Ligia Pallasii Class: Multicrustacea, Malacostraca, Eumalacostraca

Total Page:16

File Type:pdf, Size:1020Kb

Ligia Pallasii Class: Multicrustacea, Malacostraca, Eumalacostraca Phylum: Arthropoda, Crustacea Ligia pallasii Class: Multicrustacea, Malacostraca, Eumalacostraca Order: Peracarida, Isopoda, Oniscidea A rock louse or shore isopod Family: Ligiidae Taxonomy: The genus Ligia was very brief- 2007). The suborder to which L. pallasii be- ly called Ligyda in the early 1900s. Since longs, Oniscidea, is the largest isopod subor- then, the genus has been split into four gen- der and the only fully-terrestrial crustacean era (Geoligia, Megaligia, Nesoligia and group (Brusca et al. 2007). Ligia) based on morphological characters Cephalon: More than twice as wide as long (e.g. antennulae, mouthparts, telson) with rounded anterior margin and without (Jackson 1927). However, Van Name re- lobes (Fig. 1) (family Ligiidae, Brusca et al. duced these genera to subgeneric status 2007). and reinstated the genus Ligia in 1936 Eyes: Large, round, composite, and (Brusca 1980). Currently, these subgeneric close to lateral margin (Fig. 1) (Welton and names are rarely used and, instead, re- Miller 1980). Separated in front by twice the searchers refer to Ligia pallasii (e.g. Brusca length of the eye. et al. 2007). Antenna 1: First antennae are vestigial (Oniscidea, Brusca et al. 2007). Description Antenna 2: Second antennae reach to Size: To 35 mm in length (including uro- middle of fourth thoracic segment (Fig. 1). pods, which are 3 mm long) and approxi- The second antennae are with peduncles of mately 11 mm wide (Brusca and Brusca five articles: the first two are short, the third is 1978). The figured specimen (from Coos twice as long as the second, the fourth is 1½ Bay) is 22 mm long. x longer than the third, and the fifth 1½ x lon- Color: Mottled gray and often brown, with ger than the fourth (Welton and Miller 1980). granular surface. The flagellum has 15 articles (Hatch 1947). General Morphology: Isopod bodies are Mouthparts: In order from outside of dorso-ventrally flattened and can be divided buccal cavity: maxillipeds with palp of five ar- into a compact cephalon, with eyes, two an- ticles (Fig. 8), second maxillae with two plu- tennae and mouthparts, and a pereon mose processes on inner side of lobe (Fig. 5), (thorax) with eight segments, each bearing first maxillae with three plumose processes on similar pereopods (hence the name “iso- the inner lobe (Fig. 4), and the mandible with pod”). Posterior to the pereon is the pleon, large, broad molar surfaces, and no palp (Fig. or abdomen, with six segments, the last of 3). which is fused with the telson (the pleo- Rostrum: telson) (see Plate 231, Brusca et al. 2007). Pereon: First segment fused with head fol- The Isopoda can be divided into two groups: lowed by seven free pereonites. Contains a ancestral (“short-tailed”) groups (i.e. subor- tubular heart and cardiac ganglion consisting ders) that have short telsons and derived of six neurons (see Fig. 1, Sakurai and (“long-tailed”) groups with long telsons, L. Wilkens 2003). pallasii groups among the former (see Fig. Pereonites: First four pereonites are 3, Garthwaite and Lawson 1992; Brandt and subequal, last three are somewhat shorter Poore 2003; Plate 248C, Brusca et al. A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: https://oimb.uoregon.edu/oregon-estuarine-invertebrates and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Hiebert, T.C. 2015. Ligia pallasii. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. along medial line and extend downward idae, see Holdrich et al. 1984 in Schmidt laterally. Epimera (flattened lateral 2000, 2002) is a fully-terrestrial group com- extensions to pereonites) form broad plates, posed of 4,000 described species, with 22 especially in males (Figs. 1, 4). known locally (among 10 families, Schmidt Pereopods: Seven pairs of delicate 2002; Brusca et al. 2007). Members are char- walking legs. Carpus and merus of first pair acterized by seven pereonites, the first not is swollen and not grooved (Hatch 1947). fused with the head, seven pairs of pereo- Pleon: Pleon as wide as thorax and with five pods, male penes on the sternum of pereonite free pleonites and a short pleotelson (Fig. seven, a pleotelson that does not curve dor- 1). sally, vestigal (or very small) antennules and Pleonites: First two pleonites narrow a pleon with five free pleonites (Brusca et al. and without downwardly extending lateral 2007). The first and second pleopods are al- edges, which mark last three segments (Fig. so elongated in males for copulation, many 1). species have a water conducting system and Pleopods: Paired breathing append- some have respiratory structures on pleopods ages beneath pleonites have whitish tissue. called pseudotracheae. The Oniscidea can Male genitalia, paired but not fused, is pre- be divided into three major ecological groups: sent on second pleopods (Fig. 7). the runners (slender bodies with long pereo- Uropods: Terminal and styliform, with bases pods, the clingers (broad bodies with short about as long as wide. No process at inner pereopods) and the rollers (convex bodies distal margin of basal joint (Fig. 6), uropod that roll into balls) (Schmalfuss 1984 in Brus- rami equal and about twice the length of the ca et al. 2007). Ligia pallasii are fast runners 1 peduncle (less than /2 total body length, (Brusca 1980). Ligia, Hatch 1947). The Ligiidae are usually littoral, they Pleotelson: Rounded on middle of posterior can swim, but in our area are restricted to the edge and postero-lateral projections not upper littoral (spray) zone (Hatch 1947). They quite as long as middle (Fig. 1). have terminal uropods that are conspicuous Sexual Dimorphism: Males with penial pro- dorsally, flagellum antenna with more than 10 cesses on second pleopods, and with wide articles and eyes with more than 50 ommatid- epimera (Fig. 2). Females, when ovigerous, ia each (Brusca et al. 2007). The Ligiidae can with oöstegites. Mature males are larger further be distinguished from the other onis- and broader than females (Carefoot 1973a, cidean families by having more than four arti- but see Kozloff 1993). cles in the flagellum of the second antennae, and by their lack of anterolateral head lobes. Possible Misidentifications This family is represented by four local spe- The order Isopoda contains 10,000 cies, two in the genus Ligia, including L. occi- species, 1/2 of which are marine and com- dentalis and L. pallasii and two in the genus prise 10 suborders, with eight present from Ligidium, including L. gracile and L. lactum. central California to Oregon (see Brusca et The former genus is semi-terrestrial and oc- al. 2007). Among isopods with small, short curs in higher intertidal marine habitats, while telsons, there are several groups (i.e. subor- the two latter species occur in riparian habi- ders) including Phreatoicidea, Asellota, Mi- tats (Brusca 1980; Brusca et al. 2007). Ligidi- crocerberidea, Calabozoidea and Oniscidea. um species have uropods with processes at The monophyletic Oniscidea the inner distal margin, to articulate the endo- (previously part of the paraphyletic Scyphac- pod (Ligia species do not). The genus Ligia is A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: https://oimb.uoregon.edu/oregon-estuarine-invertebrates and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] characterized by a pleotelson that bears cool, moist conditions (Wilson 1970), prefer- posterolateral projections (see Fig. 1) and a ring shaded rocky cliffs and caves (Ricketts uropod that has endo- and exopod inser- and Calvin 1952; Eberl 2012) along the open tions at the same level (Ligidium species coast (Garthwaite and Lawson 1992). Young lack these projections) (Brusca et al. 2007). individuals prefer moist macroalgae, particu- The species closest to L. pallasii on larly Enteromorpha (Carefoot 1979). Phylo- the northeastern Pacific shore is Ligia occi- genetically, isopods in the genus Ligia are dentalis, an inhabitant mostly of rocky outer thought to be in evolutionary transition from shores, which, like L. pallasii, is often found sea to land environments. Thus, they have a near fresh-water seeps (Wilson 1970). It variety of unique physiological traits asso- can tolerate greater extremes of dryness ciated with each habitat (Wilson 1970; Zim- than L. pallasii. The two species can be dis- mer 2002). The composition of respiratory tinguished morphologically. Ligia proteins, hemocyanin present in L. pallasii occidentalis is narrower than L. pallasii, have been described (see Terwilliger 1982). being over twice as long as wide and its Salinity: Found in full salt water habitats, but eyes that are closer together, about one near fresh water seeps. Individuals can os- eye's length apart (Garthwaite and moregulate well and are found in areas of var- Lawson1992). Furthermore, its uropod iable salinity (Wilson 1970). Ligia pallasii has bases are several times longer than broad been the subject of some toxicity research (L. pallasii's are almost square) (Brusca et (e.g. Carefoot 1990a, b). al. 2007). Its second antennal flagella are Temperature: Does not tolerate extended longer, extending to the sixth thoracic heat or drying, lives permanently in cool moist segment, and contain 29 articles, not 15. habitats (Wilson 1970). This species occurs on rocky shores, from Tidal Level: Individuals reported living on Oregon south (Brusca et al. 2007). cliffs that are 1.5–6 meters above tide level in Moss Beach, California. In estuarine beaches Ecological Information of South Slough in Coos Bay, individuals are Range: Known range includes western found at about 1.5 meters. Aleutians south to Santa Cruz, California Associates: Beach wrack and wood debris (Welton and Miller 1980).
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • In Termite Nests (Blattodea: Termitidae) in a Cocoa Plantation in Brazil Biota Neotropica, Vol
    Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Teixeira Lisboa, Jonathas; Guerreiro Couto, Erminda da Conceição; Pereira Santos, Pollyanna; Charles Delabie, Jacques Hubert; Araujo, Paula Beatriz Terrestrial isopods (Crustacea: Isopoda: Oniscidea) in termite nests (Blattodea: Termitidae) in a cocoa plantation in Brazil Biota Neotropica, vol. 13, núm. 3, julio-septiembre, 2013, pp. 393-397 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199128991039 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Biota Neotrop., vol. 13, no. 3 Terrestrial isopods (Crustacea: Isopoda: Oniscidea) in termite nests (Blattodea: Termitidae) in a cocoa plantation in Brazil Jonathas Teixeira Lisboa1,7, Erminda da Conceição Guerreiro Couto2, Pollyanna Pereira Santos3, Jacques Hubert Charles Delabie4,5 & Paula Beatriz Araujo6 1Universidade Estadual de Santa Cruz – UESC, Campus Soane Nazaré de Andrade, Rod. Ilhéus-Itabuna, km 16, CEP 45662-900, Ilhéus, BA, Brasil. www.uesc.br/zoologia 2Universidade Estadual de Santa Cruz – UESC, Campus Soane Nazaré de Andrade, Rod. Ilhéus-Itabuna, km 16, CEP 45662-900, Ilhéus, BA, Brasil. www.uesc.br/cursos/pos_graduacao/mestrado/ppsat 3Universidade Federal de Viçosa – UFV, CEP 36570-000 Viçosa, MG, Brasil. www.pos.entomologia.ufv.br 4Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz – UESC, Campus Soane Nazaré de Andrade, Rod. Ilhéus-Itabuna, km 16, CEP 45662-900, Ilhéus, BA, Brasil. www.uesc.br/dcaa/index.php 5Laboratório de Mirmecologia, Convênio UESC/CEPLAC, Centro de Pesquisa do Cacau, CP 7, CEP 45600-000 Itabuna, BA, Brasil.
    [Show full text]
  • "Philosciidae" (Crustacea: Isopoda: Oniscidea)
    Org. Divers. Evol. 1, Electr. Suppl. 4: 1 -85 (2001) © Gesellschaft für Biologische Systematik http://www.senckenberg.uni-frankfurt.de/odes/01-04.htm Phylogeny and Biogeography of South American Crinocheta, traditionally placed in the family "Philosciidae" (Crustacea: Isopoda: Oniscidea) Andreas Leistikow1 Universität Bielefeld, Abteilung für Zoomorphologie und Systematik Received 15 February 2000 . Accepted 9 August 2000. Abstract South America is diverse in climatic and thus vegetational zonation, and even the uniformly looking tropical rain forests are a mosaic of different habitats depending on the soils, the regional climate and also the geological history. An important part of the nutrient webs of the rain forests is formed by the terrestrial Isopoda, or Oniscidea, the only truly terrestrial taxon within the Crustacea. They are important, because they participate in soil formation by breaking up leaf litter when foraging on the fungi and bacteria growing on them. After a century of research on this interesting taxon, a revision of the terrestrial isopod taxa from South America and some of the Antillean Islands, which are traditionally placed in the family Philosciidae, was performed in the last years to establish monophyletic genera. Within this study, the phylogenetic relationships of these genera are elucidated in the light of phylogenetic systematics. Several new taxa are recognized, which are partially neotropical, partially also found on other continents, particularly the old Gondwanian fragments. The monophyla are checked for their distributional patterns which are compared with those patterns from other taxa from South America and some correspondence was found. The distributional patterns are analysed with respect to the evolution of the Oniscidea and also with respect to the geological history of their habitats.
    [Show full text]
  • Diurnal Changes in Structure and Function of the Compound Eye of Ligia Exotica (Crustacea, Isopoda)
    J. exp. Biol, 123, 1-26 (1986) \ Printed in Great Britain © The Company of Biologists Limited 1986 DIURNAL CHANGES IN STRUCTURE AND FUNCTION OF THE COMPOUND EYE OF LIGIA EXOTICA (CRUSTACEA, ISOPODA) BY TAKAHIKO HARIYAMA Research Centre for Applied Information Science, Tohoku University, Katahira 2-chome, Sendai 980, Japan V. BENNO MEYER-ROCHDW Department of Biological Sciences, University ofWaikato, Hamilton (Private Bag), New Zealand AND EISUKE EGUCHI Department of Biology, Yokohama City University, Kanazawa-ku, Yokohama 236, Japan Accepted 28 February 1986 SUMMARY The ultrastructure of the retinula cells of Ligia exotica changes diurnally and in response to light/dark adaptation. At the low phase of electroretinogram (ERG) amplitude (at noon), the arrangement of microvilli is ordered and the rhabdom is of the open type. An irregular arrangement of microvilli appears at the high phase of ERG amplitude (at midnight), when the rhabdom is of the closed type. The pigment granules disperse at midnight and assemble at noon. A centrally positioned, spike- producing eccentric cell is present in each ommatidium. Spectral response curves based on ERG measurements have two maxima, one to light of 383 nm wavelength, the other at around 520 nm. These two peaks represent the two classes of receptor cells identified by intracellular recordings. The ERG responses to light of 383 nm and 520 nm wavelengths display a diurnal rhythmicity, being high at night and low during the day. However, the responses to green light are more strongly affected than those to ultraviolet light. Consequently, the eye displays a relatively higher ultraviolet-sensitivity during the day, whereas at night sensitivity to green light is increased.
    [Show full text]
  • The Woodlouse (Isopoda: Oniscidea) Fauna of Steppe Habitats in the Kostanay Region of Kazakhstan
    17/1 • 2018, 111–119 DOI: 10.1515/hacq-2017-0016 The woodlouse (Isopoda: Oniscidea) fauna of steppe habitats in the Kostanay region of Kazakhstan Tatyana М. Bragina1,2 & Dilyara D. Khisametdinova3 Keywords: terrestrial isopods, fauna, Abstract dry steppe, desert steppe, Kostanay This paper presents first materials on the fauna and distribution of the terrestrial Oblast, Northern and Southern isopods - woodlice (Oniscidea) inhabiting the central and southern parts of Turgai. Kostanay Region (Kazakhstan, Northern and Southern Turgai), located in the steppe zone. Most of the specimens of woodlice were collected in the territory of Ključne besede: kopenski the National Nature Reserve “Altyn Dala”, a new protected area (established in enakonožci, favna, suha stepa, 2012) and in the area of the Naurzum National Nature Reserve (established in puščavska stepa, Oblast Kostanaj, 1931, World Heritage Site of UNESCO), on the Stipa lessingiana dry steppe. The severni in južni Turgaj. list of woodlice includes six species (Crustacea: Isopoda: Oniscidea), belonging to five genera and three families in the study area. Four species are recorded for the first time in Kazakhstan – Desertoniscus subterraneus Verhoeff, 1930, Parcylisticus dentifrons (Budde-Lund 1885), Porcellio scaber Latreille, 1804, and Protracheoniscus major (Dollfus 1903). Distribution characteristics are provided for all of those species recorded in the study area. For the territory of Kazakhstan, according to a literature data, currently 16 species of terrestrial isopods have been recorded. Izvleček V članku predstavljamo prve izsledke o favni in razširjenosti kopenskih enakonožcev – mokric (Oniscidea), ki jih najdemo v osrednjih in južnih predelih regije Kostanay (Kazahstan, severni in južni Turgaj) v območju stepe.
    [Show full text]
  • Redescripiton of Ligidium Japonicum Verhoeff, 1918 Based on the Type Material (Crustacea, Isopoda, Ligiidae)
    Edaphologia, No. 102: 23–29, March 30, 2018 23 Redescripiton of Ligidium japonicum Verhoeff, 1918 based on the type material (Crustacea, Isopoda, Ligiidae) Hiroki Yoshino, Kohei Kubota Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan. Corresponding author: Hiroki Yoshino ([email protected]) Received: 23 August 2017; Accepted 5 December 2017 Abstract Ligidium japonicum Verhoeff, 1918 is redescribed based on the type specimens in Verhoeff’s collection. The species is redefined on the basis of uropodal endopod that is 1.1 - 1.3 longer than exopod, pleopod 1 exopod with long setae, and pleopod 2 endopod with U-shaped apex, as well as presence of denticles on pleopod 2 endopod inner margin and one beak-shaped dent on outer margin at anterior position than cutout of inner margin. Variation in morphological characters is shown between type material and samples collected from Chiba prefecture. Key words: Japan, morphological variation, taxonomy with the taxonomy of this species. Introduction Recently, we got a chance to examine the syntypes of The genus Ligidium Brandt, 1833 (Crustacea, Isopoda, L. japonicum deposited in the Zoologische Staatssammlung Ligiidae) contains around 50 species, most of which species München (ZSM), Germany, and herein we re-describe the live in very humid terrestrial habitats (Nunomura, 1983; morphological features of L. japonicum using this material. We Klossa-Kilia et al., 2006; Li, 2015, 2017). Six species inhabit also compare morphological characters between syntypes and Japan; L. japonicum Verhoeff, 1918, L. koreanum Flasarova, material collected in Chiba Prefecture, Japan, which belong to 1972, L. paulum Nunomura, 1976; L.
    [Show full text]
  • Crustacea, Isopoda, Oniscidea) of the Families Philosciidae and Scleropactidae from Brazilian Caves
    European Journal of Taxonomy 606: 1–38 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.606 www.europeanjournaloftaxonomy.eu 2020 · Campos-Filho et al. This work is licensed under a Creative Commons Attribution Licence (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:95D497A6-2022-406A-989A-2DA7F04223B0 New species and new records of terrestrial isopods (Crustacea, Isopoda, Oniscidea) of the families Philosciidae and Scleropactidae from Brazilian caves Ivanklin Soares CAMPOS-FILHO 1,*, Camile Sorbo FERNANDES 2, Giovanna Monticelli CARDOSO 3, Maria Elina BICHUETTE 4, José Otávio AGUIAR 5 & Stefano TAITI 6 1,5 Universidade Federal de Campina Grande, Programa de Pós-Graduação em Engenharia e Gestão de Recursos Naturais, Av. Aprígio Veloso, 882, Bairro Universitário, 58429-140 Campina Grande, Paraíba, Brazil. 2,4 Universidade Federal de São Carlos, Departamento de Ecologia e Biologia Evolutiva, Rodovia Washington Luis, Km 235, 13565-905 São Carlos, São Paulo, Brazil. 3 Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Laboratório de Carcinologia, Av. Bento Gonçalves, 9500, Agronomia, 91510-979 Porto Alegre, Rio Grande do Sul, Brazil. 6 Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy. 6 Museo di Storia Naturale, Sezione di Zoologia “La Specola”, Via Romana 17, 50125 Florence, Italy. * Corresponding author: [email protected] 2 Email: [email protected]
    [Show full text]
  • Woodlice in Britain and Ireland: Distribution and Habitat Is out of Date Very Quickly, and That They Will Soon Be Writing the Second Edition
    • • • • • • I att,AZ /• •• 21 - • '11 n4I3 - • v., -hi / NT I- r Arty 1 4' I, • • I • A • • • Printed in Great Britain by Lavenham Press NERC Copyright 1985 Published in 1985 by Institute of Terrestrial Ecology Administrative Headquarters Monks Wood Experimental Station Abbots Ripton HUNTINGDON PE17 2LS ISBN 0 904282 85 6 COVER ILLUSTRATIONS Top left: Armadillidium depressum Top right: Philoscia muscorum Bottom left: Androniscus dentiger Bottom right: Porcellio scaber (2 colour forms) The photographs are reproduced by kind permission of R E Jones/Frank Lane The Institute of Terrestrial Ecology (ITE) was established in 1973, from the former Nature Conservancy's research stations and staff, joined later by the Institute of Tree Biology and the Culture Centre of Algae and Protozoa. ITE contributes to, and draws upon, the collective knowledge of the 13 sister institutes which make up the Natural Environment Research Council, spanning all the environmental sciences. The Institute studies the factors determining the structure, composition and processes of land and freshwater systems, and of individual plant and animal species. It is developing a sounder scientific basis for predicting and modelling environmental trends arising from natural or man- made change. The results of this research are available to those responsible for the protection, management and wise use of our natural resources. One quarter of ITE's work is research commissioned by customers, such as the Department of Environment, the European Economic Community, the Nature Conservancy Council and the Overseas Development Administration. The remainder is fundamental research supported by NERC. ITE's expertise is widely used by international organizations in overseas projects and programmes of research.
    [Show full text]
  • First Record of the Species Complex in the Ligia Baudiniana American Gulf
    F1000Research 2017, 6:1602 Last updated: 16 NOV 2017 RESEARCH NOTE First record of the Ligia baudiniana species complex in the American Gulf of Mexico Coastline, as confirmed by morphological and molecular approaches [version 1; referees: 2 approved] Carlos A. Santamaria , Edgar T. Bischoff III, Moe Aye, Keith W. Phillips, Victoria Overmeyer Biology Program, College of Science and Mathematics, University of South Florida Sarasota-Manatee, Sarasota, FL, 34243, USA v1 First published: 30 Aug 2017, 6:1602 (doi: 10.12688/f1000research.12459.1) Open Peer Review Latest published: 30 Aug 2017, 6:1602 (doi: 10.12688/f1000research.12459.1) Referee Status: Abstract Ligia isopods exhibit a constrained morphology that makes identification difficult. In the Greater Caribbean, a convoluted taxonomic history has left the Invited Referees distributional limits of Ligia baudiniana unclear. To date, no confirmed records 1 2 of this species exist from the American Gulf of Mexico. Herein, we report the presence of L. baudiniana in Sarasota-Manatee Florida, as confirmed by version 1 morphological and molecular approaches. This is the first record of this species published report report in the region and a ~300Km extension of its range. Specimens were collected 30 Aug 2017 in mangroves, underscoring the importance of protecting these habitats. 1 Mary K. Wicksten, Texas A&M University, USA 2 Stefano Taiti, National Research Council (Italy), Italy Discuss this article Comments (0) Corresponding author: Carlos A. Santamaria ([email protected]) Author
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Anxiété Et Manipulation Parasitaire Chez Un Invertébré Aquatique : Approches Évolutive Et Mécanistique Marion Fayard
    Anxiété et manipulation parasitaire chez un invertébré aquatique : approches évolutive et mécanistique Marion Fayard To cite this version: Marion Fayard. Anxiété et manipulation parasitaire chez un invertébré aquatique : approches évolutive et mécanistique. Biodiversité et Ecologie. Université Bourgogne Franche-Comté, 2020. Français. NNT : 2020UBFCI006. tel-02940949v1 HAL Id: tel-02940949 https://tel.archives-ouvertes.fr/tel-02940949v1 Submitted on 16 Sep 2020 (v1), last revised 17 Sep 2020 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L’ETABLISSEMENT UNIVERSITE BOURGOGNE FRANCHE-COMTE PREPAREE A L’UNITE MIXTE DE RECHERCHE CNRS 6282 BIOGEOSCIENCES Ecole doctorale n°554 Environnement, Santé Doctorat des Sciences de la Vie Spécialité Ecologie Evolutive Par Fayard Marion _______________________________________________________________________________________ ANXIETE ET MANIPULATION PARASITAIRE CHEZ UN INVERTEBRE AQUATIQUE : APPROCHES EVOLUTIVE ET MECANISTIQUE Thèse présentée et soutenue à Dijon, le 28 Août 2020 Composition
    [Show full text]
  • Hepatopancreatic Endosymbionts in Coastal Isopods (Crustacea: Isopoda)
    Marine Biology 2001) 138: 955±963 Ó Springer-Verlag 2001 M. Zimmer á J. P. Danko á S. C. Pennings A. R. Danford á A. Ziegler á R. F. Uglow á T. H. Carefoot Hepatopancreatic endosymbionts in coastal isopods Crustacea: Isopoda), and their contribution to digestion Received: 28 August 2000 / Accepted: 8 December 2000 Abstract Three isopod species Crustacea: Isopoda), phenolic compounds was most developed in one of the commonly found in the intertidal and supratidal zones more marine species, suggesting that this trait may have of the North American Paci®c coast, were studied with evolved independently in isopod species that consume a respect to symbiotic microbiota in their midgut glands phenolic-rich diet, whether in marine habitats or on hepatopancreas). Ligia pallasii Oniscidea: Ligiidae) land. contained high numbers of microbialsymbionts in its hepatopancreatic caeca. Numbers of endosymbionts were strongly reduced by ingestion of antibiotics. By contrast, Introduction the hepatopancreas of Idotea wosnesenskii Valvifera: Idoteidae) and Gnorimosphaeroma oregonense Sphae- Endosymbionts are well known to play a key role in the romatidea: Sphaeromatidae) did not contain any mic- digestive processes of many terrestrialspecies summa- robiota. Results of feeding experiments suggest that rized in Martin 1983; Slaytor 1992; Breznak and Brune microbialendosymbionts contribute to digestive pro- 1994); however, their role in marine invertebrate species cesses in L. pallasii, the most terrestrialof the three is poorly understood. While studies have shown that gut isopods that we studied. The acquisition of digestion- microbiota exist in some marine invertebrates, know- enhancing endosymbionts may have been an important ledge of their nutritional role is scanty cf.
    [Show full text]