually change our biology. To this end we shall speak about the following themes in short but basic statements: A) the systemic constitution and conservation of human identity; B) the origin and development of the self in the mother/child relations; C) the evolutionary origin of humanness in the conservation of neoteny and the expansion of the female sexuality; D) the biology of love. A) That we are living systems means that we are structure determined systems, that we operate at every moment according to our structure at that moment, and that nothing external to us can specify what happens in us as a result of our interactions in a medium. External agents can only trigger in us structural changes determined in us.
    [Show full text]
  • El Pensamiento Filosófico De Humberto Maturana: La Autopoiesis Como Fundamento De La Ciencia
    ISSN 0798 1015 HOME Revista ESPACIOS ! ÍNDICES ! A LOS AUTORES ! Vol. 38 (Nº 46) Año 2017. Pág. 31 El pensamiento filosófico de Humberto Maturana: La autopoiesis como fundamento de la ciencia The philosophical thinking of Humberto Maturana: Autopoiesis as the foundation of science Alexander ORTIZ Ocaña 1 Recibido: 20/05/2017 • Aprobado: 13/06/2017 Contenido Introducción 1. ¿Quién es Humberto Maturana y cuáles son sus aportaciones epistémicas? 2. Autopoiesis 3. Conclusiones Referencias bibliográficas RESUMEN: ABSTRACT: Este artículo muestra mi reflexión originada por la This article shows my reflection caused by the impact repercusión que tuvo en mi concepción científica, that had on my scientific, epistemological and epistemológica y pedagógica, la lectura de la obra del pedagogical, design the reading of the work of the prestigioso biólogo, filósofo y epistemólogo chileno prestigious biologist, philosopher and epistemologist Humberto Maturana. Se esboza el pensamiento de Chilean Humberto Maturana. Outlines the thinking of Maturana y sus implicaciones para la ciencia, la Maturana and its implications for science, epistemology, epistemología, y sobre todo para la educación. En este and above all for education. In this article I reveal the artículo revelo la ontología, la epistemología y la teoría ontology, epistemology, and the living systems theory de los sistemas vivos propuesta por Maturana. Se proposed by Maturana. The main concepts, proposals analizan de manera detallada las principales and scientific categories that underlie its research, concepciones, propuestas y categorías científicas que mainly the autopoiesis are analyzed in detail. That is subyacen en su investigación, principalmente la why in this article discusses his way of dealing with the autopoiesis.
    [Show full text]
  • Francisco Varela's Vision of the Immune System
    RUCH FILOZOFICZNY LXXV 2019 2 Bartłomiej Świątczak University of Science and Technology of China, Hefei, China ORCID: 0000-0001-6767-3064 e-mail: [email protected] Francisco Varela’s Vision of the Immune System DOI: http://dx.doi.org/10.12775/RF.2019.030 Introduction Francisco Varela’s contribution to cognitive science and neurobiology is well known.1 Apart from introducing the concept of autopoiesis to- gether with Maturana, he developed a doctrine of enactivism, which by portraying cognition as inseparable from action challenged representa- tionist principles of classical cognitivism.2 Varela applied his unique per- spective on cognition and self also to immunology thereby advocating 1 Evan Thompson, Antoine Lutz, and Diego Cosmelli, “Neurophenomenology: An Introduction for Neurophilosophers”, in: Cognition and the brain: The philosophy and neuroscience movement, ed. Andrew Brook, Kathleen Akins (New York: Cambridge University Press, 2005), 40–97; David Rudrauf, Antoine Lutz, Diego Cosmelli, Jean- Philippe Lachaux, Michel Le Van Quyen, “From Autopoiesis to Neurophenomenol- ogy: Francisco Varela’s Exploration of the Biophysics of Being”, Biological Research 36, no. 1 (2003): 27–65; John Mingers, “The Cognitive Theories of Maturana and Varela”, Systems Practice, 4, no. 4 (1991): 319–338; Adrián G. Palacios, Juan Bacigalupo, “Fran- cisco Varela (1946–2001): Filling the Mind – Brain Gap: A Life Adventure”, Biological Research 36, no. 1 (2003): 9–12. 2 Francisco J. Varela, Eleanor Rosch, Evan Thompson, The Embodied Mind (Cam- bridge Mass.:
    [Show full text]
  • Conscious Enactive Computation 3
    Conscious Enactive Computation Daniel Estrada New Jersey Institute of Technology, Newark NJ 07102 [email protected] Abstract. This paper looks at recent debates in the enactivist litera- ture on computation and consciousness in order to assess major obstacles to building artificial conscious agents. We consider a proposal from Vil- lalobos and Dewhurst (2018) for enactive computation on the basis of organizational closure. We attempt to improve the argument by reflecting on the closed paths through state space taken by finite state automata. This motivates a defense against Clark’s recent criticisms of “extended consciousness”, and perhaps a new perspective on living with machines. Keywords: enactivism, artificial intelligence, computation, Turing ma- chine, state space, finite state automata, predictive coding, consciousness 1 Introduction Enactivism challenges the dominant cognitive paradigm in psychology with an account of intentional (purposive) agency that is grounded in the emergent dy- namics of biological complexity [15,43,46]. Specifically, enactivism holds that biological life is characterized by adaptive self-constitution: living systems con- struct and maintain their own organized structure through their active engage- ment with a changing world [4,35]. This approach motivates a systematic account of autonomy [3,33,41,48], intentional agency [17,31], subjective consciousness [19,28], and identity in complex dynamical systems [5,6], with the promise of a consistent and unified explanatory framework across the full range of biologi- cal processes, from the biomechanics of single-celled organisms to ecologies and societies [18,26,44]. Despite the emphasis on biological complexity, enactivism has from its in- arXiv:1812.02578v1 [cs.AI] 3 Dec 2018 ception maintained a robust research program investigating artificial intelligence, artificial life, and robotics (hereafter AI) [1,2,13,16,20,42].
    [Show full text]
  • Second Order Cybernetics 31/08/2008 10:08
    SECOND ORDER CYBERNETICS 31/08/2008 10:08 Search Print this chapter Cite this chapter SECOND ORDER CYBERNETICS Ranulph Glanville, CybernEthics Research, UK and Royal Melbourne Institute of Technology University, Australia Keywords: actor, analogy, argument, automata, autopoiesis, behavior, biology, Black_Box, causality, circularity, coding, cognition, communication, computation, concept, consciousness, control, conversation, cybernetics, description, design, distinction, ecology, education, environment, epistemology, error, ethics, feedback, form, function, generosity, goal, homeostasis, idea, identity, individual, information, interaction, internet, knowing, language, learning, logic, management, mathematics, meaning, mechanism, memory, meta-, metaphor, moment, mutualism, network, object, observe, organizational_closure, oscillation, person, phenomenon, philosophical, physics, positivist, (post-)_modernism, praxis, process, program, psychology, purpose, quality, reality, reason, recursion, relative, responsibility, science, second_order_cybernetics, (self-)_reference, semiotics, social, structure, subject, support, system, theory, thinking, time, truth, understanding, variety, whole_(and_part) Contents 1. Introduction: What Second Order Cybernetics is, and What it Offers 2. Background—the Logical Basis for Second Order Cybernetics 3. Second Order Cybernetics—Historical Overview 4. Theory of Second Order Cybernetics 5. Praxis of Second Order Cybernetics 6. A Note on Second Order Cybernetics and Constructivism 7. Cybernetics, Second Order
    [Show full text]
  • Abstracts of Plenaries WOSC 2014
    Our self-organising world: from disruption to reparation Systems and cybernetics applied to technology, design, governance and power Keynote Abstracts and Congress Schedule Dear All, WOSC 2014 will offer both strong foci on systemic thinking and on structures for effective policy processes. It is more than 40 years since Fernando Flores invited Stafford Beer to work with the Chilean Government in the implementation of a democratic socialist economy. Beer created Project Cybersyn in the context of Allende’s Chile. In addition to introducing his work to a young generation of local scientists and professionals he made of Norbert Weiner and Ross Ashby familiar names. In parallel to Beer’s work Humberto Maturana was working from the Universidad de Chile, in collaboration with Francisco Varela, the theory of autopoiesis. Heinz von Foerster, father of second order cybernetics, joined them during part of this period. These are all names shaping the contributions to WOSC 2014. Beer’s vision of the early 1970s, particularly his vision of an economy in real-time, has grown in maturity, not only through the extraordinary technological developments of the past four decades but also through the increasing relevance of cybernetics as an applied epistemology to governance. Together with the extraordinary potentials of digital technology in real-time, the epistemologies of systemic embodiment, ecological networks, organisational closure, self-organisation offer new insights and avenues to deal with the driving topic of this Congress: “Our Self- organising World: from disruption to reparation”. This narrative is offered by the following contributions of our keynote speakers. Abstracts for Plenaries 1. Fernando Flores An Encounter with Cybernetics in the Chile of the 1970's: A personal story In the Chile of the early 1970's I had the opportunity to work with Stafford Beer in the Cybersyn project.
    [Show full text]
  • Beyond Neo-Cybernetics: Inflections of Emergence and Politics in Francisco Varela’S Work
    Beyond Neo-cybernetics: Inflections of Emergence and Politics in Francisco Varela’s Work John Protevi Department of French Studies Louisiana State University DO NOT CITE: DRAFT: September 18, 2005 INTRODUCTION Francisco Varela’s work is a monumental achievement in 20th century biological and biophilosophical thought. After his early collaboration in neo-cybernetics with Humberto Maturana (“autopoiesis”), Varela made fundamental contributions to immunology (“network theory”), Artificial Life (“cellular automata”), cognitive neuroscience (“enaction”), philosophy of mind (“neurophenomenology”), brain studies (“the brainweb”), and East-West dialogue (the Mind and Life conferences), as well as influencing many important collaborators and interlocutors, forming a generation of excellent students, and touching the lives of many with the intensity of his mind and the strength of his spirit. In this article, I will trace some of the key turning points in his thought, with special focus on the concept of emergence, which was always central to his work, and on questions of politics, which operate at the margins of his thought. We will divide Varela’s work into three periods, each of which are marked by (1) a guiding concept; (2) a specific methodology; (3) a research focus; (4) an inflection in the notion of emergence; and (5) a characteristic political question which specifies a scale of what we will call “political physiology,” that is, the formation of “bodies politic” at the civic, somatic, and “evental” scales. The first period, marked by the concept of autopoiesis, runs from the early 1970s to the early 1980s, and uses formal recursive mathematics to deal with synchronic emergence, that is, systematic focus achieved via constraint of component behavior as seen in the question of the relation of part and whole.
    [Show full text]
  • 'What the Frog's Eye Tells the Frog's Brain," Central Players In
    ........... C.h.a.p .. t.e.r ... SIx THE SECOND WAVE OF CYBERNETICS: FROM REFLEXIVITY TO SELF-ORGANIZATION It all started with a frog. In a classic article entitled 'What the Frog's Eye Tells the Frog's Brain," central players in the Macy group-including Warren McCulloch, Walter Pitts, and Jerry Lettvin-did pioneering work on a frog's visual system. They demonstrated, with great elegance, that the frog's visual system does not so much represent reality as construct it. 1 What's true for frogs must also hold for humans, for there's no reason to be­ lieve that the human neural system is uniquely constructed to show the world as it "really" is. Not everyone in the research group was interested in pursuing the potentially radical epistemological implications of this work. McCulloch, for example, remained wedded to realist epistemology. But a young neurophysiologist from Chile, Humberto Maturana, was also on the research team, and he used it as a springboard into the unknown. Pushing the envelope of traditional scientific objectivity, he developed a new way of talking about life and about the observer's role in describing living systems. Entwined with the epistemological revolution he started are the three sto­ ries we have been follOwing: the reification ofinformation, the cultural and technological construction of the cyborg, and the transformation of the hu­ man into the posthuman. As a result of work by Maturana and his collabo­ rator, Francisco Varela, all three stories took decisive turns during the second wave of cybernetics, from 1960 to 1985. This chapter follows the paths that Maturana and Varela took as they probed deeply into what it means to acknowledge that the observer, like the frog, does not so much discern preexisting systems as create them through the very act of observa­ tion.
    [Show full text]
  • Leadership & Language in Regenerating Organizations Hugh Dubberly Peter Esmonde Michael Geoghegan Paul Pangaro
    NOTES 358 ON THE ROLE OF LEADERSHIP & LANGUAGE IN REGENERATING ORGANIZATIONS HUGH DUBBERLY PETER ESMONDE MICHAEL GEOGHEGAN PAUL PANGARO Organizations are living systems, and like all living systems, they seek equilibrium and avoid change. (They conserve themselves.) Change occurs in the relationship between organism (organization) and environment (the organization’s niche). An organization is fundamentally its language, alive in its conversations (who talks to whom about what). Conversation must precede agreement; agreement must precede coordinated action (and transaction). Thus language is the basis for all business. Narrowing language increases efficiency. In a stable environment, increasing efficiency makes sense, but it creates risk. Certain things can no longer be said or even seen (discerned). They are outside the day-to-day language of the organization. They are not 358 valid in the context of the day-to-day; they are even “unnatural.” Inevitably, the environment and its relation to the organization changes; then, having narrowed language (reducing its variety), the organization may become unable to understand these changes or to respond. Conversely, expanding language increases opportunity. To regenerate, an organization must create new language. Creating new language is a responsibility of leadership. Leadership is not a property of an individual; leadership is a condition of an organization. Leadership ensures space in an organization for efficiency, discovery, and invention, and each may be required in different phases of change. Leadership requires that we ask unnatural questions (a source of new language). This essay emerged from conversations between Hugh Dubberly, Peter Esmonde, Paul Pangaro, and Dr. Michael Geoghegan, who devoted more than twenty-five years to research, development, and strategic planning at DuPont.
    [Show full text]
  • Standing on the Broad Shoulders of Ashby
    Harvey, I. (2013) Standing on the broad shoulders of Ashby. Open Peer Commentary on: “Homeostasis for the 21st century? Simulating Ashby simulating the Brain” by Franchi, S. Constructivist Foundations 9(19):102-104. 175 OPC on “Homeostats for the 21st Century? Simulating Ashby Simulating the Brain” by Stefano Franchi Standing on the Broad Shoulders of Ashby Inman Harvey • University of Sussex, Brighton UK • inmanh/at/gmail.com Upshot: It is a mistake to characterise as passive Ashby’s view of life (from the 1950s), abstractly modelled in part by the homeostat; one should distinguish the stasis of homeostasis from the activity of the (model) organism. Likewise mistaken is the accusation of contingency; one should distinguish the purposeless mechanism from the purposeful (model) organism. There is no basic conflict between Ashby’s view and later developments in a similar tradition; technical advances are not the same as foundational gaps. 1. I had some trouble recognising the nature of Stefano Franchi’s criticisms of Ross Ashby, since they seemed to largely ignore those aspects of his work that make me rate him a giant of the twentieth century. I am a critical fan of Ashby, since I think he got quite a few technical issues wrong; but in my view, as a man of his time he asked the right sort of questions, phrased in novel form by framing cognition in terms of dynamical systems, and provided inspiration for many who built on and extended his ideas. At first sight Franchi’s reading of Ashby’s writings focusses on some heteronomous-autonomous distinction (§12), whereas Ashby, as far as I was aware, made little or no obvious comment on this.
    [Show full text]