Hessian Fly M Ayetiola Destructor (Say) 1817
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Norman Borlaug
Norman Borlaug Melinda Smale, Michigan State University I’d like to offer some illustrative examples of how scientific partnerships and exchange of plant genetic resources in international agricultural research have generated benefits for US farmers and consumers. 1. It is widely accepted that the greatest transformation in world agriculture of the last century was the Green Revolution, which averted famine particularly in the wheat and rice-growing areas of numerous countries in Asia by boosting levels of farm productivity several times over, lowering prices for consumers, raising income and demand for goods and services. Most of us here are familiar with the history of this transformation. • You will remember that the key technological impetus was short- statured varieties that were fertilizer responsive and didn’t fall over in the field when more of the plant’s energy was poured into grain rather than the stalk and leaves. • Less well known is that the origin of the genes that conferred short- stature in wheat was a landrace from Korea--transferred to Japan, named Daruma, and bred into Norin 10. Norin 10 was named for a Japanese research station, tenth selection from a cross. Later, Norin 10 was brought as a seed sample by an agronomist advisor who served in the MacArthur campaign after WWII. At Washington State University it was crossed to produce important US wheat varieties. The most extensive use of Norin 10 genes outside Japan and the US was by Norman Borlaug, who won the 1970 Nobel Peace Prize. He was the founder of the World Food Prize (won, for example, by Gebisa Ejeta). -
Bulletin Number / Numéro 2 Entomological Society of Canada Société D’Entomologie Du Canada June / Juin 2008
Volume 40 Bulletin Number / numéro 2 Entomological Society of Canada Société d’entomologie du Canada June / juin 2008 Published quarterly by the Entomological Society of Canada Publication trimestrielle par la Société d’entomologie du Canada ............................................................... .................................................................................................................................................................................................................................................................................................................................. .......................................................................... ........................................................................................................................................................................ ....................... ................................................................................. ................................................. List of contents / Table des matières Volume 40 (2), June / june 2008 Up front / Avant-propos ................................................................................................................49 Moth balls / Boules à mites .............................................................................................................51 Meeting announcements / Réunions futures ..................................................................................52 Dear Buggy / Cher Bibitte ..............................................................................................................53 -
Economic Cost of Invasive Non-Native Species on Great Britain F
The Economic Cost of Invasive Non-Native Species on Great Britain F. Williams, R. Eschen, A. Harris, D. Djeddour, C. Pratt, R.S. Shaw, S. Varia, J. Lamontagne-Godwin, S.E. Thomas, S.T. Murphy CAB/001/09 November 2010 www.cabi.org 1 KNOWLEDGE FOR LIFE The Economic Cost of Invasive Non-Native Species on Great Britain Acknowledgements This report would not have been possible without the input of many people from Great Britain and abroad. We thank all the people who have taken the time to respond to the questionnaire or to provide information over the phone or otherwise. Front Cover Photo – Courtesy of T. Renals Sponsors The Scottish Government Department of Environment, Food and Rural Affairs, UK Government Department for the Economy and Transport, Welsh Assembly Government FE Williams, R Eschen, A Harris, DH Djeddour, CF Pratt, RS Shaw, S Varia, JD Lamontagne-Godwin, SE Thomas, ST Murphy CABI Head Office Nosworthy Way Wallingford OX10 8DE UK and CABI Europe - UK Bakeham Lane Egham Surrey TW20 9TY UK CABI Project No. VM10066 2 The Economic Cost of Invasive Non-Native Species on Great Britain Executive Summary The impact of Invasive Non-Native Species (INNS) can be manifold, ranging from loss of crops, damaged buildings, and additional production costs to the loss of livelihoods and ecosystem services. INNS are increasingly abundant in Great Britain and in Europe generally and their impact is rising. Hence, INNS are the subject of considerable concern in Great Britain, prompting the development of a Non-Native Species Strategy and the formation of the GB Non-Native Species Programme Board and Secretariat. -
The National Plant Biosecurity Status Report
The National Plant Biosecurity Status Report 2014 © Plant Health Australia 2015 Disclaimer: This publication is published by Plant Health Australia for information purposes only. Information in the document is drawn from a variety of sources outside This work is copyright. Apart from any use as Plant Health Australia. Although reasonable care was taken in its preparation, Plant Health permitted under the Copyright Act 1968, no part Australia does not warrant the accuracy, reliability, completeness or currency of the may be reproduced by any process without prior information, or its usefulness in achieving any purpose. permission from Plant Health Australia. Given that there are continuous changes in trade patterns, pest distributions, control Requests and enquiries concerning reproduction measures and agricultural practices, this report can only provide a snapshot in time. and rights should be addressed to: Therefore, all information contained in this report has been collected for the 12 month period from 1 January 2014 to 31 December 2014, and should be validated and Communications Manager confirmed with the relevant organisations/authorities before being used. A list of Plant Health Australia contact details (including websites) is provided in the Appendices. 1/1 Phipps Close DEAKIN ACT 2600 To the fullest extent permitted by law, Plant Health Australia will not be liable for any loss, damage, cost or expense incurred in or arising by reason of any person relying on the ISSN 1838-8116 information in this publication. Readers should make and rely on their own assessment An electronic version of this report is available for and enquiries to verify the accuracy of the information provided. -
An Annotated Bibliography of the Hessian Fly Phytophaga Destructor (Say)
.■;'TrKA"??^ =V=^TWKî^ UNITED STATES DEPARTMENT OF AGRICULTURE Miscellaneous Publication No. 198 WASHINGTON, D.C. ISSUED SEPTEMBER 1934 i.4^« J7 AN ANNOTATED BIBLIOGRAPHY OF THE HESSIAN FLY PHYTOPHAGA DESTRUCTOR (SAY) BY J. S. WADE Associate Entomologist Division of Cereal and Forage Insects Bureau of Entomology and Plant Quarantine For sale by the Superintendent of Documents, Washington, D.C. Price 10 cents *42 :^^n9fíH UNITED STATES DEPARTMENT OF AGRICULTURE Miscellaneous Publication No. 198 Washington, D.C. September 1934 AN ANNOTATED BIBLIOGRAPHY OF THE HESSIAN FLY, PHYTOPHAGA DESTRUCTOR (SAY) By J. S". WADE, associate entomologistf Division of Cereal and Forage Insects, Bureau of Entomology and Plant Quarantine INTRODUCTION It is the purpose of this publication to present in a form as condensed as is feasible an annotated bibliography of the hessian fly, Phytophaga destructor (Say), with special reference to the literature relating to the insect within its areas of distribution in North America north of Mexico, to June 30, 1933. The outstanding importance of this insect as a crop pest and the almost incalculable damage it has wrought to American farmers since it gained entry into the United States indicate that it will continue to be a subject of great interest and study, and the value of a bibliography to future investigators is obvious. This bibliography presents results of some 18 years of collection by the compiler in a number of the larger public libraries in the eastern part of the United States. The assembling and much of the work, however, has been done at Washington where, through the facilities of departmental and other libraries, such studies can be prosecuted with a fullness and completeness not elsewhere possible. -
Map-Based Cloning of the Hessian Fly Resistance Gene H13 in Wheat
Map-based cloning of the Hessian fly resistance gene H13 in Wheat by Anupama Joshi B.S., Panjab University, 2006 M.S., Panjab University, 2008 AN ABSTRACT OF A DISSERTATION Submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Interdepartmental Genetics College of Agriculture KANSAS STATE UNIVERSITY Manhattan, Kansas 2018 Abstract H13, a dominant resistance gene transferred from Aegilops tauschii into wheat (Triticum aestivum), confers a high level of antibiosis against a wide range of Hessian fly (HF, Mayetiola destructor) biotypes. Previously, H13 was mapped to the distal arm of chromosome 6DS, where it is flanked by markers Xcfd132 and Xgdm36. A mapping population of 1,368 F2 individuals derived from the cross: PI372129 (h13h13) / PI562619 (Molly, H13H13) was genotyped and H13 was flanked by Xcfd132 at 0.4cM and by Xgdm36 at 1.8cM. Screening of BAC-based physical maps of chromosome 6D of Chinese Spring wheat and Ae. tauschii coupled with high resolution genetic and Radiation Hybrid mapping identified nine candidate genes co-segregating with H13. Candidate gene validation was done on an EMS-mutagenized TILLING population of 2,296 M3 lines in Molly. Twenty seeds per line were screened for susceptibility to the H13- virulent HF GP biotype. Sequencing of candidate genes from twenty-eight independent susceptible mutants identified three nonsense, and 24 missense mutants for CNL-1 whereas only silent and intronic mutations were found in other candidate genes. 5’ and 3’ RACE was performed to identify gene structure and CDS of CNL-1 from Molly (H13H13) and Newton (h13h13). Increased transcript levels were observed for H13 gene during incompatible interactions at larval feeding stages of GP biotype. -
Hessian Fly, Mayetiola Destructor (Diptera: Cecidomyiidae), Smart-Trap Design and Deployment Strategies
Hessian fly, Mayetiola destructor (Diptera: Cecidomyiidae), smart-trap design and deployment strategies by Ryan B. Schmid B.S., South Dakota State University, 2011 M.S., South Dakota State University, 2014 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of Entomology College of Agriculture KANSAS STATE UNIVERSITY Manhattan, Kansas 2018 Abstract Timely enactment of insect pest management and incursion mitigation protocols requires development of time-sensitive monitoring approaches. Numerous passive monitoring methods exist (e.g., insect traps), which offer an efficient solution to monitoring for pests across large geographic regions. However, given the number of different monitoring tools, from specific (e.g., pheromone lures) to general (e.g., sticky cards), there is a need to develop protocols for deploying methods to effectively and efficiently monitor for a multitude of potential pests. The non-random movement of the Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), toward several visual, chemical, and tactile cues, makes it a suitable study organism to examine new sensor technologies and deployment strategies that can be tailored for monitoring specific pests. Therefore, the objective was to understand Hessian fly behavior toward new sensor technologies (i.e., light emitting diodes (LEDs) and laser displays) to develop monitoring and deployment strategies. A series of laboratory experiments and trials were conducted to understand how -
Hessian Fly CP
INDUSTRY BIOSECURITY PLAN For the Grains Industry Threat-Specific Contingency Plan COMMON NAME: Hessian fly SCIENTIFIC NAME: Mayetiola destructor (Say) 1817 Cecidomyia contractor; Cecidomyia culmicola Morris 1849; SYNONYMS: Cecidomyia destructor Say 1817; Cecidomyia frumentaria Rondani 1864; Chortomyia secalina (Loew 1858); Mayetiola secalis Bollow 1950; Phytophaga cerealis Rondani 1843; Phytophaga destructor (Say 1817); Mayetiola mimeuri (Mesnil 1934) The scientific and technical content of this document is current to the date published and all efforts were made to obtain relevant and published information on the pest. New information will be included as it becomes available, or when the document is reviewed. The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific, independent professional advice. Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant Health Australia. Contacts: John Botha* [email protected], Andy Szito [email protected] or Darryl Hardie [email protected] Department of Agriculture, Bentley Delivery Centre, WA, 6983. *Tel. (08) 93683755 Background General M. destructor is a species of European origin accidentally introduced into North America in about 1776, and into New Zealand by 1888 Host range The information below is mainly out of the Crop Protection Compendium (On-line version, 2005): Primary hosts: Triticum spp. -
Identification of Two Novel Hessian Fly Resistance Genes H35 and H36 in A
Theoretical and Applied Genetics https://doi.org/10.1007/s00122-020-03602-3 ORIGINAL ARTICLE Identifcation of two novel Hessian fy resistance genes H35 and H36 in a hard winter wheat line SD06165 Lanfei Zhao1,2 · Nader Ragab Abdelsalam2,3 · Yunfeng Xu2 · Ming‑Shun Chen4 · Yi Feng2,5 · Lingrang Kong1 · Guihua Bai4,2 Received: 31 January 2020 / Accepted: 1 May 2020 © This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2020 Abstract Key message Two new Hessian fy resistance QTLs (H35 and H36) and tightly linked SNP markers were identifed in a US hard winter wheat SD06165. Abstract Hessian fy (HF), Mayetiola destructor (Say), is one of the most destructive pests in wheat (Triticum aestivum L.) worldwide. Growing resistant cultivars is the most efective approach to minimize Hessian fy damage. To identify new quantitative trait loci (QTLs) for HF resistance, a recombinant inbred line population was developed by crossing HF resistant wheat line SD06165 to a susceptible line OK05312. The population was genotyped with 1709 single-nucleotide polymorphisms (SNPs) generated from genotyping-by-sequencing and phenotyped for HF resistance in greenhouses. Two novel QTLs for HF resistance were identifed from SD06165. The major QTL, designated as H35, was closely linked to SNP marker SDOKSNP7679 on chromosome 3BS that explained 23.8% and 36.0% of the phenotypic variations; the minor QTL, designated as H36, was fanked by SNP markers SDOKSNP1618 and SDOKSNP8089 on chromosome 7AS and explained 8.5% and 13.1% of the phenotypic variation in the two experiments. -
NDP 41 Hessian
NDP 41 V1- National Diagnostic Protocol for Mayetiola destructor National Diagnostic Protocol Mayetiola destructor Hessian Fly NDP 41 V1 NDP 41 V1 - National Diagnostic Protocol for Mayetiola destructor © Commonwealth of Australia Ownership of intellectual property rights Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Commonwealth of Australia (referred to as the Commonwealth). Creative Commons licence All material in this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence, save for content supplied by third parties, logos and the Commonwealth Coat of Arms. Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available from http://creativecommons.org/licenses/by/3.0/au/deed.en. The full licence terms are available from https://creativecommons.org/licenses/by/3.0/au/legalcode. This publication (and any material sourced from it) should be attributed as: Subcommittee on Plant Health Diagnostics (2018). National Diagnostic Protocol for Mayetiola destructor – NDP41 V1. (Eds. Subcommittee on Plant Health Diagnostics) Authors Severtson, D, Szito, A.; Reviewers Nicholas, A, Kehoe, M. ISBN 978-0-6481143-3-8 CC BY 3.0. Cataloguing data Subcommittee on Plant Health Diagnostics (2018). National Diagnostic Protocol for Mayetiola destructor – NDP41 V1. (Eds. Subcommittee -
Qualities of Einkorn, Emmer, and Spelt
Qualities of Einkorn, Emmer, and Spelt Frank J. Kutka Farm Breeding Club Co-Coordinator Northern Plains Sustainable Agriculture Society Einkorn | Favored for adding excellent flavor to foods. | Suitable for baked products, some good for bread. | Higher lipid content than bread wheat (4.2 vs. 2.8 g/100g. | Usually high in minerals although low in Cadmium. | Usually higher in protein, lutein, and Vitamin E; Lower in total phenols. | Has same allergenic proteins as other wheats but may be lower in some of the gliadins that cause responses in those with celiac disease: more research is needed. Emmer | Favored for adding excellent flavor to foods. | Recommended for children and new mothers in Ethiopia and for diabetics in India. | Gluten varies from very low to higher than bread wheat: bread making properties vary but are usually lower than bread wheat. Missing some gliadin proteins. | Usually has higher minerals, higher fiber and lower glycemic index. | Often has higher antioxidants (total phenolics and flavonoids) and protein. Not high in carotenoids. | Often has higher phytic acid concentration. Emmer | The species is a known source of disease and pest resistance traits (common bunt, stem rust, leaf rust, powdery mildew, Septoria Leaf Blotch, Loose smut, Tan Spot, Russian wheat aphid, Hessian Fly) | Asian and African types appear to be more drought tolerant | Some varieties have shown tolerance to higher soil salinity | Alternate source of dwarfing trait Spelt | Spelt has gluten and similar protein composition to bread wheat but reduced bread making quality. | Higher lipid and unsaturated fatty acid content. | Some minerals tend to be higher in spelt: Fe, Zn, Mg, P. -
Comparative Biology and Life Cycle of the Barley Stem Gall Midge and Hessian Fly (Diptera: Cecidomyiidae) in Morocco
Revue Marocaine de Protection des Plantes, 2016, N° 9: 17-37 Comparative Biology and Life Cycle of The Barley Stem Gall Midge and Hessian fly (Diptera: Cecidomyiidae) in Morocco Comparaison de la Biologie et du cycle de vie de la cécidomyie à galle de l’orge et de la mouche de Hesse (Diptères: Cecidomyiidae) au Maroc 1, 2 2 1, 3 LHALOUI S. , EL BOUHSSINI M. , OTMANE R. , 1,3 1, 2, OURINICHE S. & ALAMI A. 1Institut National de la Recherche Agronomique, Centre Régional de Settat 2: International Center for Agricultural Research in the Dry Areas, Rabat, Morocco 3: Faculté des Sciences et Techniques, Université Hassan I, Settat, Maroc ABSTRACT The barley stem gall midge, Mayetiola hordei (Keiffer) is the most serious pest of barley in Morocco. The biology and life cycle of this insect were studied in a laboratory and under natural weather conditions. The results showed that similarly to Hessian fly, barley stem gall midge has two feeding instars and a third non-feeding instar. The generation time was longer for barley stem gall midge than for Hessian fly (45 vs 32 days at 18 ± 1°C, and a 12:12 (L: D) h photoperiod). The eggs of barley stem gall midge hatched in 7 days compared to 4 days for Hessian fly. The largest discrepancy in developmental time was for second instar and pupa. Second instars and pupae of barley stem gall midge required twice as long as those of Hessian fly to develop and molt into next stage (12 vs. 6 days). The first and third instars of barley stem gall midge also required a little bit longer to complete development (9 and 10 days vs.