Limnology: the Science Behind Lake Management

Total Page:16

File Type:pdf, Size:1020Kb

Limnology: the Science Behind Lake Management Limnology: The Science Behind Lake Management -·-~-- Ken Wagner imnology is the study of fresh Experimental limnology gained often learn more about what controls waters-basically the freshwater popularity after World War II, with the lake condition, and can fine-tune our L equivalent of oceanography. It is work of G.E. Hutchinson and management methods. When we extend also the basis for colleagues at Yale often cited as leading descriptive and experimental limnology informed lake the way. Many, many other scientists to many lakes and watersheds, we gain management, and is have contributed to this effort, and information that helps us adapt our the foundation upon continue to do so today. management methods for varying which many of our Conscious lake and watershed application. Sound limnology supports management management is largely a post-1960 sound management. techniques have effort, although earlier examples So what are some of the been built. While a certainly exist. Lake management limnological developments that have lot of lake and accelerated greatly in the late 1970s shaped lake management over the last watershed with federal support and annual 30 years? Here I will examine a few management may gatherings of limnologists and lake advances that have made a difference in seem like common sense, many of the managers. NALMS was formed at the the way we manage lakes and principles we assume to be long-held 1980 gathering of these committed watersheds. truths are really rather recent scientists and practitioners, and has developments. Limnology is still a expanded the circle to include industrial Limiting Nutrient Concept young science, but it has already yielded suppliers and lake enthusiasts. As we great advances in water resource move forward, our zeal for lake Leibig's "Law of the Minimum" management. management should be tempered with goes way back, and basically states that Limnology can be divided into two recognition of the limits of our it is the element that is in shortest broad categories of effort: descriptive limnological knowledge and supply relative to the needs of the plant and experimentaL Descriptive appreciation for the efforts that have that will limit growth. Our limnology is what we do in the first part laid the foundation for our successes. understanding of the importance of of a typical diagnostic/feasibility study, When we complement management phosphorus as a limiting nutrient in in which we inventory the physical, with more limnological investigation aquatic systems is only about 50 years chemical, and biological components of (e.g., post-treatment monitoring), we old. Richard Vollenweider publicized a lake and its watershed and assess the role of phosphorus in the late 1960s relationships among these component Birge and Juday sampling in Lake Mendota, and 1970s, and I felt honored to discuss parts of the ecosystem. If we can Wisconsin. (State Historical Society of Wisconsin). his work with him over a cognac at the discern trends and elucidate causes and natal NALMS conference in 1980. He effects, these often provide keys to told me that it was mainly a process of understanding what controls overall elimination, based on the descriptive lake condition. Understanding can work of many researchers and the facilitate protection of desired experimental work of others; not a conditions and manipulations that lead stroke of brilliant thinking, but the to improved conditions. Manipulations summation of a lot of hard work. Dave are experimental limnology, and Schindler, who has spoken on his whole manipJ!lations on a whole lake scale lake fertilization experiments ~ ~eyeral_ constitute lake management.- ---- NALMS symposia, has repeatedly Descriptive limnology developed emphasized the "hard work" side of trem~r1dously between the first and limnologi"Cal_dis~overies._ Other second World Wars, with the pioneering nutrients and factors such as light and work of Edward Birge and Chancey temperature can play a major role in Juday in Wisconsin, a stronghold of lake productivity, but phosphorus has limnological research to this day. 24 SJJtlng21J01 • WltlJNE become the successful focus of use today, and have been supplemented Canadian base have provided us with a management to lower algal biomass. by additional models to cover the range glimpse of the variability of conditions of cases encountered (e.g., nitrogen over time in many lakes and led to the Internal Phosphorus Cycling limitation, anoxia, biotic influences). development of predictive indicators of Development of regional values for water quality based mainly on plankton The failure of seemingly model variables has made models more remains. The major impact of land appropriate watershed management to reliable for local practical application. clearing on lake condition in the 1800s lead to improved lake conditiol)s has Coupled with predictive models of algal has been documented, and recovery of often been traced to high internal growth, water clarity, and oxygen lakes after reforestation has also be loading of phosphorus. Just how deficit, we can now estimate lake observed. Some lakes have been shown phosphorus is cycled and especially the condition in response to potential to have been eutrophic since long before variability in the upward movement of actions in the watershed. NALMS white settlers arrived. Recent work by phosphorus from sediment to surface members such as Dan Canfield and the NALMS member Pete Siver in waters has been the subject of a long late Rob Peters have been instrumental Connecticut has documented the series of investigations. We first learned in this effort. Quantification of correlation between urbanization of that low oxygen promotes the release of uncertainty (how likely are we to be watersheds and declining lake water phosphorus, iron and other substances right or wrong with our predictions, and quality over the last 50 years. from the sediment, and that under by how much?) has facilitated better strongly anoxic ("reducing") conditions technical and economic planning. Trophic Cascade sulfide can be released. Then the importance of iron in controlling Rooted Plant Ecology Our understanding of the phosphorus transport and availability relationship between phosphorus and was ascertained, and later the critical Plants have many strategies for algal biomass has always been role of sulfide in binding iron and surviving in the aquatic environment, complicated and often confounded by allowing available phosphorus transport and understanding their diverse biological interactions that introduce into the upper waters was determined. ecological "tricks" is essential to significant variation into that Recently, the means to evaluate planning a successful plant management relationship. Research that began in the sediment phosphorus release potential program. The knowledge that most late 1970s and progressed through the as a function of fractionation among rooted plants get their nutrition largely 1980s addressed this issue, and I bound forms of phosphorus was from the sediment is only about 20 enjoyed working on this topic as part of developed by a team including former years old, and we continue to study the my Ph.D. research as part of the team at NALMS president and lirnnologist reproductive strategies of many species, the Cornell Biological Field Station. In Gene Welch. We now understand the especially invasive forms. Much of this 1975 Joe Shapiro suggested causal agents for high internal work has been conducted by researchers biomanipulation as a means of phosphorus loading, and are applying it at the Army Corps of Engineers' achieving management goals without to gain better control of algal blooms Waterways Experiment Station and by major physical or chemical alteration of through aluminum additions and NALMS members such as Stan Nichols, lakes, and many researchers took up the aeration systems. Sandy Engel, and John Barko. The challenge. NALMS members Steve development of herbicides that target Carpenter and Jim Kitchell greatly Prediction of Lake Response certain species while preserving others advanced our knowledge in this area is a function of understanding through whole lake experiments in the Once it was determined that physiological differences among upper Midwest. phosphorus loading controlled lake species, and the advancement of Research in a number of locations productivity in many cases, multiple biological methods of plant control like illustrated that if enough large-bodied teams of lirnnologists initiated efforts to the milfoil weevil has been dependent grazing zooplankton are present, algal model the response of lakes to upon both descriptive and experimental biomass may not increase to the extent phosphorus inputs. These efforts were limnology. predicted by simple phosphorus­ based largely on standard engineering chlorophyll equations. When small fish representations of lakes calibrated with Paleolimnology that eat zooplankton become abundant, large quantities of data for groups of algal biomass may increase beyond the lakes. These "empirical" models were It is a common mistake to assume expected average based on phosphorus generated in the mid- to late 1970s by that lakes follow a unidirectional path at and other chemical features. And if Riehard Velleaweider and-NALMS -~y pace fromlew-to high fertility, large predatory fishcincre~poiflto-~ ~ members like Roger Bachmann, Jack and paleolimnology has aided our where they control the populations of Jones, Peter Dillon, Ken Reckhow, and understanding of historic
Recommended publications
  • A Comparison of Global Estimates of Marine Primary Production from Ocean Color
    ARTICLE IN PRESS Deep-Sea Research II 53 (2006) 741–770 www.elsevier.com/locate/dsr2 A comparison of global estimates of marine primary production from ocean color Mary-Elena Carra,Ã, Marjorie A.M. Friedrichsb,bb, Marjorie Schmeltza, Maki Noguchi Aitac, David Antoined, Kevin R. Arrigoe, Ichio Asanumaf, Olivier Aumontg, Richard Barberh, Michael Behrenfeldi, Robert Bidigarej, Erik T. Buitenhuisk, Janet Campbelll, Aurea Ciottim, Heidi Dierssenn, Mark Dowello, John Dunnep, Wayne Esaiasq, Bernard Gentilid, Watson Greggq, Steve Groomr, Nicolas Hoepffnero, Joji Ishizakas, Takahiko Kamedat, Corinne Le Que´re´k,u, Steven Lohrenzv, John Marraw, Fre´de´ric Me´lino, Keith Moorex, Andre´Moreld, Tasha E. Reddye, John Ryany, Michele Scardiz, Tim Smythr, Kevin Turpieq, Gavin Tilstoner, Kirk Watersaa, Yasuhiro Yamanakac aJet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91101-8099, USA bCenter for Coastal Physical Oceanography, Old Dominion University, Crittenton Hall, 768 West 52nd Street, Norfolk, VA 23529, USA cEcosystem Change Research Program, Frontier Research Center for Global Change, 3173-25,Showa-machi, Yokohama 236-0001, Japan dLaboratoire d’Oce´anographie de Villefranche, 06238, Villefranche sur Mer, France eDepartment of Geophysics, Stanford University, Stanford, CA 94305-2215, USA fTokyo University of Information Sciences 1200-1, Yato, Wakaba, Chiba 265-8501, Japan gLaboratoire d’Oce´anographie Dynamique et de Climatologie, Univ Paris 06, MNHN, IRD,CNRS, Paris F-75252 05, France hDuke University
    [Show full text]
  • Moe Pond Limnology and Fisii Population Biology: an Ecosystem Approach
    MOE POND LIMNOLOGY AND FISII POPULATION BIOLOGY: AN ECOSYSTEM APPROACH C. Mead McCoy, C. P.Madenjian, J. V. Adall1s, W. N. I-Iannan, D. M. Warner, M. F. Albright, and L. P. Sohacki BIOLOGICAL FIELD STArrION COOPERSTOWN, NEW YORK Occasional Paper No. 33 January 2000 STATE UNIVERSITY COLLEGE AT ONEONTA ACKNOWLEDGMENTS I wish to express my gratitude to the members of my graduate committee: Willard Harman, Leonard Sohacki and Bruce Dayton for their comments in the preparation of this manuscript; and for the patience and understanding they exhibited w~lile I was their student. ·1 want to also thank Matthew Albright for his skills in quantitative analyses of total phosphorous and nitrite/nitrate-N conducted on water samples collected from Moe Pond during this study. I thank David Ramsey for his friendship and assistance in discussing chlorophyll a methodology. To all the SUNY Oneonta BFS interns who lent-a-hand during the Moe Pond field work of 1994 and 1995, I thank you for your efforts and trust that the spine wounds suffered were not in vain. To all those at USGS Great Lakes Science Center who supported my efforts through encouragement and facilities - Jerrine Nichols, Douglas Wilcox, Bruce Manny, James Hickey and Nancy Milton, I thank all of you. Also to Donald Schloesser, with whom I share an office, I would like to thank you for your many helpful suggestions concerning the estimation of primary production in aquatic systems. In particular, I wish to express my appreciation to Charles Madenjian and Jean Adams for their combined quantitative prowess, insight and direction in data analyses and their friendship.
    [Show full text]
  • In This Issue Sufficient Time As Well for Them to Respond
    www.limnology.org Volume 59 - December 2011 Editorial There is encouraging news from some of the SIL working groups. Plankton Ecology Some delay has again occurred in preparing Group (PEG) lately rejuvenated its activities While care is taken to accurately report the SIL newsletter and putting it on internet. by arranging a meeting in Amsterdam in April information, SILnews is not responsible The reasons are not quite the same as for 2010, after years of slumber and stillness. The for information and/or advertisements the delay in bringing out the summer 2011 published herein and does not endorse, Proceedings Special of the Amsterdam meet- newsletter. This time, more than anything approve or recommend products, ing should appear by early spring as a Special programs or opinions expressed. else, our WG chairmen have rather disap- Issue of Freshwater Biology. Furthermore, pointed by not providing me adequate and the PEG has announced in this newsletter its timely feedback about their respective group next meeting in Mexico City (12-18 February activities. I had requested them and given 2012: see the Announcement). In the present In This Issue sufficient time as well for them to respond. Issue, there is also a progress report from I even sent the WG chairmen reminders the SIL WG Ecohydrology. Moreover, the through our secretariat (Ms. Denise Johnson youngest of the SIL working groups, Winter EDITOR’S FOREWORD ..............1-2 sent them all emails). As newsletter Editor, I Limnology, has announced its third meeting always feel that it is essential to provide timely REPORTS ....................................2-11 in as many years of its existence.
    [Show full text]
  • THE OFFICIAL Magazine of the OCEANOGRAPHY SOCIETY
    OceThe Officiala MaganZineog of the Oceanographyra Spocietyhy CITATION Leichter, J.J., A.L. Alldredge, G. Bernardi, A.J. Brooks, C.A. Carlson, R.C. Carpenter, P.J. Edmunds, M.R. Fewings, K.M. Hanson, J.L. Hench, and others. 2013. Biological and physical interactions on a tropical island coral reef: Transport and retention processes on Moorea, French Polynesia. Oceanography 26(3):52–63, http://dx.doi.org/ 10.5670/oceanog.2013.45. DOI http://dx.doi.org/10.5670/oceanog.2013.45 COPYRIGHT This article has been published inOceanography , Volume 26, Number 3, a quarterly journal of The Oceanography Society. Copyright 2013 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. doWnloaded from http://WWW.tos.org/oceanography SPECIAL IssUE ON CoASTAL LonG TERM ECOLOGICAL RESEARCH BIOLOGICAL AND PHYSICAL INTERACTIONS ON A TROPICAL ISLAND CORAL REEF TRANSPORT AND RETENTION PROCESSES ON MOOREA, FRENCH POLYNESIA BY JAMES J. LEICHTER, ALICE L. ALLDREDGE, GIACOMO BERNARDI, AnDREW J. BRooKS, CRAIG A. CARLson, RobERT C. CARPENTER, PETER J. EDMUNDS, MELANIE R. FEWINGS, KATHARINE M. HAnson, JAMES L. HENCH, SALLY J. HoLBRooK, CRAIG E. NELson, RUssELL J. SCHMITT, RobERT J. ToonEN, LIBE WASHBURN, AND ALEX S.J. WYATT 52 Oceanography | Vol. 26, No. 3 AbsTRACT.
    [Show full text]
  • NABS Name & J-NABS Title Town Hall Meeting
    NABS Name & J‐NABS Title Town Hall Meeting 0 total selected sites, streams, stream habitats, river, diversity freshwater, species, host Taxa species, freshwater, fish assemblages, taxa, sites species, using, data Assemblage Web of Science sites, streams, water benthic, nabs, studies J NABS Freshwater ecological, ecosystems, nabs Fish water, stream, flow 2005‐2010 species, effects, benthic aquatic, mass, water stream, streams, water 422 articles Delta delta, consumers, values Stream Consumers food, sources, streams biomass, benthic, nutrient Flow Values leaf, streams, stream streams, stream, rates Food Semantic analysis Stream fine, particles, size Biomass Nutrients organic, matter, stream Streams Benthic species Nutrients Analysis by Dr Deana Pennington Images from IN‐SPIRE copyright 2005 Battelle Memorial Institute 1.Where do you see the research overlap between society members? 2.In what ways do your current research interests diverge from that area of overlap? 3.What are the key topics that you think will be important in the future that are not currently representtd?ed? Overlapping terms: Diversity terms: Future terms (unique): Benthic Community ecology Global Streams Ecosystem processes Earth and Life Sciences Basic/Applied Taxonomy Asia Aquatic Streams, Lakes, Wetlands Water scarcity Integrative Geosciences Problem solving Interdisciplinary Communication International Freshwater GIS Sustainablbility Science Rivers Management Policy‐relevant Science Watershed Environmental Science Global Natural History/Organismal Climate Change Ecology
    [Show full text]
  • Afm 305 Limnology 2
    COURSE GUIDE AFM 305 LIMNOLOGY Course Team Dr. Flora E. Olaifa (Course Writer) – Dept. of Aquaculture and Fisheries Management, University of Ibadan Dr. E. O. Ajao & Mrs. R. M. Bashir (Course Editors) – NOUN Prof. G. E. Jokthan (Programme Leader) – NOUN Mrs. R. M. Bashir (Course Coordinator) – NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA ACC 318 COURSE GUIDE National Open University of Nigeria Headquarters University Village Plot 91, Cadastral Zone, Nnamdi Azikiwe Express way Jabi, Abuja Lagos Office 14/16 Ahmadu Bello Way Victoria Island, Lagos e-mail: [email protected] website: www.nou.edu.ng Published by National Open University of Nigeria Printed 2016 ISBN: 978-058-590-X All Rights Reserved ii AFM 305 COURSE GUIDE CONTENTS PAGE What you will Learn in this Course...................................... iv Course Aim..................................................................... ......... v Course Objectives................................................................. v Course Description.............................................................. vi Course Materials................................................................. vii Study Units......................................................................... viii Set Textbooks..................................................................... ix Assignment File…………………………………………….. ix Course Assessment............................................................. ix Tutor-Marked Assignment................................................. x Final Examination and Grading........................................
    [Show full text]
  • Limnology of Ponds in the Kissimmee Prairie
    Limnology of Ponds in the Kissimmee Prairie Tim Kozusko Environmental Management, United Space Alliance, 8550 Astronaut Blvd., USK-T28, Cape Canaveral, FL 32920 E-mail: [email protected] John A. Osborne UCF Department of Biology, 4000 Central Florida Blvd., Orlando, FL 32816-2368 Paul Gray Audubon of Florida, 100 Riverwoods Circle, FL 33857 ABSTRACT We studied the physicochemical features of three ponds in the Kissimmee Prairie, Okeechobee County, Flor- ida, between January and August 1997, and May and August 1998. Data collected included pH, specific con- ductance, water temperature and depth, turbidity, water color, alkalinity, tannin, dissolved oxygen, and concentrations of nitrogen and phosphate. We found the ponds to be acidic, poorly buffered, moderate to high in water color, and low in mineralized nitrogen and phosphorus. There were statistically significant differences in water chemistry between the inner zones of ponds and the outermost wet prairie zones. Water in the wet prairie zones had significantly lower pH, higher specific conductivity, and greater water color and tannin con- centrations than did water in the inner zones of ponds. INTRODUCTION fasciculatum Lam. with Utricularia, Eleocharis, Carex, Ra- nunculus, and Rhynchospora species. In the wet prairie The National Audubon Society’s Ordway-Whittell transitional zone between the pond and the wiregrass/ Kissimmee Prairie Preserve (KP), now part of the Kissim- palmetto prairie, the vegetation community is principally mee Prairie Preserve State Park, managed by the Florida comprised of Drosera sp., Sphagnum sp., Eriocaulon spp., Department of Environmental Protection, is located in Rhynchospora, Aristida stricta var. beyrichiana (Trin. & Ru- north-central Okeechobee County, Florida.
    [Show full text]
  • A Primer on Limnology, Second Edition
    BIOLOGICAL PHYSICAL lake zones formation food webs variability primary producers light chlorophyll density stratification algal succession watersheds consumers and decomposers CHEMICAL general lake chemistry trophic status eutrophication dissolved oxygen nutrients ecoregions biological differences The following overview is taken from LAKE ECOLOGY OVERVIEW (Chapter 1, Horne, A.J. and C.R. Goldman. 1994. Limnology. 2nd edition. McGraw-Hill Co., New York, New York, USA.) Limnology is the study of fresh or saline waters contained within continental boundaries. Limnology and the closely related science of oceanography together cover all aquatic ecosystems. Although many limnologists are freshwater ecologists, physical, chemical, and engineering limnologists all participate in this branch of science. Limnology covers lakes, ponds, reservoirs, streams, rivers, wetlands, and estuaries, while oceanography covers the open sea. Limnology evolved into a distinct science only in the past two centuries, when improvements in microscopes, the invention of the silk plankton net, and improvements in the thermometer combined to show that lakes are complex ecological systems with distinct structures. Today, limnology plays a major role in water use and distribution as well as in wildlife habitat protection. Limnologists work on lake and reservoir management, water pollution control, and stream and river protection, artificial wetland construction, and fish and wildlife enhancement. An important goal of education in limnology is to increase the number of people who, although not full-time limnologists, can understand and apply its general concepts to a broad range of related disciplines. A primary goal of Water on the Web is to use these beautiful aquatic ecosystems to assist in the teaching of core physical, chemical, biological, and mathematical principles, as well as modern computer technology, while also improving our students' general understanding of water - the most fundamental substance necessary for sustaining life on our planet.
    [Show full text]
  • The Drivers and Patterns of Total Phosphorus Across Lake, Stream, and Wetland Ecosystems at the National Scale
    The drivers and patterns of total phosphorus across lake, stream, and wetland ecosystems at the national scale Katelyn King Michigan State University (Co-authors: Kendra Cheruvelil and Amina Pollard (EPA)) lake + wetland + stream 2 publications! lake + wetland wetland + stream lake + stream wetland lake stream 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 Publications lakes wetlands streams Integrated Freshwater Landscape Lakes Wetlands Streams Lake Michigan Dataset: US EPA National Aquatic Resource Survey Lake assessment 2012 Wetland assessment 2011 River/Stream assessment 2008/2009 https://www.epa.gov/national-aquatic-resource-surveys/nrsa Dataset: Total Phosphorus (TP) Total Dataset: (ln) Total Phosphorus lakes wetlands streams Dataset: Ecological context Waterbody scale: Watershed scale: Ecoregion: • freshwater type • mean elevation • (lake, wetland, stream) • land use/cover • depth • nitrogen deposition • % riparian vegetation • road density • lat/lon of site • population density • precipitation at the site • watershed area* • temperature at the site Ecoregion membership consisting of similar land use, topography, climate, and natural vegetation *no wetland watersheds, approximated with 1000m buffer Q1: What are the drivers of total phosphorus across lakes, wetlands, and streams at the macroscale? lakes wetlands streams Hypothesis: freshwater type will be important in predicting TP • Depth • lentic vs. lotic • water residence time • form/shape Q1 Method - drivers – Random Forest Subset of sample splitting value splitting value Node Streams splitting value splitting value Lakes Wetlands Results - important drivers of TP • watershed % forest • watershed % agriculture • longitude • ecoregion membership Percent variance explained = 50.0 Total Phosphorus Forest lakes wetlands streams Total Phosphorus Agriculture lakes wetlands streams Total Phosphorus Agriculture lakes wetlands streams Spatial Patterns Mean Annual Temperature Lapierre et al.
    [Show full text]
  • Freshwater and Marine Science, Ph.D. 1
    Freshwater and Marine Science, Ph.D. 1 FRESHWATER AND MARINE SCIENCE, PH.D. The Freshwater and Marine Sciences (FMS) Graduate Program offers curricula leading to the master of science and doctor of philosophy degrees or a doctoral minor in freshwater and marine sciences. Interdisciplinary in nature, each individualized program of study provides graduate training in aquatic sciences and integrates related sciences. Students enrolled in the program are advised by faculty in several departments in the College of Letters & Science, the College of Engineering, the College of Agricultural and Life Sciences, and the School of Veterinary Medicine. UW–Madison is recognized worldwide as a leader in the field of limnology and aquatic ecology. The FMS Program began in 1962 as the oceanography and limnology program. The program combines research and teaching from several fields and departments to develop a greater understanding of aquatic systems—their origins, inhabitants, phenomena, and impact on human life. The FMS Program emphasizes limnological studies and is based on the premise that limnology and marine sciences are integrated fields requiring a broad base in the fundamental disciplines. Students may specialize in limnology or in marine sciences, or they may focus on processes common to both environments. Study plans are individually tailored for each student by a guidance and evaluation committee composed of at least five faculty members including the major professor. The committee guides the student in developing study plans, research, and career goals. All Ph.D. candidates are expected to obtain a broad background in aquatic sciences and depth in their research area. The background may include biology, chemistry, data science, geology, physics, or other related fields.
    [Show full text]
  • Ecosystem Function and Services Provided by the Deep Sea
    Ecosystem function and services provided by the deep sea Thurber, A. R., Sweetman, A. K., Narayanaswamy, B. E., Jones, D. O. B., Ingels, J., & Hansman, R. L. (2014). Ecosystem function and services provided by the deep sea. Biogeosciences, 11(14), 3941-3963. doi:10.5194/bg-11-3941-2014 10.5194/bg-11-3941-2014 Copernicus Publications Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Biogeosciences, 11, 3941–3963, 2014 www.biogeosciences.net/11/3941/2014/ doi:10.5194/bg-11-3941-2014 © Author(s) 2014. CC Attribution 3.0 License. Ecosystem function and services provided by the deep sea A. R. Thurber1, A. K. Sweetman2, B. E. Narayanaswamy3, D. O. B. Jones4, J. Ingels5, and R. L. Hansman6 1College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA 2International Research Institute of Stavanger, Randaberg, Norway 3Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, UK 4National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK 5Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK 6Department of Limnology and Oceanography, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria Correspondence to: A. R. Thurber ([email protected]) Received: 4 November 2013 – Published in Biogeosciences Discuss.: 25 November 2013 Revised: 19 June 2014 – Accepted: 19 June 2014 – Published: 29 July 2014 Abstract. The deep sea is often viewed as a vast, dark, re- however, the same traits that differentiate it from terrestrial mote, and inhospitable environment, yet the deep ocean and or shallow marine systems also result in a greater need for seafloor are crucial to our lives through the services that integrated spatial and temporal understanding as it experi- they provide.
    [Show full text]
  • Macroalgae (Seaweeds)
    Published July 2008 Environmental Status: Macroalgae (Seaweeds) © Commonwealth of Australia 2008 ISBN 1 876945 34 6 Published July 2008 by the Great Barrier Reef Marine Park Authority This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Great Barrier Reef Marine Park Authority. Requests and inquiries concerning reproduction and rights should be addressed to the Director, Science, Technology and Information Group, Great Barrier Reef Marine Park Authority, PO Box 1379, Townsville, QLD 4810. The opinions expressed in this document are not necessarily those of the Great Barrier Reef Marine Park Authority. Accuracy in calculations, figures, tables, names, quotations, references etc. is the complete responsibility of the authors. National Library of Australia Cataloguing-in-Publication data: Bibliography. ISBN 1 876945 34 6 1. Conservation of natural resources – Queensland – Great Barrier Reef. 2. Marine parks and reserves – Queensland – Great Barrier Reef. 3. Environmental management – Queensland – Great Barrier Reef. 4. Great Barrier Reef (Qld). I. Great Barrier Reef Marine Park Authority 551.42409943 Chapter name: Macroalgae (Seaweeds) Section: Environmental Status Last updated: July 2008 Primary Author: Guillermo Diaz-Pulido and Laurence J. McCook This webpage should be referenced as: Diaz-Pulido, G. and McCook, L. July 2008, ‘Macroalgae (Seaweeds)’ in Chin. A, (ed) The State of the Great Barrier Reef On-line, Great Barrier Reef Marine Park Authority, Townsville. Viewed on (enter date viewed), http://www.gbrmpa.gov.au/corp_site/info_services/publications/sotr/downloads/SORR_Macr oalgae.pdf State of the Reef Report Environmental Status of the Great Barrier Reef: Macroalgae (Seaweeds) Report to the Great Barrier Reef Marine Park Authority by Guillermo Diaz-Pulido (1,2,5) and Laurence J.
    [Show full text]