(12) Patent Application Publication (10) Pub. No.: US 2016/0166697 A1 Bender (43) Pub

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2016/0166697 A1 Bender (43) Pub US 2016O166697A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0166697 A1 Bender (43) Pub. Date: Jun. 16, 2016 (54) METHOD OF TREATING CANCER A619/00 (2006.01) A647/4 (2006.01) (71) Applicant: Intensity Therapeutics, Inc., Westport, A647/8 (2006.01) CT (US) A6II 45/06 (2006.01) A619/08 (2006.01) (72) Inventor: Lewis H. Bender, Redding, CT (US) A 6LX3/555 (2006.01) (52) U.S. Cl. (21) Appl. No.: 15/052,326 CPC. A61K47/12 (2013.01); A61 K9/08 (2013.01); 1-1. A61K 33/24 (2013.01); A61 K3I/555 (22) Filed: Feb. 24, 2016 (2013.01); A61 K47/14 (2013.01); A61K47/18 Related U.S. Application Data (2013.01); A61K 45/06 (2013.01); also (63) Continuation of application No. 14/280,036, filed on May 16, 2014, which is a continuation of application (57) ABSTRACT No. PCT/US2013/059841, filed on Sep. 15, 2013. The invention provides a method for treating cancer using a (60) Provisional application No. 61/779,509, filed on Mar. coadministration strategy that combines local codelivery of a 13, 2013, provisional application No. 61/707,733, therapeutic agent and an intracellular penetration enhancing filed on Sep. 28, 2012, provisional application No. agent, and optionally in further combination with local 61/703,890, filed on Sep. 21, 2012. administration of an immunotherapeutic agent, such as a cancer vaccine or NKTagonist. The invention also provides a Publication Classification method for treating cancer using an intracellular penetration enhancing agent. The methods of the invention aim to Sub (51) Int. Cl. stantially kill and/or destroy the target tumor cells, as well as A6 IK 47/12 (2006.01) those cancerous cells that have metastasized to other parts of A6 IK33/24 (2006.01) the body. Patent Application Publication Jun. 16, 2016 Sheet 1 of 10 US 2016/O166697 A1 : : s Patent Application Publication Jun. 16, 2016 Sheet 2 of 10 US 2016/O166697 A1 FG. 2 FG. 3 Patent Application Publication Jun. 16, 2016 Sheet 3 of 10 US 2016/O166697 A1 Cage in nor Biointinescence over tire 120E-01 - 100E+01 \ u', or 8,00E-00 * al- s 6.00E-00 c-AK-2V 222 - 4.00E+00 ya r *" — O.8 1 5 2 2. 3. 3.5 ine Days -- rancer achie r Er Cisplatin V 0.120 mg r;x-Pt O.045 mg -- Pi + Enhancer 0.045rng Relative Change in B waites low dose of its attano'ai cispati 15 1.30 2-8 s - u 1 1. 21-J ----- is O.90. ...-...-...--Allae./ -1 Irelaaaaaaaa... ------ 0 0.5 5 2 2.5 3 3.5 bays since first dose - - Efrancer aire -- Cisplatin V 0.120 mgimouse -- Cisplatin IT -%- Enhancer & Cisplatin IT (37% of W (37% of IV dose) dose) FG. 5 Patent Application Publication Jun. 16, 2016 Sheet 4 of 10 US 2016/O166697 A1 Charge in nor Bioininescence overtine 1.40E+04: 4.30E-01 2----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 1,10E+01 .00+0- 3.0CE+00 8.00E-00---Y 7.00E+00. S-1 is - es is re 6,00E+00. ...?...........If......................... 5.00E+09-i-or- ...?ts. 4.00E+00 - 8 A. 8 3 O 6 hr time point of shown fine bays -(-Enhancer alone - C - Cisplatin V ri-Cisplatin T-3- Cisplatin & Entarcer F.G. 6 Relative Change in 8. 0.40 3. 5. 7 9 6 hr time point ays since first dose not show -XX-Enhance alone - - Cisplatin W - {x - Cisplatin IT -X- Cisplatin & Enhancer FG. 7 Patent Application Publication Jun. 16, 2016 Sheet 5 of 10 US 2016/O166697 A1 Change in Body Weight uring Stady 23.00 - 22.00 - says since first dose -(-Enhancer alone -i- Cisplatin V-ryx" Cisplatin -x- Cisplatin & Enhancer r FG. 8 Patent Application Publication Jun. 16, 2016 Sheet 6 of 10 US 2016/O166697 A1 sÁed Patent Application Publication Jun. 16, 2016 Sheet 7 of 10 US 2016/O166697 A1 :6di1039--~~~~~~~~#--#- c & s is sei.e. 3.838 Patent Application Publication Jun. 16, 2016 Sheet 8 of 10 US 2016/O166697 A1 ~~~~£-- ~/~~•×*~~~~~~ Á#0.3}{300 ----?~-------- Patent Application Publication Jun. 16, 2016 Sheet 9 of 10 US 2016/O166697 A1 ---{}{}{3 8€è#0.*** 3. A Qia. Patent Application Publication Jun. 16, 2016 Sheet 10 of 10 US 2016/O166697 A1 3 of oil. US 2016/01 66697 A1 Jun. 16, 2016 METHOD OF TREATING CANCER ceuticals, cytotoxic agents, monoclonal antibodies; or tran sarterial chemo immobilization (TACE), and combinations CROSS-REFERENCE TO RELATED thereof pursuant to specific regimens based on the specific APPLICATIONS type and stage of cancer under treatment. However, these 0001. This application is a continuation of U.S. Ser. No. therapies are associated with Substantially high costs. In addi 14/280,036, filed May 16, 2014 which is a continuation of tion, current treatment options are highly invasive, are asso PCT/US2013/05984, filed Sep. 15, 2013, which claims pri ciated with significant toxicities, and result in an overall poor ority to, and the benefit of, U.S. Provisional Application No. quality of life for patients. 61/779,509, filed Mar. 13, 2013, U.S. Provisional Application 0008 Standard of care cancer therapies typically couple No. 61/707,733, filed Sep. 28, 2012, and U.S. Provisional surgical removal of the affected tissue with chemotherapy or Application No. 61/703,890, filed Sep. 21, 2012. Each of radiation treatments. Standard approaches for administering these applications is hereby incorporated by reference in their chemotherapeutics are through the blood, e.g., systemic entirety. delivery, which can be achieved by various routes such as intravenous and/or gastrointestinal delivery. However, toxic ity is a major drawback associated with systemically deliv BACKGROUND OF THE INVENTION ered chemotherapeutic drugs. Standard of care Surgical treat 0002 1. Field of the Invention ments also introduce problems, including dislodgement of 0003. The present invention relates to novel methods for cancer cells into the blood and/or lymph systems, which treating cancer. The methods involve treating a carcinoma or results in the opportunity for cancer cells to metastasize to sarcoma using a coadministration strategy that combines other sites in the body and cause additional tumors to form. local codelivery of a therapeutic agent and an intracellular 0009. When surgery is not possible, the accepted treat penetration enhancing agent, optionally in combination with ment for cancer is to use radiation or chemotherapy. But at least one additional therapeutic agent (e.g., local or sys Survival rates for inoperable cancer are low when compared to temic administration of an immunotherapeutic agent). The the Survival rate for cancers that are Surgically removed prior methods of the invention reduce the growth, shrink, and/or to chemotherapy or radiation. eradicate a target tumor, as well as those cancerous cells that 0010 Regional chemotherapy represents a recent advance have metastasized to other parts of the body. in the chemotherapeutic treatment of cancer. This approach 0004 2. Background involves delivering the chemotherapeutic agent directly to the 0005. It is currently believed that cancer cells routinely tumor, e.g., proximal to, adjacent to, or intratumorally, as arise in our bodies but are continuously destroyed by a opposed to introducing the toxic agent into the bloodstream. healthy immune system. It is thought that cancer tumors form One goal of regional chemotherapy is to minimize the toxic when the immune system fails to destroy these routinely side effects typically associated with systemic chemothera formed diseased cells. The word "cancer' is used to describe peutic administration. a number of diseases in which there is uncontrolled division 0011. However, regional chemotherapeutic approaches of abnormal cells. Cancer may initially arise in virtually any generally have not been satisfactory. A general problem with tissue or organ in the body and forms as a result of a complex chemotherapy—including regional chemotherapy—is that interaction of both innate genetic factors and environmental cancer cells are highly resistant to penetration by chemo factors, such as one's diet or exposure to radiation, toxins, and therapeutic agents. For example, certain platinum com the like. Despite advances in medicine and the understanding pounds are mainly taken into cancer cells by an active trans of the molecular basis of cancer, the exact causes of any given port process using the CTR1 pathway (see Holzer et al., type of cancer are largely unknown, especially in a particular Molecular Pharmacology 70: 1390-1394 (2006)). In addi individual. Given this lack of knowledge, it is not Surprising tion, chemotherapeutic agents generally are delivered by the that it remains highly difficult to find effective cancer treat blood, they should be soluble in the blood, making them mentS. generally water soluble. Water soluble materials such as che 0006 Finding effective treatments is also made challeng motherapeutic agents do not effectively pass through lipid ing because cancer often develops resistance to various thera cell membranes passively, and thus, are not readily deliver peutic strategies. In addition, effective means for treating able to the intracellular space of cancer cells especially at low cancer become an even greater challenge in view of the capac concentrations. Further, once inside, tumor cells have mecha ity for certain types of cancers to spread from their primary nisms and various processes designed to excrete the chemo Source. This process, called metastasis, enables cancer cells therapeutic agents. For example, tumor cells are able to rid to spread to other vital parts of the body through the blood and themselves of chemical agents using glutathione and/or met lymph systems. Some experts estimate that only a single cell allothioneins complexing and have innate DNA repair in a million can Survive long enough to help form a metastatic mechanisms to overcome chemotherapies.
Recommended publications
  • Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
    Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models.
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • The Evolving Concept of Cancer and Metastasis Stem Cells
    JCB: Review The evolving concept of cancer and metastasis stem cells Irène Baccelli1,2 and Andreas Trumpp1,2 1Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), D-69120 Heidelberg, Germany 2Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), D-69120 Heidelberg, Germany The cancer stem cell (CSC) concept, which arose more review is to illustrate the current dynamic view of CSCs to fos- than a decade ago, proposed that tumor growth is sus- ter the development of better therapeutic approaches to target this highly complex and deadly disease. tained by a subpopulation of highly malignant cancerous cells. These cells, termed CSCs, comprise the top of the The classical concept of CSCs tumor cell hierarchy and have been isolated from many Adult regenerating tissues (such as the skin, the gastrointes- leukemias and solid tumors. Recent work has discovered tinal mucosa, or the hematopoietic system) are hierarchically Downloaded from that this hierarchy is embedded within a genetically het- organized (Murphy et al., 2005; Fuchs and Nowak, 2008; van erogeneous tumor, in which various related but distinct der Flier and Clevers, 2009; Seita and Weissman, 2010). At the top of the cellular organization, normal adult stem cells subclones compete within the tumor mass. Thus, geneti- maintain tissues during homeostasis and facilitate their regen- cally distinct CSCs exist on top of each subclone, revealing eration, for example in response to infection or to cell loss a highly complex cellular composition of tumors. The CSC due to injury. These physiological stem cells are defined by concept has therefore evolved to better model the complex their functional properties: they have the life-long capacity to jcb.rupress.org and highly dynamic processes of tumorigenesis, tumor self-renew (the ability to give rise to a new stem cell after cell relapse, and metastasis.
    [Show full text]
  • Modifications to the Harmonized Tariff Schedule of the United States To
    U.S. International Trade Commission COMMISSIONERS Shara L. Aranoff, Chairman Daniel R. Pearson, Vice Chairman Deanna Tanner Okun Charlotte R. Lane Irving A. Williamson Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement the Dominican Republic- Central America-United States Free Trade Agreement With Respect to Costa Rica Publication 4038 December 2008 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 18, 2008, set forth in the Appendix hereto, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement the Dominican Republic- Central America-United States Free Trade Agreement, as approved in the Dominican Republic-Central America- United States Free Trade Agreement Implementation Act, with respect to Costa Rica. (This page is intentionally blank) Annex I Effective with respect to goods that are entered, or withdrawn from warehouse for consumption, on or after January 1, 2009, the Harmonized Tariff Schedule of the United States (HTS) is modified as provided herein, with bracketed matter included to assist in the understanding of proclaimed modifications. The following supersedes matter now in the HTS. (1). General note 4 is modified as follows: (a). by deleting from subdivision (a) the following country from the enumeration of independent beneficiary developing countries: Costa Rica (b).
    [Show full text]
  • The Two Tontti Tudiul Lui Hi Ha Unit
    THETWO TONTTI USTUDIUL 20170267753A1 LUI HI HA UNIT ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2017 /0267753 A1 Ehrenpreis (43 ) Pub . Date : Sep . 21 , 2017 ( 54 ) COMBINATION THERAPY FOR (52 ) U .S . CI. CO - ADMINISTRATION OF MONOCLONAL CPC .. .. CO7K 16 / 241 ( 2013 .01 ) ; A61K 39 / 3955 ANTIBODIES ( 2013 .01 ) ; A61K 31 /4706 ( 2013 .01 ) ; A61K 31 / 165 ( 2013 .01 ) ; CO7K 2317 /21 (2013 . 01 ) ; (71 ) Applicant: Eli D Ehrenpreis , Skokie , IL (US ) CO7K 2317/ 24 ( 2013. 01 ) ; A61K 2039/ 505 ( 2013 .01 ) (72 ) Inventor : Eli D Ehrenpreis, Skokie , IL (US ) (57 ) ABSTRACT Disclosed are methods for enhancing the efficacy of mono (21 ) Appl. No. : 15 /605 ,212 clonal antibody therapy , which entails co - administering a therapeutic monoclonal antibody , or a functional fragment (22 ) Filed : May 25 , 2017 thereof, and an effective amount of colchicine or hydroxy chloroquine , or a combination thereof, to a patient in need Related U . S . Application Data thereof . Also disclosed are methods of prolonging or increasing the time a monoclonal antibody remains in the (63 ) Continuation - in - part of application No . 14 / 947 , 193 , circulation of a patient, which entails co - administering a filed on Nov. 20 , 2015 . therapeutic monoclonal antibody , or a functional fragment ( 60 ) Provisional application No . 62/ 082, 682 , filed on Nov . of the monoclonal antibody , and an effective amount of 21 , 2014 . colchicine or hydroxychloroquine , or a combination thereof, to a patient in need thereof, wherein the time themonoclonal antibody remains in the circulation ( e . g . , blood serum ) of the Publication Classification patient is increased relative to the same regimen of admin (51 ) Int .
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0172932 A1 Peyman (43) Pub
    US 20170172932A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0172932 A1 Peyman (43) Pub. Date: Jun. 22, 2017 (54) EARLY CANCER DETECTION AND A 6LX 39/395 (2006.01) ENHANCED IMMUNOTHERAPY A61R 4I/00 (2006.01) (52) U.S. Cl. (71) Applicant: Gholam A. Peyman, Sun City, AZ CPC .......... A61K 9/50 (2013.01); A61K 39/39558 (US) (2013.01); A61K 4I/0052 (2013.01); A61 K 48/00 (2013.01); A61K 35/17 (2013.01); A61 K (72) Inventor: sham A. Peyman, Sun City, AZ 35/15 (2013.01); A61K 2035/124 (2013.01) (21) Appl. No.: 15/143,981 (57) ABSTRACT (22) Filed: May 2, 2016 A method of therapy for a tumor or other pathology by administering a combination of thermotherapy and immu Related U.S. Application Data notherapy optionally combined with gene delivery. The combination therapy beneficially treats the tumor and pre (63) Continuation-in-part of application No. 14/976,321, vents tumor recurrence, either locally or at a different site, by filed on Dec. 21, 2015. boosting the patient’s immune response both at the time or original therapy and/or for later therapy. With respect to Publication Classification gene delivery, the inventive method may be used in cancer (51) Int. Cl. therapy, but is not limited to such use; it will be appreciated A 6LX 9/50 (2006.01) that the inventive method may be used for gene delivery in A6 IK 35/5 (2006.01) general. The controlled and precise application of thermal A6 IK 4.8/00 (2006.01) energy enhances gene transfer to any cell, whether the cell A 6LX 35/7 (2006.01) is a neoplastic cell, a pre-neoplastic cell, or a normal cell.
    [Show full text]
  • Molecular Interactions of Erbb Receptor Tyrosine Kinases and Integrin Β1: Implications for Tumor Therapy
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D.) Molecular interactions of ErbB receptor tyrosine kinases and integrin β1: implications for tumor therapy by Miklós Petrás Supervisor: Prof. János Szöllősi, D.Sc. Álmos Klekner, Ph.D. UNIVERSITY OF DEBRECEN DOCTORAL SCHOOL OF MOLECULAR MEDICINE DEBRECEN, 2013 Molecular interactions of ErbB receptor tyrosine kinases and integrin β1: implications for tumor therapy Miklós Petrás Ph.D. Thesis UNIVERSITY OF DEBRECEN MEDICAL AND HEALTH SCIENCE CENTER DEPARTMENT OF BIOPHYSICS AND CELL BIOLOGY DEPARTMENT OF NEUROSURGERY DEBRECEN, 2013. 2 Ph. D. thesis data Title: Molecular interactions of ErbB receptor tyrosine kinases and integrin β1: implications for tumor therapy Author: Miklós Petrás, M.D. Supervisors: Prof. János Szöllősi, D.Sc. Álmos Klekner, M.D., Ph.D. Doctoral School: "Molecular Medicine" at the University of Debrecen Head of Doctoral School: Prof. László Csernoch, D.Sc. Doctoral examination committee: Chairman: Prof. László Csernoch, D.Sc. Members: Prof. Ferenc Erdődi, D.Sc. Beáta Bugyi, Ph.D. Place and time of doctoral examination: Debrecen, 3 May 2013 Doctoral thesis committee: Chairman: Prof. László Csernoch, D.Sc. Reviewers: Prof. István Jóna, D.Sc. József Tóvári, Ph.D. Members: Prof. Ferenc Erdődi, D.Sc. Beáta Bugyi, Ph.D. Place and time of thesis defence: Debrecen, 3 May 2013 Key words: ErbB (EGFR), integrin, tyrosine kinase, FRET, trastuzumab, PI-3K/Akt, breast cancer, astrocytoma (glioblastoma) 3 "Because strait is the gate, and narrow is the way, which leadeth unto life, and few there be that find it." Matthew 7:14 Bible - King James Version, 1611 Oxford King James Bible (Authorized Version), 1769 4 CONTENTS ABBREVIATIONS ....................................................................................................................................
    [Show full text]
  • University of Groningen PET Imaging and in Silico Analyses to Support
    University of Groningen PET imaging and in silico analyses to support personalized treatment in oncology Moek, Kirsten DOI: 10.33612/diss.112978295 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Moek, K. (2020). PET imaging and in silico analyses to support personalized treatment in oncology. Rijksuniversiteit Groningen. https://doi.org/10.33612/diss.112978295 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 30-09-2021 06 The antibody-drug conjugate target landscape across a broad range of tumor types Kirsten L.
    [Show full text]
  • Review Article Cd44v6-Targeted Imaging of Head and Neck Squamous Cell Carcinoma: Antibody-Based Approaches
    Hindawi Contrast Media & Molecular Imaging Volume 2017, Article ID 2709547, 14 pages https://doi.org/10.1155/2017/2709547 Review Article CD44v6-Targeted Imaging of Head and Neck Squamous Cell Carcinoma: Antibody-Based Approaches Diana Spiegelberg1 and Johan Nilvebrant2 1 Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden 2Division of Protein Technology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden Correspondence should be addressed to Diana Spiegelberg; [email protected] and Johan Nilvebrant; [email protected] Received 24 February 2017; Revised 23 April 2017; Accepted 21 May 2017; Published 20 June 2017 Academic Editor: Shasha Li Copyright © 2017 Diana Spiegelberg and Johan Nilvebrant. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Head and neck squamous cell carcinoma (HNSCC) is a common and severe cancer with low survival rate in advanced stages. Noninvasive imaging of prognostic and therapeutic biomarkers could provide valuable information for planning and monitoring of the different therapy options. Thus, there is a major interest in development of new tracers towards cancer-specific molecular targets to improve diagnostic imaging and treatment. CD44v6, an oncogenic variant of the cell surface molecule CD44, is a promising molecular target since it exhibits a unique expression pattern in HNSCC and is associated with drug- and radio-resistance. In this review we summarize results from preclinical and clinical investigations of radiolabeled anti-CD44v6 antibody-based tracers: full-length antibodies, Fab, F(ab )2 fragments, and scFvs with particular focus on the engineering of various antibody formats and choice of radiolabel for the use as molecular imaging agents in HNSCC.
    [Show full text]
  • Ep 3178848 A1
    (19) TZZ¥__T (11) EP 3 178 848 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 14.06.2017 Bulletin 2017/24 C07K 16/28 (2006.01) A61K 39/395 (2006.01) C07K 16/30 (2006.01) (21) Application number: 15198715.3 (22) Date of filing: 09.12.2015 (84) Designated Contracting States: (72) Inventor: The designation of the inventor has not AL AT BE BG CH CY CZ DE DK EE ES FI FR GB yet been filed GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (74) Representative: Cueni, Leah Noëmi et al Designated Extension States: F. Hoffmann-La Roche AG BA ME Patent Department Designated Validation States: Grenzacherstrasse 124 MA MD 4070 Basel (CH) (71) Applicant: F. Hoffmann-La Roche AG 4070 Basel (CH) (54) TYPE II ANTI-CD20 ANTIBODY FOR REDUCING FORMATION OF ANTI-DRUG ANTIBODIES (57) The present invention relates to methods of treating a disease, and methods for reduction of the formation of anti-drug antibodies (ADAs) in response to the administration of a therapeutic agent comprising administration of a Type II anti-CD20 antibody, e.g. obinutuzumab, to the subject prior to administration of the therapeutic agent. EP 3 178 848 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 178 848 A1 Description Field of the Invention 5 [0001] The present invention relates to methods of treating a disease, and methods for reduction of the formation of anti-drug antibodies (ADAs) in response to the administration of a therapeutic agent.
    [Show full text]
  • I Regulations
    23.2.2007 EN Official Journal of the European Union L 56/1 I (Acts adopted under the EC Treaty/Euratom Treaty whose publication is obligatory) REGULATIONS COUNCIL REGULATION (EC) No 129/2007 of 12 February 2007 providing for duty-free treatment for specified pharmaceutical active ingredients bearing an ‘international non-proprietary name’ (INN) from the World Health Organisation and specified products used for the manufacture of finished pharmaceuticals and amending Annex I to Regulation (EEC) No 2658/87 THE COUNCIL OF THE EUROPEAN UNION, (4) In the course of three such reviews it was concluded that a certain number of additional INNs and intermediates used for production and manufacture of finished pharmaceu- ticals should be granted duty-free treatment, that certain of Having regard to the Treaty establishing the European Commu- these intermediates should be transferred to the list of INNs, nity, and in particular Article 133 thereof, and that the list of specified prefixes and suffixes for salts, esters or hydrates of INNs should be expanded. Having regard to the proposal from the Commission, (5) Council Regulation (EEC) No 2658/87 of 23 July 1987 on the tariff and statistical nomenclature and on the Common Customs Tariff (1) established the Combined Nomenclature Whereas: (CN) and set out the conventional duty rates of the Common Customs Tariff. (1) In the course of the Uruguay Round negotiations, the Community and a number of countries agreed that duty- (6) Regulation (EEC) No 2658/87 should therefore be amended free treatment should be granted to pharmaceutical accordingly, products falling within the Harmonised System (HS) Chapter 30 and HS headings 2936, 2937, 2939 and 2941 as well as to designated pharmaceutical active HAS ADOPTED THIS REGULATION: ingredients bearing an ‘international non-proprietary name’ (INN) from the World Health Organisation, specified salts, esters or hydrates of such INNs, and designated inter- Article 1 mediates used for the production and manufacture of finished products.
    [Show full text]
  • (INN) for Biological and Biotechnological Substances
    INN Working Document 05.179 Update 2013 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) INN Working Document 05.179 Distr.: GENERAL ENGLISH ONLY 2013 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) International Nonproprietary Names (INN) Programme Technologies Standards and Norms (TSN) Regulation of Medicines and other Health Technologies (RHT) Essential Medicines and Health Products (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) © World Health Organization 2013 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int ) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected] ). Requests for permission to reproduce or translate WHO publications – whether for sale or for non-commercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html ). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]