Chapter 20: Redox Reactions

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 20: Redox Reactions 634-661_Ch20-866418 5/9/06 12:52 PM Page 634 CHAPTER 20 Redox Reactions Chemistry 3.a, 3.g I&E 1.b, 1.c, 1.d What You’ll Learn ▲ You will examine the processes of oxidation and reduction in electron-trans- fer reactions. ▲ You will discover how oxi- dation numbers of elements in compounds are deter- mined and how they relate to electron transfer. ▲ You will separate redox reactions into their oxida- tion and reduction processes. ▲ You will use two different methods to balance oxida- tion–reduction equations. Why It’s Important Oxidation and reduction reac- tions are among the most prevalent in chemistry. From natural phenomena to com- mercial manufacturing, redox reactions play a major role in your daily life. Visit the Chemistry Web site at chemistrymc.com to find links about redox reactions. When threatened, the bom- bardier beetle sprays chemicals from its abdomen that, when combined, undergo an oxida- tion–reduction reaction. The result is a boiling-hot, foul- smelling "bomb" that allows the beetle to escape predators. 634 Chapter 20 634-661_Ch20-866418 5/9/06 12:53 PM Page 635 DISCOVERY LAB Observing an Oxidation–Reduction Reaction ust is the result of a reaction of iron and oxygen. Iron nails can R also react with substances other than oxygen, as you will find out in this experiment. Safety Precautions Always wear safety goggles and an apron in the laboratory. Procedure 1. Use a piece of steel wool to polish the end of an iron nail. 2. Add about 3 mL 1.0M CuSO4 to a test tube. Place the polished end of the nail into the CuSO4 solution. Let stand and observe for about 10 minutes. Record your observations. Materials test tube Analysis iron nail What is the substance found clinging to the nail? What happened to steel wool or sandpaper the color of the copper(II) sulfate solution? Write the balanced 1M copper(II) sulfate (CuSO4) chemical equation for the reaction you observed. Chemistry 3.a, 3.g Section 20.1 Oxidation and Reduction Chemistry 3.a, 3.g I&E 1.d Objectives In Chapter 10, you learned that a chemical reaction can usually be classified as • Describe the processes of one of five types—synthesis, decomposition, combustion, single-replacement, oxidation and reduction. or double-replacement. In this chapter, you’ll investigate a special characteris- tic of many of these reactions—the ability of elements to gain or lose electrons • Identify oxidizing and when they react with other elements. You experimented with this characteristic reducing agents. when you did the DISCOVERY LAB. • Determine the oxidation number of an element in a Electron Transfer and Redox Reactions compound. One of the defining characteristics of single-replacement and combustion • Interpret redox reactions in reactions is that they always involve the transfer of electrons from one atom terms of change in oxida- to another. So do many, but not all, synthesis and decomposition reactions. tion state. For example, you studied the synthesis reaction in which sodium and chlo- Vocabulary rine react to form the ionic compound sodium chloride. oxidation–reduction ϩ 0 Complete chemical equation: 2Na(s) Cl2(g) 2NaCl(s) reaction ϩ 0 ϩ ϩ Ϫ redox reaction Net ionic equation: 2Na(s) Cl2(g) 2Na 2Cl (ions in crystal) oxidation In this reaction, an electron from each of two sodium atoms is transferred to reduction the Cl molecule to form two ClϪ ions. An example of a combustion reaction oxidizing agent 2 is the burning of magnesium in air. reducing agent ϩ 0 Complete chemical equation: 2Mg(s) O2(g) 2MgO(s) ϩ 0 2ϩ ϩ 2Ϫ Net ionic equation: 2Mg(s) O2(g) 2Mg 2O (ions in crystal) 20.1 Oxidation and Reduction 635 634-661-Ch20-828378 1/16/01 6:13 AM Page 636 0 2Mg ϩ O2 2MgO Each gains 2 electrons 2ϩ 2Ϫ X OO OO OO OO 0 O X X OO O X OO OO OO Each loses 2 electrons 2ϩ 2Ϫ OO X O X X O X OO When magnesium reacts with oxygen, as illustrated in Figure 20-1, each mag- Figure 20-1 nesium atom transfers two electrons to each oxygen atom. What is the result of this electron transfer? The two magnesium atoms become Mg2ϩ ions and The reaction of magnesium and 2Ϫ oxygen involves a transfer of the two oxygen atoms become O ions (oxide ions). If you compare this reac- electrons from magnesium to tion with the reaction of sodium and chlorine, you will see that they are alike oxygen. Therefore, this reaction in that both involve the transfer of electrons between atoms. A reaction in which is an oxidation–reduction reac- electrons are transferred from one atom to another is called an oxidation–reduc- tion. Using the classifications tion reaction. For simplicity, chemists often refer to oxidation–reduction reac- given in Chapter 10, this redox tions as redox reactions. reaction also is classified as a combustion reaction. Now consider the single-replacement reaction in which chlorine in an aqueous solution replaces bromine from an aqueous solution of potassium bro- mide, which is shown in Figure 20-2. ϩ 0 ϩ Complete chemical equation: 2KBr(aq) Cl2(aq) 2KCl(aq) Br2(aq) Figure 20-2 Net ionic equation: 2BrϪ(aq) ϩ Cl (aq) 0 Br (aq) ϩ 2ClϪ(aq) Like the reaction shown in 2 2 Figure 20-1, this reaction of Note that chlorine “steals” electrons from bromide ions to become chloride chlorine and bromine in an ions. When the bromide ions lose their extra electrons, the two bromine atoms aqueous solution is also a redox reaction. Here, electrons are form a covalent bond with each other to produce Br2 molecules. The result of transferred from bromide ions this reaction, the characteristic color of elemental bromine in solution, is to chlorine. shown in Figure 20-2. The formation of the covalent bond by sharing of elec- trons also is an oxidation–reduction reaction. Ϫ ϩϩ0 Ϫ 2Br Cl2 Br2 2Cl Ϫ Each gains XX XX XX X X 1 electron X X X X X ϩ X X X XX OO OO XX XX O O O 0 O O O Ϫ Loses electron OO OO OO Ϫ O O XX O X X X OO X X XX Ϫ OO Loses electron O O O X OO 636 Chapter 20 Redox Reactions 634-661-Ch20-828378 06/28/2001 02:24 PM Page 637 How do oxidation and reduction differ? Originally, the word oxidation referred only to reactions in which a substance combined with oxygen, such as the burning of magnesium in air or the burning of natural gas (methane, CH4) in air. Today, oxidation is defined as the loss of electrons from atoms of a sub- stance. Look again at the net ionic equation for the reaction of sodium and chlorine. Sodium is oxidized because it loses an electron. To state this reac- tion more clearly, Biology Na 0 Naϩ ϩ eϪ CONNECTION For oxidation to take place, the electrons lost by the substance that is oxi- hat do the bacteria dized must be accepted by atoms or ions of another substance. In other words, WXenorhabdus luminescens, fireflies, and many deep-sea fish there must be an accompanying process that involves the gain of electrons. have in common? These and Reduction is defined as the gain of electrons by atoms of a substance. other organisms emit light. Following our sodium chloride example further, the reduction reaction that Bioluminescence is the conversion accompanies the oxidation of sodium is the reduction of chlorine. of potential energy in chemical bonds into light during a redox Ϫ 0 Ϫ reaction. Bioluminescent light is a Cl2 2e 2Cl cold light that gives off little heat. Depending on the species, Can oxidation occur without reduction? By our definitions, oxidation and bioluminescence is produced by reduction are complementary processes; oxidation cannot occur unless reduc- different chemicals and by differ- ent means. In fireflies, for exam- tion also occurs. ple, light results from the It is important to recognize and distinguish between oxidation and reduc- oxidation of the molecule tion. The following memory aid may help. luciferin. Scientists are still unraveling LEO GER LEO GER the mystery of bioluminescence. the lion says or, for short, Some luminescent organisms emit light all the time, whereas others This phrase will help you remember that Loss of Electrons is Oxidation, and emit light only when they are dis- Gain of Electrons is Reduction. turbed, such as when churned by ocean waves. Deep-sea fish and Changes in oxidation number You may recall from previous chapters some jellyfish appear to be able to control the light they omit, that the oxidation number of an atom in an ionic compound is the number and one species of mushroom is of electrons lost or gained by the atom when it forms ions. For example, look known to emit light of two dif- at the following equation for the redox reaction of potassium metal with ferent colors. Zoologists have also determined that some light-emit- bromine vapor. ting organisms do not produce ϩ 0 light themselves, but produce Complete chemical equation: 2K(s) Br2(g) 2KBr(s) light by harboring bioluminescent ϩ 0 ϩ ϩ Ϫ bacteria. Net ionic equation: 2K(s) Br2(g) 2K (s) 2Br (s) Organisms appear to use biolu- minescence for different pur- Potassium, a group 1A element that tends to lose one electron in reactions poses. In the ocean depths, because of its low electronegativity, is assigned an oxidation number of ϩ1. bioluminescence probably aids On the other hand, bromine, a group 7A element that tends to gain one elec- vision and recognition.
Recommended publications
  • United States Patent (19) 11 Patent Number: 4,640,713 Harris 45 Date of Patent: Feb
    United States Patent (19) 11 Patent Number: 4,640,713 Harris 45 Date of Patent: Feb. 3, 1987 (54) TARNESHREMOVER/METAL POLISH 3,458,300 7/1969 Duvall et al. ........................... 106/3 FORMULATION COMPRISING A METAL 3,502,503 3/1970 Bartlo et al. ............................ 134/2 IODIDE, ANACID, AND WATER 3,518,098 6/1970 Ford et al. .............................. O6/3 3,582,366 6/1971 Brieger et al. 75 Inventor: Robert B. Harris, Racine County, 3,687,855 8/1972 Halpern..... Wis. 3,879,216 4/1975 Austin ..................................... 134/4 3,914, 161 10/1975 Yonezawa et al. a 73 Assignee: S. C. Johnson & Son, Inc., Racine, 3,997,460 12A1976 Sirine ............. Wis. 4,097,590 6/1978 Weisz ..... 4,116,699 9/1978 Rooney...... ...10673 21 Appl. No.: 672,966 4,207,310 6/1980 Langford ... ... 252A106 22) Filed: Nov. 19, 1984 4,444,756 4/984 Schlissier ........................... 252/106 51 Int. Cl. .......................... C09G 1/04; C09G 1/06 Primary Examiner-Theodore Morris (52) U.S. C. ........................................... 106/3; 106/10 57 ABSTRACT 58) Field of Search ............................. 106/3; 252/106 A tarnish remover/metal polish formulation comprising 56 References Cited water, an acid, and metal iodide, such as potassium U.S. PATENT DOCUMENTS iodide, is described. The components of the formulation chemically react with the tarnish or stain on a metal 840,167 1/1907 Springborn et al. .................... 106/6 1,280,939 0/1918 Allen ................ ... 06/3 surface, removing the tarnish or stain while leaving the 1,737,222 11/1929 Dewey, Jr. ... 106/9 metal unaffected.
    [Show full text]
  • Copper Alloys
    THE COPPER ADVANTAGE A Guide to Working With Copper and Copper Alloys www.antimicrobialcopper.com CONTENTS I. Introduction ............................. 3 PREFACE Conductivity .....................................4 Strength ..........................................4 The information in this guide includes an overview of the well- Formability ......................................4 known physical, mechanical and chemical properties of copper, Joining ...........................................4 as well as more recent scientific findings that show copper has Corrosion ........................................4 an intrinsic antimicrobial property. Working and finishing Copper is Antimicrobial ....................... 4 techniques, alloy families, coloration and other attributes are addressed, illustrating that copper and its alloys are so Color ..............................................5 adaptable that they can be used in a multitude of applications Copper Alloy Families .......................... 5 in almost every industry, from door handles to electrical circuitry to heat exchangers. II. Physical Properties ..................... 8 Copper’s malleability, machinability and conductivity have Properties ....................................... 8 made it a longtime favorite metal of manufacturers and Electrical & Thermal Conductivity ........... 8 engineers, but it is its antimicrobial property that will extend that popularity into the future. This guide describes that property and illustrates how it can benefit everything from III. Mechanical
    [Show full text]
  • The Care and Preservation of Historical Silver by CLARA DECK, CONSERVATOR REVISIONS by LOUISE BECK, CONSERVATOR
    The Care and Preservation of Historical Silver BY CLARA DECK, CONSERVATOR REVISIONS BY LOUISE BECK, CONSERVATOR Introduction Historical silver can be maintained for years of use and enjoyment provided that some basic care and attention is given to their preservation. The conservation staff at The Henry Ford have compiled the information in this fact sheet to help individuals care for their objects and collections. The first step in the care of all collections is to understand and minimize or eliminate conditions that can cause damage. The second step is to follow basic guidelines for care, handling and cleaning. Most people know that silver is a white, lustrous metal. Pure or “fine” silver is called “Sterling” if it is made up of no less than 925 parts silver to 75 parts alloy. Sterling will thus often have ‘.925’ stamped somewhere on it, as an identifier. Silver objects, especially coins and jewelry, contain copper as an alloying metal for added hardness. The copper may corrode to form dark brown or green deposits on the surface of the metal. Silver is usually easy to differentiate from lead or pewter, which are generally dark gray and not very shiny. Silver is often plated (deposited) onto other metallic alloys, almost always with an intermediate layer of copper in between. The earliest plating process, “Sheffield Plate” was developed in England in 1742. By the mid-19th century, the process was largely replaced by electroplating (which used less silver). The base metal in plated artifacts may consist of any of the following metals or alloys: copper, brass, “German silver” or “nickel silver” (50% copper, 30% nickel, 20% zinc), “Brittania metal” (97% tin, 7% antimony, 2% copper), or a “base” silver containing a high percentage of copper.
    [Show full text]
  • H2S Pollution and Its Effect on Corrosion of Electronic Components
    Chapter 13 H2S Pollution and Its Effect on Corrosion of Electronic Components Benjamin Valdez Salas, Michael Schorr Wiener, Gustavo Lopez Badilla, Monica Carrillo Beltran, Roumen Zlatev, Margarita Stoycheva, Juan de Dios Ocampo Diaz, Lidia Vargas Osuna and Juan Terrazas Gaynor Additional information is available at the end of the chapter http://dx.doi.org/10.5772/39247 1. Introduction The microelectronic industry applies materials with good electrical and corrosion resistance properties for the manufacturing of the microelectronic devices. Silver and copper are materials with this characteristics used for that purpose. Some of their main applications are as high thermal conductive die attach paste that had silver flakes as conductive filler material, silver plated over copper frames, Sn-Ag and Sn-Cu alloys for solder paste used in Surface Mount Technology (SMT) process, conductive internal copper layers in printed circuit boards, copper wire bonding, and more. Other metals and alloys, widely used for support frames, heat diffusers and case wares in the electronics industry are tin, nickel, aluminum, carbon steel and galvanized steel. Corrosion in microelectronics depends on several variants such as the package type, materials involved, assembly processes, moisture, inorganic and organic contaminants, atmospheric pollutants, temperature, thermal stress and electrical bias.(P. Roberge, 2000, J. Payer, 1990, M.Reid et al., 2007, M. Tullmin and P. Roberge, 1995, M. McNeil and B. Little, 1992, X. Lin and J. Zhang, 2004) The plastic packages are the more widely used because of its size, cost and manufacturability advantages but, compared to other hermetic package systems like ceramics, are non-hermetic due to its polymeric materials that permit the permeation of moisture and corrosive gases, allowing in this manner the appearance of other problems associated with corrosion of the inside components.
    [Show full text]
  • DECORATIVE CHROMIUM PLATING I=O44-5 by Donald L
    DECORATIVE CHROMIUM PLATING I=o44-5 by Donald L. Snyder 2$& f Engelhard Corp., Beachwood, OH 13lcctrotlcposition of chromium is thc principii1 tncitns of iiiip:trting thc physicill itntl clicniical propcrtics ol’chromium 10 thc surface of lcss cxpcnsive antl casier to lbrm matcriiils such as steel and plastics. The most desirable properties of chromium as a metal coating are its inherent protective and decorative characteristics. The deposit’s high reflectively is retained in service because of chromium’s excellent tarnish, corrosion, wear and scratch resistance. Chromium is almost exclusively plated over a nickel electrodeposit which can easily be plated over substrates such as plastics, steel, aluminum, copper alloys, and zinc die castings. Nickel is preferred because it protects the substrate from corrosion, helps give chromium a white color, and is protected from surface oxidation by the chromium. Stainless steel is the only substrate that is frequently plated directly with chromium, but a nickel preplate before chromium is also used. Multiple or single layers of nickel and copper can precede the nickel/chromium deposits depending upon the intended use of the part. Decorative chromium deposits typically are plated in the 2 to 20 millionths of an inch range. Thicker deposits tend to be duller and contain visible cracks. The traditional chromium deposit is produced from an electroplating electrolyte contain- ing hexavalent chromium ions and has a pleasing bluish-white decorative appearance. About 1975, a chromium electrolyte containing the less toxic and less hazardous trivalent chromium ion began replacing many decorative hexavalent chromium electroplating installations. De- pending upon the process, trivalent chromium electrolytes can either produce a metallic white deposit almost identical in appearance to the bluish-white hexavalent chromium deposits or a deep looking pewter or stainless steel appearing deposit.
    [Show full text]
  • Team Metal Finishing Inc
    Team Metal Finishing Inc. Available Processes: Anodizing Thank you for considering Team Metal Finishing for your Hard Coating processing requirements. Team Metal Finishing has been in Electroless Nickel business since 1988 serving the Aerospace, Automotive, Military, Sulfamate Nickel Electronics, Motion Controls and Medical Industries. Since our Bright and Matte Nickel founding we have developed a stellar reputation within these Silver Plating industries for meeting and exceeding the needs and requirements Gold Plating of our customers. We are a ISO 9001:2015 certified company Tin Plating with Aerospace accreditations. We have more than 60,000 Chromate Conversion Coating square feet of processing area on 7.6 acres located in Eastanollee Immersion Tin Ga. Passivation Electropolishing Please give us a call to see what our Team can do for you. www.teammetalfinishing.com 1-800-380-3371 [email protected] Process List: Anodizing Clear & Colors: Black, Blue, Red, Orange and Gold Hard Coat Clear or Natural, Colors: Black, Blue, Red, Orange and Gold Electroless Nickel Medium and High phosphorus; Black Electroless Nickel Nickel Plating Sulfamate, Bright, Matte, and Satin Silver Plating Matte, Semi Bright and Bright Gold Plating 24K Tin Plating Bright and Immersion Tin Chromate Conversions on Aluminum Color: Clear. Trivalent, RoHs. Passivation and Electropolishing Stainless Steels only Abrasive Blasting Glass bead blasting Baking Hydrogen Embrittlement relief Teflon Bonded used with all our coatings www.teammetalfinishing.com 1-800-380-3371 [email protected] Anodizing: Anodizing is an electrolytic process that forms an aluminum oxide onto the surface of the material. The oxide film that is formed grows from the base metal as an integral part of the material.
    [Show full text]
  • The Alkali Metals
    Ri Christmas Lectures® 2012: The Modern Alchemist Teaching Resource - Group 1: The Alkali Metals Overview: This resource contains information regarding Group 1 of the Periodic Table - The Alkali Metals. Included is an overview of the elements that make up the group, and their structure, general reactivity, and specific examples of their reactions. The resource is supported by links to useful materials, and video clips from the 2012 Christmas Lectures®. What are the Alkali Metals? Lithium o Lithium is a silver-grey metal; it is the least dense of all metals, with a density of 533 kg m-3. Lithium reacts strongly with moisture, forming corrosive lithium hydroxide; therefore it should be handled carefully. Treatment with lithium is also a common form of anti-depressant therapy. Sodium o Sodium is a silver grey, soft, ductile metal. It is most commonly seen in everyday life as Sodium chloride, otherwise known as table salt. It is also present in street lighting as the common yellow glow of Sodium vapour lamps. Sodium is also extremely important in the body, where it is involved in nerve impulses. Potassium o Potassium is a soft, silver metal; however when exposed to air it tarnishes quickly. Interestingly, Potassium is both essential for the human biological system and has a naturally radioactive isotope. Despite this, the natural radioactivity from Potassium is low (it has a half life of 1.248 x 109 years, see Teaching Resource - Radioactivity on the RSC Learn Chemistry website for more details on half-life). Rubidium o Rubidium is again a soft metal, however, it is pyrophoric and with ignite spontaneously in moist air.
    [Show full text]
  • Chapter 16: Oxidation-Reduction Reactions
    CHAPTER Oxidation-ReductionOxidation-Reduction 16 ReactionsReactions Chapter Preview Sections Why Do Things Rust? 16.1 The Nature of Oxidation- Reduction Reactions hen iron corrodes, iron metal reacts with MiniLab 16.1 Corrosion of Iron oxygen from the air and water to form ChemLab Copper Atoms and Ions: W iron(III) oxide—rust. Rust is the result of Oxidation and Reduction an oxidation-reduction reaction in which iron metal loses electrons to oxygen. Given time, and 16.2 Applications of Oxidation- Reduction Reactions oxygen from the air and water, all of the drums MiniLab 16.2 Testing for Alcohol in this photo will rust away completely. by Redox 552 Start-up Activities What I Already Know Observing an Oxidation– Review the following concepts Reduction Reaction before studying this chapter. Rust is the result of a reaction of iron and oxygen. Iron Chapter 3: patterns of valence nails can also react with substances other than oxygen, electrons as you will find out in this experiment. Chapter 5: predicting oxidation Safety Precautions number from the periodic table Chapter 6: types of reactions Always wear safety goggles and an apron in the laboratory. Reading Chemistry Materials Look through the Section Previews for this chapter, jotting down some •test tube key ideas. As you read through the • iron nail chapter, make an outline using the •steel wool or sandpaper key ideas you wrote down. For each •1M copper(II) sulfate (CuSO ) 4 topic, review any new vocabulary Procedure words. 1. Use a piece of steel wool to polish the end of an iron nail. 2.
    [Show full text]
  • Controlling Hexavalent Chromium Exposures During Electroplating Electroplating Is a Metal Finishing Process in Which an Object Is Covered with a Metal Coating
    FactSheet Controlling Hexavalent Chromium Exposures during Electroplating Electroplating is a metal finishing process in which an object is covered with a metal coating. Workers performing electroplating are exposed to hexavalent chromium [Cr(VI)] which can cause severe health effects including lung cancer. Electroplating uses an electrical current passed through a chemical electrolyte solution containing the plating metal. OSHA’s Permissible Exposure Limit (PEL) for Cr(VI) is 5 µg/m3 as an 8-hour time-weighted average and OSHA regulates worker exposure to this hazardous substance under its Chromium(VI) standard, 29 CFR 1910.1026. Types of chrome electroplating • Hard chrome (HC) plating: a thick layer of chromium is electrodeposited on a base material (usually steel) to provide a surface with functional properties such as wear resistance, a low coefficient of friction, hardness and corrosion resistance. It is used in: – Piston rings – Hydraulic cylinder rods – Machine rollers • Decorative or bright (DC) plating: a thin layer of chromium is electrodeposited onto a base metal or other electrodeposited metals (nickel) Hard chrome electroplating baths. (Photo courtesy of NIOSH). for cosmetic and tarnish resistance purposes. It is used in: How electroplating operations cause Cr(VI) exposure in the workplace – Chrome alloy wheels There are several factors that contribute to – Appliances hexavalent chromium exposure in the workplace, – Plumbing fixtures including: Anodizing, sometimes confused with electroplating, • Mist generation during plating: is used to increase the thickness of the natural oxide hydrogen layer on the surface of a metal part. Aluminum bubbles that form in the plating tanks burst alloys can be anodized using chromic acid.
    [Show full text]
  • A Reaction Study of Sulfur Vapor with Silver and Silver–Indium Solid Solution As a Tarnishing Test Method
    UC Irvine UC Irvine Previously Published Works Title A reaction study of sulfur vapor with silver and silver-indium solid solution as a tarnishing test method Permalink https://escholarship.org/uc/item/1gq3w8hj Journal JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 27(10) ISSN 0957-4522 Authors Huo, Yongjun Fu, Shao-Wei Chen, Yi-Ling et al. Publication Date 2016-10-01 DOI 10.1007/s10854-016-5124-y Peer reviewed eScholarship.org Powered by the California Digital Library University of California J Mater Sci: Mater Electron (2016) 27:10382–10392 DOI 10.1007/s10854-016-5124-y A reaction study of sulfur vapor with silver and silver–indium solid solution as a tarnishing test method 1 1 1 1 Yongjun Huo • Shao-Wei Fu • Yi-Ling Chen • Chin C. Lee Received: 17 February 2016 / Accepted: 3 June 2016 / Published online: 10 June 2016 Ó Springer Science+Business Media New York 2016 Abstract It is well known that pure silver (Ag) or sterling applications in electronics, jewelry, joining, optics, silver- silver can easily get tarnished under ordinary atmosphere by ware, and welding. sulfur-containing gases. Over past several decades, the industries have tried to formulate and produce silver-based materials that do not get tarnished for various applications 1 Introduction including electronics, optics, jewelry, and silverware. Recently, our group has grown silver and silver–indium Silver possesses the title of champion for its highest ther- solid solution ingots and studied their anti-tarnishing prop- mal conductivity, electrical conductivity, and reflectivity erty. Since there are no standard tarnishing test methods for among any known metal elements.
    [Show full text]
  • Trivalent Chromium Replacements for Hexavalent Chromium Plating
    Pollution Prevention Technology Profile Trivalent Chromium Replacements for Hexavalent Chromium Plating November 18, 2003 Introduction The purpose of this Technology Profile is to provide general information about trivalent chromium plating as a replacement for hexavalent chromium plating. Trivalent chromium is also known as tri- chrome, Cr+3, and chrome (III), whereas hexavalent chromium is also known as hex-chrome, Cr+6, and chrome (VI). The Profile has the following sections: § Chromium Plating Overview o Hexavalent Chromium Technology o Regulatory Requirements o Non-Chromium Alternatives § Trivalent Chromium Technology o P2 for Trivalent Chromium Baths o Current Research on Trivalent Chromium Baths § Benefits and Challenges § Foss Plating Case Study § Contacts for More Information o Resources and Vendors o State Technical Assistance Programs o References It should be noted that this Technology Profile is not intended to be an “approval” of this technology. The appropriateness of the use of trivalent chromium plating technologies should be determined on a site-by-site basis. Potential users should contact officials in the state in which the facility is located to determine the state-specific regulatory requirements that could apply. A listing of state contacts is located at the end of this Profile. Chromium Plating Overview The most common hexavalent chromium-bearing solutions include decorative and hard chromium, aluminum conversion coating, bright dipping of copper and copper alloys, chromic acid anodizing, and chromate conversion coatings on cadmium, zinc, silver and copper. This Technology Profile is for the use of trivalent chromium processes as replacements for decorative and hard hexavalent chromium processes. Decorative Chromium 1 Decorative chromium plating provides a durable coating with a pleasing appearance and is usually deposited in a thickness range of 0.002 to 0.020 mils.
    [Show full text]
  • Chemical Reactions and Quantities Chapter 7
    Chemical Reactions and Quantities Chapter 7 Chemical Reactions occur Everywhere… • …when fuel burns with oxygen in our cars to make the car move… • …when we cook our food… • …when we dye our hair… • …in our bodies, chemical reactions convert food into molecules that build and move muscle… • …in leaves of trees and plants, carbon dioxide and water are converted to carbohydrates… Some chemical reactions are simple, whereas others are quite complex… • However, they can all be written by chemical equations that chemists use to describe chemical reactions. • In every chemical reaction, atoms are rearranged to give new substances. – Just like following a recipe, certain ingredients are combined (and often heated) to form something new. Chapter Seven 7.1 – Equations for Chemical Reactions 7.2 – Types of Reactions 7.3 – Oxidation-Reduction Reactions 7.4 – The Mole 7.5 – Molar Mass and Calculations 7.6 – Mole Relationships in Chemical Equations 7.7 – Mass Calculations for Reactions 7.8 – Limiting Reactants and Percent Yield 7.9 – Energy in Chemical Reactions 7.1 Equations for Chemical Reactions Write a balanced equation from formulas of the reactants and products for a reaction; determine the number of atoms in the reactants and products. Chemical Change • A chemical change occurs when a substance is converted into one or more new substances that have different formulas and properties. • For example, when silver tarnishes, the shiny, silver metal (Ag) reacts with sulfur (S) to become the dull, black substance we call tarnish (Ag2S). Chemical Reaction • A chemical reaction always involves a chemical change because atoms of the reacting substances form new combinations with new properties.
    [Show full text]