Functional Effects of Anti-Neuronal Antibodies in Patients with Encephalitis Lethargica and Related Disorders Associated with Streptococcal Infection

Total Page:16

File Type:pdf, Size:1020Kb

Functional Effects of Anti-Neuronal Antibodies in Patients with Encephalitis Lethargica and Related Disorders Associated with Streptococcal Infection Functional effects of anti-neuronal antibodies in patients with encephalitis lethargica and related disorders associated with streptococcal infection PRIYAMVADA DUA Queen Mary University of London Submitted for the Degree of Doctor of Philosophy (PhD) 1 DEDICATION I would like to dedicate this thesis to my MOTHER 2 ACKNOWLEDGEMENTS It would not have been possible to write this doctoral thesis without the help and support of people around me, to only some of whom it is possible to give particular mention here. This thesis would not have been possible without the advice, support and clinical knowledge of my principal supervisor and mentor, Prof. Gavin Giovannoni. The help, support and research expertise of my second supervisor, Prof. David Baker. I would especially like to thank Dr. Ute Meier for her trust, constant encouragement and both professional and personal advice at all times. Their input has been invaluable and instrumental on both an academic and a personal level, for which I am extremely grateful. I would like to thanks members of the Blizard Institute for the use of their facilities, equipment and the warm welcome, especially Dr. Gary Warnes for his help with Flow Cytometry and Dr. Ann Wheeler for her help with Microscopy. Special mention goes to Dr. Veronika Souslova whose expertise in molecular biology made a large part of this project possible. Additionally I would like to acknowledge: Dr. Kathryn Harris (Great Ormond Street Hospital, London) for her guidance, help and use of facilities for all the streptococcal work and Prof. Angela Vincent and her team (WIMM, University of Oxford) for providing the facilities to carry out the NMDAR and VGKC assays. Among the members of the Neuroimmunology group I would like to acknowledge the special effort made by Ute Meir, Monica Marta, David Holden, Sofia Sisay, Fabiola Puentes, Katie Lidster, Sarah Al-Izki and Paul Creeke in promoting a stimulating and welcoming academic and social environment which will stand as an example to those that succeed them. 3 My family has offered me enormous support though the span of my studies without them this thesis would not have been possible. I would like to thank my parents for their constant love and understanding. I would particularly like to thank my brother Kaustubh for his support and encouragement to pursue my goals. My heartfelt thanks goes to my very dear friends Sofia, Priya, Artur, Ketan, Alicia, Rohit, Anto and Shikha who were a constant source of strength and encouragement. They stood by me through the toughest of times. Last but not the least I would like to thank The Sophie Cameron Trust for funding this study. 4 CONTENTS DEDICATION .................................................................................................................. 2 ACKNOWLEDGEMENTS ................................................................................................... 3 LIST OF FIGURES ............................................................................................................. 9 LIST OF SUPPLEMENTARY FIGURES ............................................................................... 12 LIST OF TABLES ............................................................................................................. 14 ABSTRACT .................................................................................................................... 15 ABBREVIATIONS ........................................................................................................... 17 CHAPTER 1: INTRODUCTION ......................................................................................... 19 1.1 THE BASAL GANGLIA ............................................................................................... 19 1.1.1 Background ................................................................................................................... 19 1.1.2 Basal Ganglia Disorders ................................................................................................. 20 1.2 AUTOIMMUNITY .................................................................................................... 24 1.2.1 What is Autoimmunity? ................................................................................................ 24 1.2.2 Bacteria and Autoimmunity .......................................................................................... 26 1.3 GROUP A BETA-HAEMOLYTIC STREPTOCOCCUS (GABHS) ......................................... 28 1.3.1 Background ................................................................................................................... 28 1.3.2 Virulence factors ........................................................................................................... 29 1.3.3 Anti-streptococcal antibodies as surrogate markers of infection ................................ 40 1.3.4 Molecular Mimicry Model ............................................................................................ 42 1.4 POSTULATED POST-STREPTOCOCCAL DISORDERS .................................................... 44 1.4.1 Acute Rheumatic Fever (ARF) ....................................................................................... 44 1.4.2 Sydenhams chorea (SC) ................................................................................................. 47 1.4.3 Paediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS) ............................................................................................................... 50 1.4.4 Tourettes syndrome (TS)............................................................................................... 53 1.4.5 Dystonia ........................................................................................................................ 57 1.4.6 Encephalitis Lethargica (EL) .......................................................................................... 60 1.4.7 NMDAR Encephalitis ..................................................................................................... 62 1.5 CANDIDATE AUTOANTIGENS ................................................................................... 65 1.5.1 Aldolase C (Ald C) .......................................................................................................... 65 5 1.5.2 Enolase (Eno) ................................................................................................................ 67 1.5.3 Pyruvate kinase (PK) ..................................................................................................... 70 1.6 CONCLUSION .......................................................................................................... 71 1.7 HYPOTHESIS ........................................................................................................... 72 1.8 AIMS ...................................................................................................................... 73 CHAPTER 2: GROUP A BETA-HAEMOLYTIC STREPTOCOCCUS (GABHS) ............................ 74 2.1 INTRODUCTION ...................................................................................................... 74 2.1.1 GABHS Background ....................................................................................................... 74 2.2 HYPOTHESIS AND AIMS .......................................................................................... 75 2.3 MATERIALS AND METHODS .................................................................................... 75 2.3.1 GABHS Samples ............................................................................................................. 76 2.3.3 Latex Agglutination Test ............................................................................................... 76 2.3.4 Emm Typing ................................................................................................................... 77 2.3.5 Superantigen Screening ................................................................................................ 80 2.4 RESULTS ................................................................................................................. 83 2.4.1 Emm typing ................................................................................................................... 83 2.4.2 Superantigens ............................................................................................................... 85 2.4.3 Correlation: emm type and superantigens ................................................................... 87 2.5 DISCUSSION ........................................................................................................... 89 CHAPTER 3: ANIMAL MODELS ....................................................................................... 94 3.1 INTRODUCTION ...................................................................................................... 95 3.1.1 Putative Antigen: GABHS Proteins ............................................................................... 95 3.1.2 Putative Antigen: Glycolytic Enzymes ........................................................................... 97 3.1.3 Animal Models .............................................................................................................. 98 3.3 MATERIALS AND METHODS .................................................................................. 102 3.3.1 GABHS Protein Fractions ............................................................................................
Recommended publications
  • The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections
    toxins Review The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections Patience Shumba 1, Srikanth Mairpady Shambat 2 and Nikolai Siemens 1,* 1 Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, University of Greifswald, D-17489 Greifswald, Germany; [email protected] 2 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +49-3834-420-5711 Received: 20 May 2019; Accepted: 10 June 2019; Published: 11 June 2019 Abstract: Necrotizing soft tissue infections (NSTIs) are critical clinical conditions characterized by extensive necrosis of any layer of the soft tissue and systemic toxicity. Group A streptococci (GAS) and Staphylococcus aureus are two major pathogens associated with monomicrobial NSTIs. In the tissue environment, both Gram-positive bacteria secrete a variety of molecules, including pore-forming exotoxins, superantigens, and proteases with cytolytic and immunomodulatory functions. The present review summarizes the current knowledge about streptococcal and staphylococcal toxins in NSTIs with a special focus on their contribution to disease progression, tissue pathology, and immune evasion strategies. Keywords: Streptococcus pyogenes; group A streptococcus; Staphylococcus aureus; skin infections; necrotizing soft tissue infections; pore-forming toxins; superantigens; immunomodulatory proteases; immune responses Key Contribution: Group A streptococcal and Staphylococcus aureus toxins manipulate host physiological and immunological responses to promote disease severity and progression. 1. Introduction Necrotizing soft tissue infections (NSTIs) are rare and represent a more severe rapidly progressing form of soft tissue infections that account for significant morbidity and mortality [1].
    [Show full text]
  • Biosafety Level 1 and Rdna Training
    Biosafety Level 1and rDNA Training Office of Biological Safety Biosafety Level 1 and rDNA Training • Difference between Risk Group and Biosafety Level • NIH and UC policy on recombinant DNA • Work conducted at Biosafety Level 1 • UC Code of Conduct for researchers Biosafety Level 1 and rDNA Training What is the difference between risk group and biosafety level? Risk Groups vs Biosafety Level • Risk Groups: Assigned to infectious organisms by global agencies (NIH, CDC, WHO, etc.) • In US, only assigned to human pathogens (NIH) • Biosafety Level (BSL): How the organisms are managed/contained (increasing levels of protection) Risk Groups vs Biosafety Level • RG1: Not associated with disease in healthy adults (non‐pathogenic E. coli; S. cerevisiae) • RG2: Cause diseases not usually serious and are often treatable (S. aureus; Legionella; Toxoplasma gondii) • RG3: Serious diseases that may be treatable (Y. pestis; B. anthracis; Rickettsia rickettsii; HIV) • RG4: Serious diseases with no treatment/cure (Hemorrhagic fever viruses, e.g., Ebola; no bacteria) Risk Groups vs Biosafety Level • BSL‐1: Usually corresponds to RG1 – Good microbiological technique – No additional safety equipment required for biological work (may still need chemical/radiation protection) – Ability to destroy recombinant organisms (even if they are RG1) Risk Groups vs Biosafety Level • BSL‐2: Same as BSL‐1, PLUS… – Biohazard signs – Protective clothing (lab coat, gloves, eye protection, etc.) – Biosafety cabinet (BSC) for aerosols is recommended but not always required – Negative airflow into room is recommended, but not always required Risk Groups vs Biosafety Level • BSL‐3: Same as BSL‐2, PLUS… – Specialized clothing (respiratory protection, Tyvek, etc.) – Directional air flow is required.
    [Show full text]
  • Penetration of Stratified Mucosa Cytolysins Augment Superantigen
    Cytolysins Augment Superantigen Penetration of Stratified Mucosa Amanda J. Brosnahan, Mary J. Mantz, Christopher A. Squier, Marnie L. Peterson and Patrick M. Schlievert This information is current as of September 25, 2021. J Immunol 2009; 182:2364-2373; ; doi: 10.4049/jimmunol.0803283 http://www.jimmunol.org/content/182/4/2364 Downloaded from References This article cites 76 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/182/4/2364.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 25, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Cytolysins Augment Superantigen Penetration of Stratified Mucosa1 Amanda J. Brosnahan,* Mary J. Mantz,† Christopher A. Squier,† Marnie L. Peterson,‡ and Patrick M. Schlievert2* Staphylococcus aureus and Streptococcus pyogenes colonize mucosal surfaces of the human body to cause disease. A group of virulence factors known as superantigens are produced by both of these organisms that allows them to cause serious diseases from the vaginal (staphylococci) or oral mucosa (streptococci) of the body.
    [Show full text]
  • An Epidemic of Acute Encephalitis in Young Children
    Arch Dis Child: first published as 10.1136/adc.9.51.153 on 1 June 1934. Downloaded from AN EPIDEMIC OF ACUTE ENCEPHALITIS IN YOUNG CHILDREN BY AGNES R. MACGREGOR, M.B., F.R.C.P.E., AND W. S. CRAIG, B.Sc., M.D., M.R.C.P.E. (From the Departments of Pathology and Child Life and Health, Univer- sity of Edinburgh, and the Western General Hospital, Edinburgh.) This paper is concerned with a small outbreak of illness of an unusual nature occurring in the Children's Unit of the Western General Hospital, Edinburgh. In addition to the clinical interest of the cases, there are features of considerable pathological and epidemiological importance con- nected with the outbreak. Clinical Records. Case 1. I.M.S., female, aged 1 year 7 months, was admitted to the Western General Hospital in March, 1933, at the age of 1 year 3 months. - At this time http://adc.bmj.com/ she was noted as being slightly undersized but well nourished and the liver showed moderate enlargement. Prior to admission she had been treated elsewhere for gonococcal vaginitis: during the three succeeding months her health was good and progress uninterrupted, but a positive Wassermann reaction, present on admission, persisted. On the evening of July 22, 1933, the patient was noticed to be less active than usual and generally ' out of sorts ': her conditiQn remained unchanged throughout the rest of the day, and on the 23rd she was 'Ptill quieter and less responsive to all forms of attention and refused food. By the afternoon on October 2, 2021 by guest.
    [Show full text]
  • Download Download
    Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(2): 545-556, April-June 2021 (Published Apr. 19, 2021) 545 Rostelato-Ferreira, S., Vettorazzo, O.B., Tribuiani, N., Leal, A.P., Dal Belo, C.A., Rodrigues-Simioni, L., Floriano, R.S., Oshima- Franco, Y. (2021). Action of heparin and acetylcholine modulators on the neurotoxicity of the toad Rhinella schneideri (Anura: Bufonidae) in Brazil. Revista de Biología Tropical, 69(2), 545- 556. DOI 10.15517/rbt.v69i2.44539 DOI 10.15517/rbt.v69i2.44539 Action of heparin and acetylcholine modulators on the neurotoxicity of the toad Rhinella schneideri (Anura: Bufonidae) in Brazil Sandro Rostelato-Ferreira1,2; Orcid: 0000-0002-8987-434X Orlando B. Vettorazzo2; Orcid: 0000-0003-4731-4771 Natália Tribuiani2; Orcid: 0000-0002-7661-475X Allan P. Leal3; Orcid: 0000-0002-4689-4615 Cháriston A. Dal Belo3,4; Orcid: 0000-0001-7010-650 Léa Rodrigues-Simioni5; Orcid: 0000-0002-8712-6639 Rafael S. Floriano6; Orcid: 0000-0003-0759-5863 Yoko Oshima-Franco2*; Orcid: 0000-0002-4972-8444 1. Institute of Health Sciences, Paulista University (UNIP), Sorocaba, São Paulo, Brazil; [email protected] 2. Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil; [email protected], [email protected], [email protected] (*Correspondence) 3. Graduate Program in Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil; [email protected] 4. Laboratory of Neurobiology and Toxinology (Lanetox), Federal University of Pampa (UNIPAMPA), São Gabriel, Rio Grande do Sul, Brazil; [email protected] 5. Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; [email protected] 6.
    [Show full text]
  • Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins
    Review Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins Wei Yuen Yap 1 and Jung Shan Hwang 2,* 1 Department of Biological Sciences, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; [email protected] 2 Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia * Correspondence: [email protected]; Tel.: +603-7491-8622 (ext. 7414) Academic Editor: Jean-Marc Sabatier Received: 23 August 2018; Accepted: 28 September 2018; Published: 4 October 2018 Abstract: A group of stable, water-soluble and membrane-bound proteins constitute the pore forming toxins (PFTs) in cnidarians. They interact with membranes to physically alter the membrane structure and permeability, resulting in the formation of pores. These lesions on the plasma membrane causes an imbalance of cellular ionic gradients, resulting in swelling of the cell and eventually its rupture. Of all cnidarian PFTs, actinoporins are by far the best studied subgroup with established knowledge of their molecular structure and their mode of pore-forming action. However, the current view of necrotic action by actinoporins may not be the only mechanism that induces cell death since there is increasing evidence showing that pore-forming toxins can induce either necrosis or apoptosis in a cell-type, receptor and dose-dependent manner. In this review, we focus on the response of the cellular immune system to the cnidarian pore-forming toxins and the signaling pathways that might be involved in these cellular responses.
    [Show full text]
  • The Impact of Multiple Climatic and Geographic Factors on the Chemical Defences of Asian Toads (Bufo Gargarizans Cantor)
    www.nature.com/scientificreports OPEN The impact of multiple climatic and geographic factors on the chemical defences of Asian toads (Bufo gargarizans Cantor) Yueting Cao, Keke Cui, Hongye Pan, Jiheng Wu & Longhu Wang* Chemical defences are widespread in nature, yet we know little about whether and how climatic and geographic factors afect their evolution. In this study, we investigated the natural variation in the concentration and composition of the main bufogenin toxin in adult Asian toads (Bufo gargarizans Cantor) captured in twenty-two regions. Moreover, we explored the relative importance of eight climatic factors (average temperature, maximum temperature, minimum temperature, average relative humidity, 20–20 time precipitation, maximum continuous precipitation, maximum ground temperature, and minimum ground temperature) in regulating toxin production. We found that compared to toads captured from central and southwestern China, toads from eastern China secreted higher concentrations of cinobufagin (CBG) and resibufogenin (RBG) but lower concentrations of telocinobufagin (TBG) and cinobufotalin (CFL). All 8 climatic variables had signifcant efects on bufogenin production (ri>0.5), while the plastic response of bufogenin toxin to various climate factors was highly variable. The most important climatic driver of total bufogenin production was precipitation: the bufogenin concentration increased with increasing precipitation. This study indicated that the evolution of phenotypic plasticity in chemical defences may depend at least partly on the geographic variation of defensive toxins and their climatic context. Chemical defences is ubiquitous in nature and can serve for deterring predators, competitors, parasites, and path- ogens1–3. Many species can secrete a large diversity of toxic defensive compounds for self-protection.
    [Show full text]
  • Encephalitis Lethargica
    flra/n (1987), 110, 19-33 ENCEPHALITIS LETHARGICA A REPORT OF FOUR RECENT CASES Downloaded from https://academic.oup.com/brain/article/110/1/19/273787 by guest on 01 October 2021 by R. s. HOWARD and A. J. LEES (From The National Hospital for Nervous Diseases, Queen Square, London) SUMMARY Four patients are described with an encephalitic illness identical to that described by von Economo. Electroencephalographic, evoked potential and autopsy data suggest that involvement of the cerebral cortex is more extensive than has been generally recognized. Serological tests and viral cultures failed to reveal the infectious agent but the presence of oligoclonal IgG banding in the cerebrospinal fluid in 3 of the patients during the acute phase of the illness would be in keeping with a viral aetiology. INTRODUCTION Accounts of febrile somnolent illnesses with residual apathy, ophthalmoplegia, chorea and weakness abound in the early literature. The Schlafkrankheit of 1580, Sydenham's febris comatosa of 1672-1675 in which hiccough was a prominent symptom, febre lethargica of 1695, coma somnolentium of 1780, Gerlier's vertige paralysante of 1887 and the dreaded Italian nona of 1889-1890, in which sleepiness, cranial nerve palsies and tremor occurred, are some examples of what may be a recur- ring plague caused by the same aetiological agent (Wilson, 1940; Sacks, 1982). Despite these historical forerunners, the sleeping sickness pandemic of 1916-1927 burst forth spontaneously in several different European cities unrecognized and then relentlessly spread around the world leaving an estimated half a million people dead or disabled. Constantin von Economo, however, relying in part on recollec- tions of his parents' descriptions of nona, was able to show that what appeared as a series of unrelated polymorphous outbreaks was in fact a disease caused by a single transmissible factor.
    [Show full text]
  • Preeclampsia: Cardiotonic Steroids, Fibrosis, Fli1 and Hint to Carcinogenesis
    International Journal of Molecular Sciences Review Preeclampsia: Cardiotonic Steroids, Fibrosis, Fli1 and Hint to Carcinogenesis Natalia I. Agalakova 1, Nikolai I. Kolodkin 2, C. David Adair 3 , Alexander P. Trashkov 4 and Alexei Y. Bagrov 1,* 1 Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Torez Prospect, 194223 St. Petersburg, Russia; [email protected] 2 State Institute of Highly Pure Biopreparations and Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Torez Prospect, 194223 St. Petersburg, Russia; [email protected] or [email protected] 3 Department of Obstetrics and Gynecology, University of Tennessee, Chattanooga, TN 37402, USA; [email protected] or [email protected] 4 Konstantinov St. Petersburg Nuclear Physics Institute, National Research Centre Kurchatov Institute, 1 Orlova Roshcha, 188300 Gatchina, Russia; [email protected] * Correspondence: [email protected] Abstract: Despite prophylaxis and attempts to select a therapy, the frequency of preeclampsia does not decrease and it still takes the leading position in the structure of maternal mortality and morbidity worldwide. In this review, we present a new theory of the etiology and pathogenesis of preeclampsia that is based on the interaction of Na/K-ATPase and its endogenous ligands in- cluding marinobufagenin. The signaling pathway of marinobufagenin involves an inhibition of transcriptional factor Fli1, a negative regulator of collagen synthesis, followed by the deposition of collagen in the vascular tissues and altered vascular functions. Moreover, in vitro and in vivo neutralization of marinobufagenin is associated with the restoration of Fli1. The inverse relationship Citation: Agalakova, N.I.; Kolodkin, between marinobufagenin and Fli1 opens new possibilities in the treatment of cancer; as Fli1 is N.I.; Adair, C.D.; Trashkov, A.P.; a proto-oncogene, a hypothesis on the suppression of Fli1 by cardiotonic steroids as a potential Bagrov, A.Y.
    [Show full text]
  • A Novel Superantigen Isolated from Pathogenic Strains of Streptococcus Pyogenes with Aminoterminal Homology to Staphylococcal Enterotoxins B and C
    A novel superantigen isolated from pathogenic strains of Streptococcus pyogenes with aminoterminal homology to staphylococcal enterotoxins B and C. J A Mollick, … , D Grossman, R R Rich J Clin Invest. 1993;92(2):710-719. https://doi.org/10.1172/JCI116641. Research Article Streptococcus pyogenes (group A Streptococcus) has re-emerged in recent years as a cause of severe human disease. Because extracellular products are involved in streptococcal pathogenesis, we explored the possibility that a disease isolate expresses an uncharacterized superantigen. We screened culture supernatants for superantigen activity with a major histocompatibility complex class II-dependent T cell proliferation assay. Initial fractionation with red dye A chromatography indicated production of a class II-dependent T cell mitogen by a toxic shock-like syndrome (TSLS) strain. The amino terminus of the purified streptococcal superantigen was more homologous to the amino termini of staphylococcal enterotoxins B, C1, and C3 (SEB, SEC1, and SEC3), than to those of pyrogenic exotoxins A, B, C or other streptococcal toxins. The molecule, designated SSA, had the same pattern of class II isotype usage as SEB in T cell proliferation assays. However, it differed in its pattern of human T cell activation, as measured by quantitative polymerase chain reaction with V beta-specific primers. SSA activated human T cells that express V beta 1, 3, 15 with a minor increase of V beta 5.2-bearing cells, whereas SEB activated V beta 3, 12, 15, and 17-bearing T cells. Immunoblot analysis of 75 disease isolates from several localities detected SSA production only in group A streptococci, and found that SSA is apparently confined to only three clonal […] Find the latest version: https://jci.me/116641/pdf A Novel Superantigen Isolated from Pathogenic Strains of Streptococcus pyogenes with Aminoterminal Homology to Staphylococcal Enterotoxins B and C Joseph A.
    [Show full text]
  • Retrograde Transport of Mutant Ricin to the Endoplasmic Reticulum with Subsequent Translocation to Cytosol (Ricin͞toxin͞translocation͞retrograde Transport͞sulfation)
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 3783–3788, April 1997 Cell Biology Retrograde transport of mutant ricin to the endoplasmic reticulum with subsequent translocation to cytosol (ricinytoxinytranslocationyretrograde transportysulfation) ANDRZEJ RAPAK,PÅL Ø. FALNES, AND SJUR OLSNES* Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway Communicated by R. John Collier, Harvard Medical School, Boston, MA, January 30, 1997 (received for review November 25, 1996) ABSTRACT Translocation of ricin A chain to the cytosol (20). Because this labeling takes place in the Golgi apparatus, only has been proposed to take place from the endoplasmic reticulum molecules that have already been transported retrograde to the (ER), but attempts to visualize ricin in this organelle have failed. Golgi complex will be labeled. Furthermore, because only the A Here we modified ricin A chain to contain a tyrosine sulfation chain carrying the sulfation site will be labeled, the B chain, which site alone or in combination with N-glycosylation sites. When migrates at almost the same rate as the modified A chain, will not reconstituted with ricin B chain and incubated with cells in the complicate the interpretation of the data. We here present 35 presence of Na2 SO4, the modified A chains were labeled. The evidence that sulfated ricin A chain is transported retrograde to labeling was prevented by brefeldin A and ilimaquinone, and it the ER and then translocated to the cytosol. appears to take place in the Golgi apparatus. This method allows selective labeling of ricin molecules that have already been MATERIALS AND METHODS 35 transported retrograde to this organelle.
    [Show full text]
  • Functional Classification of Protein Toxins As a Basis for Bioinformatic
    www.nature.com/scientificreports OPEN Functional classifcation of protein toxins as a basis for bioinformatic screening Received: 27 July 2017 Surendra S. Negi1, Catherine H. Schein1,2, Gregory S. Ladics3, Henry Mirsky4, Peter Chang4, Accepted: 2 October 2017 Jean-Baptiste Rascle5, John Kough6, Lieven Sterck 7, Sabitha Papineni8, Joseph M. Jez9, Published: xx xx xxxx Lucilia Pereira Mouriès10 & Werner Braun1 Proteins are fundamental to life and exhibit a wide diversity of activities, some of which are toxic. Therefore, assessing whether a specifc protein is safe for consumption in foods and feeds is critical. Simple BLAST searches may reveal homology to a known toxin, when in fact the protein may pose no real danger. Another challenge to answer this question is the lack of curated databases with a representative set of experimentally validated toxins. Here we have systematically analyzed over 10,000 manually curated toxin sequences using sequence clustering, network analysis, and protein domain classifcation. We also developed a functional sequence signature method to distinguish toxic from non-toxic proteins. The current database, combined with motif analysis, can be used by researchers and regulators in a hazard screening capacity to assess the potential of a protein to be toxic at early stages of development. Identifying key signatures of toxicity can also aid in redesigning proteins, so as to maintain their desirable functions while reducing the risk of potential health hazards. Most genetically engineered (GE) food crops involve expressing an introduced protein, thus assessing the safety of the protein is required before commercialization1–4. GE crops are created by introducing gene(s) from one species into a crop plant species to improve the nutritional value, yield, drought resistance, herbicide tolerance or pest resistance.
    [Show full text]