Immune Recognition of Self in Immunity Against Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Immune Recognition of Self in Immunity Against Cancer Immune recognition of self in immunity against cancer Alan N. Houghton, José A. Guevara-Patiño J Clin Invest. 2004;114(4):468-471. https://doi.org/10.1172/JCI22685. Commentary Most antigens expressed by human cancer cells and recognized by host T cells and antibodies are nonmutated self antigens — molecules also expressed on the surface of normal cells. These self antigens are ineffective at triggering immune responses against cancer cells, which provides one explanation for the difficulties in trying to immunize against human cancer. A new study describes how tumors can avoid recognition by the immune system and how enhancing the affinity of the interaction between a self antigen and the MHC-I molecule may lead to cancer immunity. Find the latest version: https://jci.me/22685/pdf commentaries and injury. J. Clin. Invest. 114:495–503. doi:10.1172/ Invest. 113:274–284. doi:10.1172/JCI200419874. die, D.G. 1995. 5-Aminoimidazole-4-carboxamide JCI200419297. 13. Xing, Y., et al. 2003. Glucose metabolism and ener- ribonucleoside: a specific method for activating 9. Mu, J., Brozinick, J.T., Valladares, O., Bucan, M., gy homeostasis in mouse hearts overexpressing AMP-activated protein kinase in intact cells? Eur. and Birnbaum, M.J. 2001. A role for AMP-activated dominant negative alpha2 subunit of AMP-activat- J. Biochem. 229:558–565. protein kinase in contraction- and hypoxia-regu- ed protein kinase. J. Biol. Chem. 278:28372–28377. 17. Javaux, F., Vincent, M.F., Wagner, D.R., and van den lated glucose transport in skeletal muscle. Mol. Cell. 14. Mangano, D.T. 1997. Effects of acadesine on myo- Berghe, G. 1995. Cell-type specificity of inhibition 7:1085–1094. cardial infarction, stroke, and death following of glycolysis by 5-amino-4-imidazolecarboxamide 10. Hudson, E.R., et al. 2003. A novel domain in AMP- surgery. A meta-analysis of the 5 international ran- riboside. Lack of effect in rabbit cardiomyocytes activated protein kinase causes glycogen storage domized trials. The Multicenter Study of Periop- and human erythrocytes, and inhibition in FTO- bodies similar to those seen in hereditary cardiac erative Ischemia (McSPI) Research Group. JAMA. 2B rat hepatoma cells. Biochem. J. 305:913–919. arrhythmias. Curr. Biol. 13:861–866. 277:325–332. 18. Andersson, U., et al. 2004. AMP-activated protein 11. Polekhina, G., et al. 2003. AMPK b-Subunit targets 15. Gadalla, A.E., et al. 2004. Distinct mechanisms under- kinase plays a role in the control of food intake. metabolic stress-sensing to glycogen. Curr. Biol. lie the activation of rat brain AMP-activated protein J. Biol. Chem. 279:12005–12008. 13:867–871. kinase and the inhibition of excitatory synaptic trans- 19. Minokoshi, Y., et al. 2004. AMP-kinase regulates 12. Scott, J.W., et al. 2004. CBS domains form energy- mission by AICA riboside (Acadesine) in area CA1 of food intake by responding to hormonal and sensing modules whose binding of adenosine rat hippocampus. J. Neurochem. 88:1272–1282. nutrient signals in the hypothalamus. Nature. ligands is disrupted by disease mutations. J. Clin. 16. Corton, J.M., Gillespie, J.G., Hawley, S.A., and Har- 428:569–574. Immune recognition of self in immunity against cancer Alan N. Houghton and José A. Guevara-Patiño The Swim Across America Laboratory of Tumor Immunology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA. Most antigens expressed by human cancer cells and recognized by host T cells methylation of nucleotides in promoter and antibodies are nonmutated self antigens — molecules also expressed on the regions that control gene expression. These surface of normal cells. These self antigens are ineffective at triggering immune deleted or silent genes are incapable of pro- responses against cancer cells, which provides one explanation for the difficul- ducing antigenic targets for the immune ties in trying to immunize against human cancer. A new study describes how system, but mutated protooncogenes, tumors can avoid recognition by the immune system and how enhancing the tumor suppressor genes, or other self genes affinity of the interaction between a self antigen and the MHC-I molecule may might generate mutant protein products lead to cancer immunity (see the article beginning on page 551). that could serve as suitable antigens. An accumulation of genetic alterations The self/nonself paradigm provides a logical and useful description in protooncogenes and tumor suppressor Immunologists generally agree that the of how the immune system responds to genes leads to profound changes in nor- immune system was shaped through evo- exogenous microbes that cause disease. mal cells, including immortality, a block lution by the necessity of discriminating in terminal differentiation, an ability to nonself pathogens from self tissues (1). Recognition of cancer invade normal tissues and recruit new This distinction is extremely important by the host’s immune system blood vessels, and the potential to metas- for the survival of multicellular organ- Understanding and achieving immunity tasize to distant organs (3). However, isms. Some strategies for the recogni- to cancer does not fit neatly into the self/ because the immune system is trained not tion of nonself pathogens are clear-cut. nonself paradigm because cancer is not to respond to self molecules (in order to For example, receptors such as toll-like an exogenous pathogen, but rather arises avoid autoimmunity), antigenic changes receptors on host leukocytes bind to cer- from normal host cells. In this regard, in malignant cells that are created by tain bacterial or fungal molecules, lead- cancer antigens recognized by the human individual mutations can be rather subtle ing to mobilization of host defenses by immune system are self or mutated self from the standpoint of the immune sys- signaling the synthesis of molecules that molecules (2). Explaining the genetic tem — cancer cells still utilize essentially initiate innate and adaptive immune basis for the pathogenesis of cancer is the same cellular molecules as healthy responses. The adaptive immune system, necessary to understanding the difficul- cells to regulate growth and survival (3). with its diversity of T cell receptors (TCRs) ties that the immune system has in recog- Perhaps mutations in self proteins can and antibodies, uses even more precise nizing cancer cells. be viewed as generating nonself proteins, mechanisms for the recognition of non- Protooncogenes and tumor suppres- comparable to foreign proteins from self pathogens. This view of self/nonself sor genes are normal cellular genes that pathogens or other species. This argument control crucial cell functions, particularly has been used as the basis for conduct- Nonstandard abbreviations used: T cell receptor growth and survival (3). Mutations in these ing experiments in mice for the study of (TCR). genes lead to the emergence of cancer. In tumor immunity using tumors expressing Conflict of interest: The authors have declared that no addition, loss of expression of tumor sup- viral or chicken proteins. conflict of interest exists. pressor genes contributes to malignant T cells, which are immune cells crucial Citation for this article: J. Clin. Invest. 114:468–471 (2004). transformation through major deletions for rejecting tumors, use their TCRs to doi:10.1172/JCI200422685. in their genetic sequences or silencing by recognize short antigenic peptides bound 468 The Journal of Clinical Investigation http://www.jci.org Volume 114 Number 4 August 2004 commentaries T cell–dependent immunity against mutated self antigens on tumors Can cancer cells with mutated self peptides stimulate host T cells? As few as two or three distinct mutations in different cel- lular protooncogenes can induce malig- nant transformation and tumorigenicity of normal rodent cells (3, 4). In this reduc- tionist view, a total of only two mutations in two different cellular proteins produce tumors. The problem for host T cells becomes searching for these two mutations against the backdrop of the thousands of nonmutated proteins in the cell — which is like searching for a needle in a haystack. The reader may be aware that T cells can use their TCRs to discriminate even single amino acid changes in peptides. Thus, acti- vated T cells might be capable of surveying for cancer cells expressing rare mutated self peptides bound to MHC-I or -II molecules, leading to destruction of those cells. In sup- port of this argument, classical experiments in mice have shown that T cells are capable of rejecting mutagen-induced tumors (5). For tumors in mice induced by exposure to strong mutagens, T cell–dependent immu- nity is directed against antigens that are mutated self peptides (6, 7). Do T cell responses to mutated self anti- gens reveal how immunity against cancer is generated? Not exactly. Tumors that Figure 1 are elicited by short, intense exposure of Yu et al. (16) investigate how host CD8+ T cells respond to a self peptide presented by MHC-I molecules on tumor cells. The self peptide binds relatively weakly to host MHC molecules. The rodents to potent carcinogens carry large self peptide ITDQVPFSV (single letter amino acid code), expressed by melanoma cells and numbers of mutations, and these tumors normal pigment cells, binds with low affinity to MHC-I HLA-A*0201 molecules. A mutated form of arise over weeks or several months. These the self peptide, IMDQVPFSV with a threonine to methionine substitution at the second amino experimental models do not adequately acid position, has a high affinity for MHC-I molecules because methionine residues at the second reflect the pathogenesis of most human position are more favorable to anchor the peptide to HLA-A*0201 molecules. Naive CD8+ T cells cancers, which result from multiple dis- against the self peptide are present in the immune repertoire, but they do not respond to either crete mutations accumulated sequentially tumor cells presenting the weak self peptide or to immunization with the self peptide because of over decades (3).
Recommended publications
  • Effects of Chemotherapy Agents on Circulating Leukocyte Populations: Potential Implications for the Success of CAR-T Cell Therapies
    cancers Review Effects of Chemotherapy Agents on Circulating Leukocyte Populations: Potential Implications for the Success of CAR-T Cell Therapies Nga T. H. Truong 1, Tessa Gargett 1,2,3, Michael P. Brown 1,2,3,† and Lisa M. Ebert 1,2,3,*,† 1 Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and SA Pathology, North Terrace, Adelaide, SA 5000, Australia; [email protected] (N.T.H.T.); [email protected] (T.G.); [email protected] (M.P.B.) 2 Cancer Clinical Trials Unit, Royal Adelaide Hospital, Port Rd, Adelaide, SA 5000, Australia 3 Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia * Correspondence: [email protected] † These authors contributed equally. Simple Summary: CAR-T cell therapy is a new approach to cancer treatment that is based on manipulating a patient’s own T cells such that they become able to seek and destroy cancer cells in a highly specific manner. This approach is showing remarkable efficacy in treating some types of blood cancers but so far has been much less effective against solid cancers. Here, we review the diverse effects of chemotherapy agents on circulating leukocyte populations and find that, despite some negative effects over the short term, chemotherapy can favourably modulate the immune systems of cancer patients over the longer term. Since blood is the starting material for CAR-T cell Citation: Truong, N.T.H.; Gargett, T.; production, we propose that these effects could significantly influence the success of manufacturing, Brown, M.P.; Ebert, L.M.
    [Show full text]
  • Monoclonal Antibody Therapeutics and Apoptosis
    Oncogene (2003) 22, 9097–9106 & 2003 Nature Publishing Group All rights reserved 0950-9232/03 $25.00 www.nature.com/onc Monoclonal antibody therapeutics and apoptosis Dale L Ludwig*,1, Daniel S Pereira1, Zhenping Zhu1, Daniel J Hicklin1 and Peter Bohlen1 1ImClone Systems Incorporated, 180 Varick Street, New York, NY 10014, USA The potential for disease-specific targeting and low including the generation of human antibody phage toxicity profiles have made monoclonal antibodies attrac- display libraries, human immunoglobulin-producing tive therapeutic drug candidates. Antibody-mediated transgenic mice, and directed affinity maturation meth- target cell killing is frequently associated with immune odologies, have further improved on the efficiency, effector mechanisms such as antibody-directed cellular specificity, and reactivity of monoclonal antibodies for cytotoxicity, but they can also be induced by apoptotic their target antigens (Schier et al., 1996; Mendez et al., processes. Antibody-directed mechanisms, including anti- 1997; de Haard et al., 1999; Hoogenboom and Chames, gen crosslinking, activation of death receptors, and 2000; Knappik et al., 2000). As a result, the isolation of blockade of ligand-receptor growth or survival pathways, high-affinity fully human monoclonal antibodies is now can elicit the induction of apoptosis in targeted cells. commonplace. Owing to their inherent specificity for a Depending on their mechanism of action, monoclonal particular target antigen, monoclonal antibodies pro- antibodies can induce targeted cell-specific killing alone or mise precise selectivity for target cells, avoiding non- can enhance target cell susceptibility to chemo- or reacting normal cells. radiotherapeutics by effecting the modulation of anti- To be effective as therapeutics for cancer, antibodies apoptotic pathways.
    [Show full text]
  • SEREX Analysis for Tumor Antigen Identification in a Mouse Model Of
    © 2000 Nature America, Inc. 0929-1903/00/$15.00/ϩ0 www.nature.com/cgt SEREX analysis for tumor antigen identification in a mouse model of adenocarcinoma Tracy A. Hampton,1–3 Robert M. Conry,2 M. B. Khazaeli,2 Denise R. Shaw,2 David T. Curiel,1,2 Albert F. LoBuglio,2 and Theresa V. Strong1–3 1Gene Therapy Center, 2Division of Hematology/Oncology, Department of Medicine, and 3Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294. Evaluation of immunotherapy strategies in mouse models of carcinoma is hampered by the limited number of known murine tumor antigens (Ags). Although tumor Ags can be identified based on cytotoxic T-cell activation, this approach is not readily accomplished for many tumor types. We applied an alternative strategy based on a humoral immune response, SEREX, to the identification of tumor Ags in the murine colon adenocarcinoma cell line MC38. Immunization of syngeneic C57BL/6 mice with MC38 cells by three different methods induced a protective immune response with concomitant production of anti-MC38 antibodies. Immunoscreening of an MC38-derived expression library resulted in the identification of the endogenous ecotropic leukemia virus envelope (env) protein and the murine ATRX protein as candidate tumor Ags. Northern blot analysis demonstrated high levels of expression of the env transcript in MC38 cells and in several other murine tumor cell lines, whereas expression in normal colonic epithelium was absent. ATRX was found to be variably expressed in tumor cell lines and in normal tissue. Further analysis of the expressed env sequence indicated that it represents a nonmutated tumor Ag.
    [Show full text]
  • Immune Escape Mechanisms As a Guide for Cancer Immunotherapy Gregory L
    Published OnlineFirst December 12, 2014; DOI: 10.1158/1078-0432.CCR-14-1860 Perspectives Clinical Cancer Research Immune Escape Mechanisms as a Guide for Cancer Immunotherapy Gregory L. Beatty and Whitney L. Gladney Abstract Immunotherapy has demonstrated impressive outcomes for exploited by cancer and present strategies for applying this some patients with cancer. However, selecting patients who are knowledge to improving the efficacy of cancer immunotherapy. most likely to respond to immunotherapy remains a clinical Clin Cancer Res; 21(4); 1–6. Ó2014 AACR. challenge. Here, we discuss immune escape mechanisms Introduction fore, promote tumor outgrowth. In this process termed "cancer immunoediting," cancer clones evolve to avoid immune-medi- The immune system is a critical regulator of tumor biology with ated elimination by leukocytes that have antitumor properties the capacity to support or inhibit tumor development, growth, (6). However, some tumors may also escape elimination by invasion, and metastasis. Strategies designed to harness the recruiting immunosuppressive leukocytes, which orchestrate a immune system are the focus of several recent promising thera- microenvironment that spoils the productivity of an antitumor peutic approaches for patients with cancer. For example, adoptive immune response (7). Thus, although the immune system can be T-cell therapy has produced impressive remissions in patients harnessed, in some cases, for its antitumor potential, clinically with advanced malignancies (1). In addition, therapeutic mono- relevant tumors appear to be marked by an immune system that clonal antibodies designed to disrupt inhibitory signals received actively selects for poorly immunogenic tumor clones and/or by T cells through the cytotoxic T-lymphocyte–associated antigen establishes a microenvironment that suppresses productive anti- 4 (CTLA-4; also known as CD152) and programmed cell death-1 tumor immunity (Fig.
    [Show full text]
  • Tumor Immunology 101 for the Non-Immunologist
    Tumor Immunology 101 For the Non-Immunologist Louis M. Weiner, MD Director, Lombardi Comprehensive Cancer Center Francis L. and Charlotte G. Gragnani Chair Professor and Chairman, Department of Oncology Georgetown University Medical Center Disclosure Consulting Fees Ownership Interest Abbvie Pharmaceuticals Celldex Novartis Jounce Merck Merrimack Genetech Symphogen Cytomax Immunovative Therapies, Ltd. Contracted Research Symphogen We Have Been at War Against Cancer Throughout Human History Tumor President Nixon declares a “War on Cancer” in 1971 Medieval Saxon man with a large tumor of the left femur Which Target? Hanahan, Weinberg, Cell 2000 The “War on Cancer” is fought one person at a time… • Primary Combatants: – Malignant cell population – Host immune system • The host immune system is the dominant active enemy faced by a developing cancer • All “successful” cancers must solve the challenges of overcoming defenses erected by host immune systems Which System? Hanahan, Weinberg, Cell 2011 The Case for Cancer Immunotherapy • Surprisingly few new truly curative anti- cancer cytotoxic drugs or targeted therapies in 20+ years – Tumor heterogeneity – Too many escape routes? • The immune response is designed to identify and disable “escape routes ” that cancers employ • Immunotherapy can cure cancers Immunotherapy • Treatment of disease by inducing, enhancing, or suppressing an immune response • “Treating the immune system so it can treat the cancer” (J. Wolchok) Some Examples of Successful Cancer Immunotherapy • Type 1 interferons – bladder
    [Show full text]
  • Monoclonal Antibodies in Cancer Therapy
    Clin Oncol Cancer Res (2011) 8: 215–219 215 DOI 10.1007/s11805-011-0583-7 Monoclonal Antibodies in Cancer Therapy Yu-Ting GUO1,2 ABSTRACT Monoclonal antibodies (MAbs) are a relatively new Qin-Yu HOU1,2 innovation in cancer treatment. At present, some monoclonal antibodies have increased the efficacy of the treatment of certain 1,2 Nan WANG tumors with acceptable safety profiles. When monoclonal antibodies enter the body and attach to cancer cells, they function in several different ways: first, they can trigger the immune system to attack and kill that cancer cell; second, they can block the growth signals; third, they can prevent the formation of new blood vessels. Some naked 1 Key Laboratory of Industrial Fermentation MAbs such as rituximab can be directed to attach to the surface of Microbiology, Ministry of Education, Tianjin, cancer cells and make them easier for the immune system to find and 300457, China. destroy. The ability to produce antibodies with limited immunogeni- 2 Tianjin Key Laboratory of Industrial Micro- city has led to the production and testing of a host of agents, several biology, College of Biotechnology, Tianjin of which have demonstrated clinically important antitumor activity University of Science and Technology, Tianjin, 300457, China. and have received U.S. Food & Drug Administration (FDA) approval as cancer treatments. To reduce the immunogenicity of murine anti- bodies, murine molecules are engineered to remove the immuno- genic content and to increase their immunologic efficiency. Radiolabeled antibodies composed of antibodies conjugated to radionuclides show efficacy in non-Hodgkin’s lymphoma. Anti- vascular endothelial growth factor (VEGF) antibodies such as bevacizumab intercept the VEGF signal of tumors, thereby stopping them from connecting with their targets and blocking tumor growth.
    [Show full text]
  • Tumor Antigen Markers for the Detection of Solid Cancers in Inflammatory Myopathies
    Cancer Epidemiology, Biomarkers & Prevention 1279 Tumor Antigen Markers for the Detection of Solid Cancers in Inflammatory Myopathies Zahir Amoura,1 Pierre Duhaut,1 Du Le Thi Huong,1 Bertrand Wechsler,1 Nathalie Costedoat-Chalumeau,1 Camille France`s,1 Patrice Cacoub,1 Thomas Papo,1 Sylvie Cormont,1 Yvan Touitou,2 Philippe Grenier,3 Dominique Valeyre,4 and Jean-Charles Piette1 Services de 1Me´decine Interne, 2Biochimie Me´dicale, and 3Radiologie, Hoˆpital Pitie´-Salpeˆtrie`re, Paris, France and 4Service de Pneumologie, Hoˆpital Avicenne, Bobigny, France Abstract Dermatomyositis and polymyositis patients have an in- interval (95% CI), 8.2-106.6]. For CA19-9, there was a trend creased risk of developing cancers. We have assessed the towards a significant association (P = 00.7; OR, 4.5; 95% CI, diagnostic values of serum tumor markers for the detection of 1-18.7, respectively). Diagnostic values of elevated CA125 solid cancer in dermatomyositis/polymyositis patients. Serum and CA19-9 at screening increased when the study analysis carcinoembryonic antigen, CA15-3, CA19-9, and CA125 were was restricted to patients who developed a cancer within assayed by immunoradiometric methods in 102 dermatomyo- 1 year (P < 0.0001 and P = 0.018, respectively) or to patients sitis/polymyositis patients. All the patients had complete without interstitial lung disease (P = 0.00001; OR, 133; 95% physical examination, chest X-ray, echocardiogram, gastroin- CI, 6.5-2733 and P = 0.027; OR, 9; 95% CI, 1.5-53, respectively). testinal tract endoscopic explorations, thoracoabdomino- Individual comparisons of the baseline and the second pelvic computed tomography scan, and all women had CA125 value showed that three of the eight patients with gynecologic examination and mammogram.
    [Show full text]
  • Mutant P53 As an Antigen in Cancer Immunotherapy
    International Journal of Molecular Sciences Review Mutant p53 as an Antigen in Cancer Immunotherapy Navid Sobhani 1,* , Alberto D’Angelo 2 , Xu Wang 1, Ken H. Young 3, Daniele Generali 4 and Yong Li 1,* 1 Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; [email protected] 2 Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK; [email protected] 3 Department of Pathology, Duke University School of Medicine, Durham, NC 27708, USA; [email protected] 4 Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada Di Fiume 447, 34149 Trieste, Italy; [email protected] * Correspondence: [email protected] (N.S.); [email protected] (Y.L.) Received: 7 May 2020; Accepted: 3 June 2020; Published: 8 June 2020 Abstract: The p53 tumor suppressor plays a pivotal role in cancer and infectious disease. Many oncology treatments are now calling on immunotherapy approaches, and scores of studies have investigated the role of p53 antibodies in cancer diagnosis and therapy. This review summarizes the current knowledge from the preliminary evidence that suggests a potential role of p53 as an antigen in the adaptive immune response and as a key monitor of the innate immune system, thereby speculating on the idea that mutant p53 antigens serve as a druggable targets in immunotherapy. Except in a few cases, the vast majority of published work on p53 antibodies in cancer patients use wild-type p53 as the antigen to detect these antibodies and it is unclear whether they can recognize p53 mutants carried by cancer patients at all.
    [Show full text]
  • Using Antigen-Specific B Cells to Combine Antibody and T Cell− Based Cancer Immunotherapy
    Published OnlineFirst August 4, 2017; DOI: 10.1158/2326-6066.CIR-16-0236 Research Article Cancer Immunology Research Using Antigen-Specific B Cells to Combine Antibody and T Cell–Based Cancer Immunotherapy Kerstin Wennhold1, Martin Thelen1, Hans Anton Schloßer€ 1,2, Natalie Haustein1, Sabrina Reuter1, Maria Garcia-Marquez1, Axel Lechner1,3, Sebastian Kobold4, Felicitas Rataj4, Olaf Utermohlen€ 5, Geothy Chakupurakal1, Sebastian Theurich1,6, Michael Hallek7, Hinrich Abken7,8, Alexander Shimabukuro-Vornhagen1, and Michael von Bergwelt-Baildon1 Abstract Cancer immunotherapy by therapeutic activation of T cells stimulation with IL21, IL4, anti-CD40, and the specificanti- has demonstrated clinical potential. Approaches include gen. Combined treatment of tumor-bearing mice with antigen- checkpoint inhibitors and chimeric antigen receptor T cells. specific CD40-activated B cells and antigen-specificplasma Here,wereportthedevelopmentofanalternativestrategyfor cells induced a therapeutic antitumor immune response result- cellular immunotherapy that combines induction of a tumor- ing in remission of established tumors. Human CEA or NY- directed T-cell response and antibody secretion without the ESO-1–specific B cells were detected in tumor-draining lymph need for genetic engineering. CD40 ligand stimulation of nodes and were able to induce antigen-specific T-cell responses murine tumor antigen-specific B cells, isolated by antigen- in vitro, indicating that this approach could be translated into biotin tetramers, resulted in the development of an antigen- clinical applications. Our results describe a technique for the presenting phenotype and the induction of a tumor antigen- exploitation of B-cell effector functions and provide the ratio- specific T-cell response. Differentiation of antigen-specific nale for their use in combinatorial cancer immunotherapy.
    [Show full text]
  • Tumor-Associated Antigen Autoantibodies and Ovarian Cancer Early Detection
    YGYNO-976831; No. of pages: 16; 4C: Gynecologic Oncology xxx (2017) xxx–xxx Contents lists available at ScienceDirect Gynecologic Oncology journal homepage: www.elsevier.com/locate/ygyno Review Article Systematic review: Tumor-associated antigen autoantibodies and ovarian cancer early detection Renée Turzanski Fortner, Antje Damms-Machado, Rudolf Kaaks ⁎ Division of Cancer Epidemiology, German Cancer Research Center (DFKZ), Heidelberg, Germany HIGHLIGHTS • AAbs for ovarian cancer earlier detection is an emerging area. • Reviewed diagnostic discrimination of 85 AAbs for ovarian cancer early detection. • AAb panels may eventually reach diagnostic discrimination for earlier detection. article info abstract Article history: Objectives. Tumor-associated autoantibodies (AAbs), produced as an immune response to tumor-associated Received 31 May 2017 antigens (TAAs), are a novel pathway of early detection markers. Received in revised form 20 July 2017 Methods. We conducted a systematic review on AAbs and ovarian cancer to summarize the diagnostic perfor- Accepted 24 July 2017 mance of individual AAbs and AAb panels. A total of 29 studies including 85 AAbs were included; 27 of the studies Available online xxxx were conducted in prevalent cases and cancer-free controls and 2 investigations included pre-diagnosis samples. Keywords: The majority of studies were hypothesis-driven, evaluating AAbs to target TAAs; 10 studies used screening ap- Tumor associated auto-antibodies proaches such as serological expression cloning (SEREX) and nucleic acid-programmable protein arrays Early detection (NAPPA). Ovarian cancer Results. The highest sensitivities for individual AAbs were reported for RhoGDI-AAbs (89.5%) and TUBA1C- AAbs (89%); however, specificity levels were relatively low (80% and 75%, respectively). High sensitivities at high specificities were reported for HOXA7-AAbs for detection of moderately differentiated ovarian tumors (66.7% sensitivity at 100% specificity) and IL8-AAbs in stage I–II ovarian cancer (65.5% sensitivity at 98% specific- ity).
    [Show full text]
  • Tumor Antigen by Immunoassay CA15-3/CA 27.29 CPT: 86300
    Medicare National Coverage Determination Policy Tumor Antigen by Immunoassay CA15-3/CA 27.29 CPT: 86300 Medically Supportive ICD Codes are listed on subsequent page(s) of this document CMS National Coverage Policy Coverage Indications, Limitations, and/or Medical Necessity Immunoassay determinations of the serum levels of certain proteins or carbohydrates serve as tumor markers. When elevated, serum concentration of markers may reflect tumor size & grade. This policy specifically addresses the following tumor antigens: CA 15-3 and CA 27.29 Indications Multiple tumor markers are available for monitoring the response of certain malignancies to therapy and assessing whether a residual tumor exists post-surgical therapy. CA 15-3 is often medically necessary to aid in the management of patients with breast cancer. Serial testing must be used in conjunction with other clinical methods for monitoring breast cancer. For monitoring, if medically necessary, use consistently either CA 15-3 or CA 27.29, not both. CA 27.29 is equivalent to CA 15-3 in its usage in management of patients with breast cancer. Limitations These services are not covered for the evaluation of patients with signs or symptoms suggestive of malignancy. The service may be ordered at times necessary to assess either the presence of recurrent disease or the patient’s response to treatment with subsequent treatment cycles. Visit SonoraQuest.com/Medicare to view current limited coverage tests, reference guides, and policy information. To view the complete policy and the full list of medically supportive codes, please refer to the CMS website reference www.cms.gov ► Medicare National Coverage Determination Policy Tumor Antigen by Immunoassay CA 15-3/CA 27.29 CPT: 86300 The ICD10 codes listed below are the top diagnosis codes currently utilized by ordering physicians Please refer to the Limitations for the limited coverage test highlighted above that are also listed as medically supportive under or Utilization Guidelines Medicare’s limited coverage policy.
    [Show full text]
  • Immunotherapy of Malignant Disease with Tumor Antigen–Specific Monoclonal Antibodies
    Published OnlineFirst December 22, 2009; DOI: 10.1158/1078-0432.CCR-09-2345 Review Clinical Cancer Research Immunotherapy of Malignant Disease with Tumor Antigen–Specific Monoclonal Antibodies Michael Campoli1, Robert Ferris2,3,6, Soldano Ferrone2,4,5,6, and Xinhui Wang2,6 Abstract A few tumor antigen (TA)–specific monoclonal antibodies (mAb) have been approved by the Food and Drug Administration for the treatment of several major malignant diseases and are commercially avail- able. Once in the clinic, mAbs have an average success rate of ∼30% and are well tolerated. These results have changed the face of cancer therapy, bringing us closer to more specific and more effective biological therapy of cancer. The challenge facing tumor immunologists at present is represented by the identifica- tion of the mechanism(s) underlying the patients' differential clinical response to mAb-based immu- notherapy. This information is expected to lead to the development of criteria to select patients to be treated with mAb-based immunotherapy. In the past, in vitro and in vivo evidence has shown that TA- specific mAbs can mediate their therapeutic effect by inducing tumor cell apoptosis, inhibiting the tar- geted antigen function, blocking tumor cell signaling, and/or mediating complement- or cell-dependent lysis of tumor cells. More recent evidence suggests that TA-specific mAb can induce TA-specific cytotoxic T- cell responses by enhancing TA uptake by dendritic cells and cross-priming of T cells. In this review, we briefly summarize the TA-specific mAbs that have received Food and Drug Administration approval. Next, we review the potential mechanisms underlying the therapeutic efficacy of TA-specific mAbs with empha- sis on the induction of TA-specific cellular immune responses and their potential to contribute to the clinical efficacy of TA-specific mAb-based immunotherapy.
    [Show full text]