Practical Phytochemistry

Total Page:16

File Type:pdf, Size:1020Kb

Practical Phytochemistry practical phytochemistry The study of herbal constituents has been part of the herbalist’s repertoire for a long time – as “chemistry” since 1661, and as alchemy for long before that. The world of modern phytochemistry may seem intimidating or unnecessarily abstract, but it can also be a rich source of information that can guide our work as practitioners and medicine-makers. We can look at constituents in a variety of ways: focusing on their sensory or organoleptic qualities, considering their contributions to the energetic natures of the herbs in which they’re found, and exploring questions of solubility & compatibility in remedies. By getting to know our herbs from this perspective – while always recognizing the variability, synergy, and individuality inherent in herbal medicines – we can become better herbalists. phytochemistry on the macro scale Year after year, study after study, the evidence mounts up: humans just plain need to be involved with lots of plants in lots of ways, and if you can't get your plant time by going out into the forest, you can get it by drinking a lot of tea. constituents from the plant’s point of view Plants make two broad classes of constituents. First are the primary metabolites, which are necessary to sustain the life of the plant. These include proteins (including enzymes), lipids (fats), carbohydrates of various types – all serving functions analogous to those they perform in the human body – as well as chlorophyll, which is necessary for photosynthesis. Then there are the secondary metabolites which, while not strictly necessary to sustain life, perform a variety of functions within the plant which increase its survivability and adaptability to changing situations. This is where the interesting phytochemical constituents of our herbs come into play. We might wonder, why is it these plant chemicals are so active in animals and humans? It comes down to common ancestry. On the small scale, all the various chemicals plants produce are derived from the original product of photosynthesis, glucose – which is known in mammals as blood sugar. The structure of chlorophyll itself is extremely similar to hemoglobin, only with a magnesium atom in place of the iron – one more indicator of the similarities between people and plants. On the large scale, there’s the common ancestry of humans and plants, as well as our long history of co-evolution. Basically, these compounds are active in both plants and people because, when you get right down to it, we’re not really that different. Indeed, the role these constituents play in plants is usually analogous to the role they play in the human body. It’s often instructive to ask, what does this constituent do from the plant’s point of view, and how does that compare to its effects in humans? Carotenoids, for example, protect the plant from oxidative damage due to excessive exposure to UV light, and can convey this protection to us if we eat a lot of them. Tannins fend off microbial infections in a plant’s leaves and roots, and we can use them in a first aid application to prevent infection in a wound. Alkaloids, including caffeine, both fight microbes and discourage herbivores from eating a plant; in humans, though, their effects can be much more varied. It’s not always a one-to-one correlation. CommonWealth Center for Holistic Herbalism commonwealthherbs.com 1 practical phytochemistry forest bathing Another part of “being involved with lots of plants in lots of ways” requires us to consider the effects of "forest bathing", the act of going out into natural environments and deriving health benefits therefrom. This practice has been found to reduce the physiological effects of stress, improve immune function, lower blood pressure, and much more. A variety of contibuting factors seem to be at play, including the mere sight of natural colors and shapes – the field of varied greens and browns, the absence of hard straight human- shaped edges – but in particular, the variety of aromatic compounds you're exposed to in a wild environment. Plants are communicating constantly through scents, and when we breathe them in, our bodies respond. (Richard Mandelbaum framed exposure to this panoply of wild aromatics as a "macrobiome" in this presentation.) There’s no replacement for real forest time. Still, if we acknowledge the presence of various potent aromatic constituents in our herbs, and then learn how to make a good cup of tea, we can derive many of the same benefits even while we’re city-bound. whoever eats the most vegetables wins We inherited this slogan from Paul Bergner. It’s both a simple reminder that cuts across all forms of dietary dogma, as well as a summation of a variety of insightful observations about the relationship between varied and rich phytochemical intake and healthy outcomes. This helps us to step back a bit, from a limited focus on some specific constituent that has its fifteen minutes of fame (here’s looking at you, curcumin), to see the more general effects plant intake has. A favorite paper on this subject: The Metabolic Plant Feedback Hypothesis: How Plant Secondary Metabolites Nonspecifically Impact Human Health Jurg Gertsch, Planta Med 2016; 82(11/12): 920-929. CommonWealth Center for Holistic Herbalism commonwealthherbs.com 2 practical phytochemistry There are a few interesting points in this article, starting with the main one that low- potency phytochemicals like chlorophyll are more important to human health (specifically when it comes to metabolic and inflammatory illnesses) than the high-potency ones which make herbs medicinal – whoever eats the most vegetables wins again, see? The author also argues that medicinal plant use was actually fairly infrequent among hunter-gatherer groups; that they had little call for it since they were ingesting high amounts of non-starchy plants: "It is tempting to postulate that the lack of bulk phytochemicals once ingested in pre-agriculturist times gradually had to be compensated by spices and herbal remedies in the carbohydrate farming societies to diminish the mismatch of ancient genes and new diets." We might then compare that insight with something like these studies on the health of English people in the Mid-Victorian era, where again, high intake of fresh and wild greens led to surprisingly robust health. This boon was rapidly compromised in the following decades, however, with greater influx of sugar and refined grains, tinned meats, and condensed milk. Processed food, even moreso than early agriculturalists’ starchy diets, is extremely deficient in phytochemistry. In addition, most of our domesticated vegetables have lost a great deal of their nutrient content, due to generations of selective breeding for larger, sweeter varieties. This led to the loss of phytochemicals with bitter or strong flavors, which may please the palate but deprives the body of an ancestral protection. Fortunately, herbs can provide part of the solution to this problem! Take a look at these values (from Pedersen's Nutritional Herbology) for basic mineral content for various herbs: per 100 g (3.5 oz) calcium iron magnesium chromium nettle (Urtica dioica) 2900 mg 4.2 mg 860 mg 390 mcg burdock (Arctium lappa) 733 mg 14.7 mg 537 mg 200 mcg peppermint (Mentha piperita) 1620 mg 6.0 mg 661 mg trace horsetail (Equisetum arvense) 1890 mg 12.3 mg 437 mg 220 mcg comfrey (Symphytum off.) 1800 mg 1.2 mg 70 mg 180 mcg kelp (Fucus vesiculosis) 3040 mg 1.6 mg 867 mg 70 mcg ODI (optimum daily intake) 800 – 1200 mg 10 – 20 mg 400 – 800 mg 200 – 600 mcg Three and a half ounces is a lot of herb, but remember, this is in the context of your entire diet. A quart of herbal tea a day, made with an ounce of these or other herbs blended together, can make up for a lot of deficiencies even in a processed-food-heavy diet. It’s especially good at filling in the gaps created by modern agricultural methods, which tend to reduce the amount of micronutrients available in vegetables – even organic ones. CommonWealth Center for Holistic Herbalism commonwealthherbs.com 3 practical phytochemistry constituent energetics Beyond basic nutrients, herbs carry rich and interesting phytochemistry. These constituents can make gross adjustments or fine adjustments – compare the effects of chlorophyll versus those of caffeine, canadine, or capsaicin. Fine adjustment phytochemistry is one of those things that's thoroughly unreliable until you get your senses directly involved in your decision-making. This drives us necessarily towards organoleptic assessment – the use of your senses as a portable chemistry lab, to make determinations about an herb’s actions, or the potency of an extract – as well as the broader category of what herbalists call "energetics". There's a big starburst of trails to follow there, one interesting tail of which you can catch with an article like this one, where syndrome differentials from Traditional Chinese Medicine are used to improve clinical efficacy. That’s a simple example of a trend we’ve observed – Chinese, Korean, Saudi, Iranian, Russian, and a multitude of other university nationalities have published studies including differentiation based on syndromes according to traditional medicine practices – whether from TCM, Unani, Ayurveda, or others – and in every case we've seen, they've found better results than those observed with conventional diagnostics. This is very clearly the most effective study design for assessing herbal therapeutic efficacies. It makes us wonder: when will we see these kinds of studies in the US? Or at least, acknowledged by the FDA and similar authorities? CommonWealth Center for Holistic Herbalism commonwealthherbs.com 4 practical phytochemistry visual organoleptics: color Some constituents of herbs are detectable by looking at the color of the plant (or of an extract you make from it), because they reflect or absorb certain wavelengths of light.
Recommended publications
  • What Pigments Are in Plants?
    BUILD YOUR FUTURE! ANYANG BEST COMPLETE MACHINERY ENGINEERING CO.,LTD WHAT PIGMENTS ARE IN PLANTS? Pigments Pigments are chemical compounds responsible for color in a range of living substances and in the inorganic world. Pigments absorb some of the light they receive, and so reflect only certain wavelengths of visible light. This makes them appear "colorful.” Cave paintings by early man show the early use of pigments, in a limited range from straw color to reddish brown and black. These colors occurred naturally in charcoals, and in mineral oxides such as chalk and ochre. The WebExhibit on Pigments has more information on these early painting palettes. Many early artists used natural pigments, but nowadays they have been replaced by cheaper and less toxic synthetic pigments. Biological Pigments Pigments are responsible for many of the beautiful colors we see in the plant world. Dyes have often been made from both animal sources and plant extracts . Some of the pigments found in animals have also recently been found in plants. Website: www.bestextractionmachine.com Email: [email protected] Tel: +86 372 5965148 Fax: +86 372 5951936 Mobile: ++86 8937276399 BUILD YOUR FUTURE! ANYANG BEST COMPLETE MACHINERY ENGINEERING CO.,LTD Major Plant Pigments White Bird Of Paradise Tree Bilirubin is responsible for the yellow color seen in jaundice sufferers and bruises, and is created when hemoglobin (the pigment that makes blood red) is broken down. Recently this pigment has also been found in plants, specifically in the orange fuzz on seeds of the white Bird of Paradise tree. The bilirubin in plants doesn’t come from breaking down hemoglobin.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • L-Tetrahydropalmatine Reduces Nicotine Self-Administration and Reinstatement in Rats
    Faison et al. BMC Pharmacology and Toxicology (2016) 17:49 DOI 10.1186/s40360-016-0093-6 RESEARCH ARTICLE Open Access l-tetrahydropalmatine reduces nicotine self- administration and reinstatement in rats Shamia L. Faison1,2, Charles W. Schindler2, Steven R. Goldberg2ˆ and Jia Bei Wang1* Abstract Background: The negative consequences of nicotine use are well known and documented, however, abstaining from nicotine use and achieving abstinence poses a major challenge for the majority of nicotine users trying to quit. l-Tetrahydropalmatine (l-THP), a compound extracted from the Chinese herb Corydalis, displayed utility in the treatment of cocaine and heroin addiction via reduction of drug-intake and relapse. The present study examined the effects of l-THP on abuse-related effects of nicotine. Methods: Self-administration and reinstatement testing was conducted. Rats trained to self-administer nicotine (0.03 mg/kg/injection) under a fixed-ratio 5 schedule (FR5) of reinforcement were pretreated with l-THP (3 or 5 mg/kg), varenicline (1 mg/kg), bupropion (40 mg/kg), or saline before daily 2-h sessions. Locomotor, food, and microdialysis assays were also conducted in separate rats. Results: l-THP significantly reduced nicotine self-administration (SA). l-THP’s effect was more pronounced than the effect of varenicline and similar to the effect of bupropion. In reinstatement testing, animals were pretreated with the same compounds, challenged with nicotine (0.3 mg/kg, s.c.), and reintroduced to pre-extinction conditions. l-THP blocked reinstatement of nicotine seeking more effectively than either varenicline or bupropion. Locomotor data revealed that therapeutic doses of l-THP had no inhibitory effects on ambulatory ability and that l-THP (3 and 5 mg/kg) significantly blocked nicotine induced hyperactivity when administered before nicotine.
    [Show full text]
  • Up-Regulation on Cytochromes P450 in Rat Mediated by Total Alkaloid Extract from Corydalis Yanhusuo
    Yan et al. BMC Complementary and Alternative Medicine 2014, 14:306 http://www.biomedcentral.com/1472-6882/14/306 RESEARCH ARTICLE Open Access Up-regulation on cytochromes P450 in rat mediated by total alkaloid extract from Corydalis yanhusuo Jingjing Yan1, Xin He1,2*, Shan Feng1, Yiran Zhai1, Yetao Ma1, Sheng Liang1 and Chunhuan Jin1 Abstract Background: Yanhusuo (Corydalis yanhusuo W.T. Wang; YHS), is a well-known traditional Chinese herbal medicine, has been used in China for treating pain including chest pain, epigastric pain, and dysmenorrhea. Its alkaloid ingredients including tetrahydropalmatine are reported to inhibit cytochromes P450 (CYPs) activity in vitro. The present study is aimed to assess the potential of total alkaloid extract (TAE) from YHS to effect the activity and mRNA levels of five cytochromes P450 (CYPs) in rat. Methods: Rats were administered TAE from YHS (0, 6, 30, and 150 mg/kg, daily) for 14 days, alanine aminotransferase (ALT) levels in serum were assayed, and hematoxylin and eosin-stained sections of the liver were prepared for light microscopy. The effects of TAE on five CYPs activity and mRNA levels were quantitated by cocktail probe drugs using a rapid chromatography/tandem mass spectrometry (LC-MS/MS) method and reverse transcription-polymerase chain reaction (RT-PCR), respectively. Results: In general, serum ALT levels showed no significant changes, and the histopathology appeared largely normal compared with that in the control rats. At 30 and 150 mg/kg TAE dosages, an increase in liver CYP2E1 and CYP3A1 enzyme activity were observed. Moreover, the mRNA levels of CYP2E1 and CYP3A1 in the rat liver, lung, and intestine were significantly up-regulated with TAE from 6 and 30 mg/kg, respectively.
    [Show full text]
  • Natural Colour Book
    THE COLOUR BOOK Sensient Food Colors Europe INDEX NATURAL COLOURS AND COLOURING FOODS INDEX 46 Lycopene 4 We Brighten Your World 47 Antho Blends – Pink Shade 6 Naturally Different 48 Red Cabbage 8 The Colour of Innovation 49 Beetroot – with reduced bluish tone 10 Natural Colours, Colouring Foods 50 Beetroot 11 Cardea™, Pure-S™ 51 Black Carrot 12 YELLOW 52 Grape 14 Colourful Impulses 53 Enocianin 15 Carthamus 54 Red Blends 16 Curcumin 56 VIOLET & BLUE 17 Riboflavin 59 Violet Blends 18 Lutein 61 Spirulina 19 Carrot 62 GREEN 20 Natural Carotene 65 Green Blends 22 Beta-Carotene 66 Copper-Chlorophyllin 24 Annatto 67 Copper-Chlorophyll 25 Yellow/ Orange Blends 68 Chlorophyll/-in 26 ORANGE 69 Spinach 29 Natural Carotene 70 BROWN 30 Paprika Extract 73 Burnt Sugar 32 Carrot 74 Apple 33 Apocarotenal 75 Caramel 34 Carminic Acid 76 BLACK & WHITE 35 Beta-Carotene 79 Vegetable Carbon 36 RED 80 Titanium Dioxide 39 Antho Blends – Strawberry Shade 81 Natural White 40 Aronia 41 Elderberry 83 Regulatory Information 42 Black Carrot 84 Disclaimer 43 Hibiscus 85 Contact Address 44 Carmine 3 INDEX NATURAL COLOURS AND COLOURING FOODS WE BRIGHTEN YOUR WORLD Sensient is as colourful as the world around us. Whatever you are looking for, across the whole spectrum of colour use, we can deliver colouring solutions to best meet your needs in your market. Operating in the global market place for over 100 years Sensient both promises and delivers proven international experience, expertise and capabilities in product development, supply chain management, manufacture, quality management and application excellence of innovative colours for food and beverages.
    [Show full text]
  • Studies on Betalain Phytochemistry by Means of Ion-Pair Countercurrent Chromatography
    STUDIES ON BETALAIN PHYTOCHEMISTRY BY MEANS OF ION-PAIR COUNTERCURRENT CHROMATOGRAPHY Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Thu Tran Thi Minh aus Vietnam 1. Referent: Prof. Dr. Peter Winterhalter 2. Referent: apl. Prof. Dr. Ulrich Engelhardt eingereicht am: 28.02.2018 mündliche Prüfung (Disputation) am: 28.05.2018 Druckjahr 2018 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Tagungsbeiträge T. Tran, G. Jerz, T.E. Moussa-Ayoub, S.K.EI-Samahy, S. Rohn und P. Winterhalter: Metabolite screening and fractionation of betalains and flavonoids from Opuntia stricta var. dillenii by means of High Performance Countercurrent chromatography (HPCCC) and sequential off-line injection to ESI-MS/MS. (Poster) 44. Deutscher Lebensmittelchemikertag, Karlsruhe (2015). Thu Minh Thi Tran, Tamer E. Moussa-Ayoub, Salah K. El-Samahy, Sascha Rohn, Peter Winterhalter und Gerold Jerz: Metabolite profile of betalains and flavonoids from Opuntia stricta var. dilleni by HPCCC and offline ESI-MS/MS. (Poster) 9. Countercurrent Chromatography Conference, Chicago (2016). Thu Tran Thi Minh, Binh Nguyen, Peter Winterhalter und Gerold Jerz: Recovery of the betacyanin celosianin II and flavonoid glycosides from Atriplex hortensis var. rubra by HPCCC and off-line ESI-MS/MS monitoring. (Poster) 9. Countercurrent Chromatography Conference, Chicago (2016). ACKNOWLEDGEMENT This PhD would not be done without the supports of my mentor, my supervisor and my family.
    [Show full text]
  • Survey of Plant Pigments: Molecular and Environmental Determinants of Plant Colors
    ACTA BIOLOGICA CRACOVIENSIA Series Botanica 51/1: 7–16, 2009 SURVEY OF PLANT PIGMENTS: MOLECULAR AND ENVIRONMENTAL DETERMINANTS OF PLANT COLORS EWA MŁODZIŃSKA* Department of Plant Physiology, Wroclaw University, ul. Kanonia 6/8, 50-328 Wrocław, Poland Received January 7, 2009; revision accepted February 20, 2009 It is difficult to estimate the importance of plant pigments in plant biology. Chlorophylls are the most important pigments, as they are required for photosynthesis. Carotenoids are also necessary for their functions in photosyn- thesis. Other plant pigments such as flavonoids play a crucial role in the interaction between plants and animals as visual signals for pollination and seed scattering. Studies related to plant pigmentation are one of the oldest areas of work in plant science. The first publication about carotenoids appeared in the early nineteenth century, and the term "chlorophyll" was first used in 1818 (Davies, 2004). Since then, the biochemical structure of plant pigments has been revealed, as have the biosynthetic pathways for the major pigments that provide a useful variety of colors to blossoms and other plant organs. There is widespread interest in the application of molecular methods to improve our knowledge of gene regulation mechanisms and changes in plant pigment content. Genetic modification has been used to alter pigment production in transgenic plants. This review focuses on flower pigmentation, its bio- chemistry and biology. It presents a general overview of the major plant pigment groups as well as rarer plant dyes and their diversity and function in generating the range of colors observed in plants. Key words: Flower and fruit colors, co-pigmentation, plant dyes, pigment groups.
    [Show full text]
  • Betalains and Phenolics in Red Beetroot (Beta Vulgaris)
    Betalains and Phenolics in Red Beetroot (Beta vulgaris) Peel Extracts: Extraction and Characterisation Tytti Kujala*, Jyrki Loponen and Kalevi Pihlaja Department of Chemistry, Vatselankatu 2, FIN-20014 University of Turku, Finland. Fax: +3582-333 67 00. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 56 c, 343-348 (2001); received January 9/February 12, 2001 Beta vulgaris , Betalains, Phenolics The extraction of red beetroot (Beta vulgaris ) peel betalains and phenolics was compared with two extraction methods and solvents. The content of total phenolics in the extracts was determined according to a modification of the Folin-Ciocalteu method and expressed as gallic acid equivalents (GAE). The profiles of extracts were analysed by high-performance liquid chromatography (HPLC). The compounds of beetroot peel extracted with 80% aqueous methanol were characterised from separated fractions using HPLC- diode array detection (HPLC-DAD) and HPLC- electrospray ionisation-mass spectrometry (HPLC-ESI-MS) tech­ niques. The extraction methods and the choice of solvent affected noticeably the content of individual compounds in the extract. The betalains found in beetroot peel extract were vulgaxanthin I, vulgaxanthin II, indicaxanthin, betanin, prebetanin, isobetanin and neobe- tanin. Also cyclodopa glucoside, /V-formylcyclodopa glucoside, glucoside of dihydroxyindol- carboxylic acid, betalamic acid, L-tryptophan, p-coumaric acid, ferulic acid and traces of un­ identified flavonoids were detected. Introduction acid in their cell walls (Jackman and Smith, 1996). Phenolic compounds are ubiquitous in the plant Except ferulic acid, also other phenolic acids and kingdom and they have been reported to possess phenolic acid conjugates have been reported in many biological effects.
    [Show full text]
  • 11. COMPOUNDS INFLUENCING FOOD COLOUR Perception Visual
    11. COMPOUNDS INFLUENCING FOOD COLOUR perception visual colour pigments (colouring matters, colourings) formation primary compounds natural food components natural components of other materials (microorganisms, algae, higher plants), used as additives secondary compounds enzymatic reactions (non-enzymatic browning reaction) chemical reactions synthetic compounds used as additives colour defects natural colours important groups tetrapyrrole colours plants, animals hem colours chlorophyll colours betalain colours plants betacyans betaxanthins flavonoid colours plants anthocyanins anthoxanthins phenolic and quinoid colours plants, animals phenols quinones carotenoid colours plants, animals carotenes xanthophylls TETRAPYRROLE PIGMENTS (TETRAPYRROLES) porphyrin pigments (porphyrins) cyclic hem pigments (hems) chlorophyll pigments (chlorophylls) biline pigments (bilines) linear phycobilins 3 5 7 4 6 2 A B 8 2 3 7 8 1 NH N 9 12 13 17 18 20 10 4 6 9 11 1 A B C 14 16 D 19 19 NH 11 N N N 5 10 N 15 N 18 D C 12 H 16 14 17 15 13 porphyrins bilines hem pigments meat, meat products nomenclature (book 3, tab. 9.1) content (book 3, tab. 9.2, 9.3, 9.4, 9.5) P CH2 N H His93 CH2=CH CH3 N CH2=CH CH3 H C CH=CH 3 2 H C CH=CH N N 3 2 N N Fe (II) Fe (II) N N N N H3C CH3 H3C CH3 CH CH COOH HOOCCH CH HOOCCH2CH2 2 2 2 2 CH CH COOH H2O 2 2 hem (reduced haematin, Fe2+), hemoglobin hematin (Fe3+), myoglobin (P = globin residue,16,8 kDa) protein protein N N O 2 N N myoglobin Fe (II) Fe (II) oxymyoglobin N N N N O O H2O protein N N metmyoglobin Fe (III) N N
    [Show full text]
  • Betanin, the Main Pigment of Red Beet
    Betanin, the main pigment of red beet - molecular origin of its exceptionally high free radical scavenging activity Anna Gliszczyńska-Świglo, Henryk Szymusiak, Paulina Malinowska To cite this version: Anna Gliszczyńska-Świglo, Henryk Szymusiak, Paulina Malinowska. Betanin, the main pigment of red beet - molecular origin of its exceptionally high free radical scavenging activity. Food Additives and Contaminants, 2006, 23 (11), pp.1079-1087. 10.1080/02652030600986032. hal-00577387 HAL Id: hal-00577387 https://hal.archives-ouvertes.fr/hal-00577387 Submitted on 17 Mar 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Food Additives and Contaminants For Peer Review Only Betanin, the main pigment of red beet - molecular origin of its exceptionally high free radical scavenging activity Journal: Food Additives and Contaminants Manuscript ID: TFAC-2005-377.R1 Manuscript Type: Original Research Paper Date Submitted by the 20-Aug-2006 Author: Complete List of Authors: Gliszczyńska-Świgło, Anna; The Poznañ University of Economics, Faculty of Commodity Science
    [Show full text]
  • William D. Hedrich Email: [email protected]
    The Role of the Constitutive Androstane Receptor in Cyclophosphamide-based Treatment of Lymphomas Item Type dissertation Authors Hedrich, William Dominic Publication Date 2018 Abstract Cyclophosphamide (CPA) is an alkylating prodrug which has been utilized extensively in combination chemotherapies for the treatment of cancers and autoimmune disorders since its introduction to the market in the late 1950s. The metabolic conversion o... Keywords constitutive androstane receptor; CYP2B6; drug-drug interactions; Cyclophosphamide; Cytochrome P-450 CYP2B6; Drug Interactions Download date 07/10/2021 19:53:39 Link to Item http://hdl.handle.net/10713/8006 William D. Hedrich Email: [email protected] EDUCATION: Degree Institution Field of Study Date Bachelor of The Pennsylvania State Toxicology 2013 Science University Bachelor of The Pennsylvania State Biology-Vertebrate 2013 Science University Physiology Doctor of University of Maryland, Pharmaceutical 2018 Philosophy Baltimore Sciences ______________________________________________________________________________ RESEARCH EXPERIENCE Graduate Research Assistant Wang Lab, University of Maryland School of Pharmacy • The role of the constitutive androstane receptor in cyclophosphamide-based treatment of lymphomas • Inductive expression of drug metabolizing enzymes and transporters in human primary hepatocytes • Metabolism-mediated drug-drug interactions • In-vivo tumor xenograft models Hassan Lab, University of Maryland School of Pharmacy • Pharmacokinetics of l-THP as an experimental therapy
    [Show full text]
  • Promote Optimal Health Antioxidant Benefits Anti-Inflammatory Benefits
    Promote Optimal Health The pigments that give beets their rich colors are called betalains. There are two basic types of betalains: betacyanins and betaxanthins. Betacyanins are pigments are red‐violet in color. Betanin is the best studied of the betacyanins. Betaxanthins are yellowish in color. In light or dark red, crimson, or purple colored beets, betacyanins are the dominant pigments. In yellow beets, betaxanthins predominate, and particularly the betaxanthin called vulgaxanthin. All betalains come from the same original molecule (betalamic acid). The addition of amino acids or amino acid derivatives to betalamic acid is what determines the specific type of pigment that gets produced. The betalain pigments in beets are water‐soluble, and as pigments they are somewhat unusual due to their nitrogen content. Many of the betalains function both as antioxidants and anti‐inflammatory molecules. At the same time, they themselves are also very vulnerable to oxidation (change in structure due to interaction with oxygen). In addition to beets, rhubarb, chard, amaranth, prickly pear cactus, and Nopal cactus are examples of foods that contain betalains. It’s interesting to note that humans appear to vary greatly in their response to dietary betalains. In the United States, only 10‐15% of adults are estimated to be “betalain responders.” A betalain responder is a person who has the capacity to absorb and metabolize enough betalains from beet (and other foods) to gain full antioxidant, anti‐inflammatory, and Phase 2 triggering benefits. (Phase 2 is the second step in our cellular detoxification process). Antioxidant Benefits What’s most striking about beets is not the fact that they are rich in antioxidants; what’s striking is the unusual mix of antioxidants that they contain.
    [Show full text]