Synthesis and Characterization of Polyamides, Polyimides and Polyesters Containing Flexibilizing Groups

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis and Characterization of Polyamides, Polyimides and Polyesters Containing Flexibilizing Groups Synthesis and Characterization of Polyamides, Polyimides and Polyesters Containing Flexibilizing Groups A thesis submitted to the UNIVERSITY OF PUNE For the degree of DOCTOR OF PHILOSOPHY In CHEMISTRY By ANJANA SARKAR Polymer Science and Engineering Division National Chemical Laboratory Pune-411008 February 2005 i Dedicated To My Parents ii Form ‘A’ Certified that the work incorporated in the thesis entitled “Synthesis and Characterization of Polyamides, Polyimides and Polyesters Containing Flexibilizing Groups” submitted by Anjana Sarkar was carried out under my supervision. Such material as has been obtained from other sources has been duly acknowledged in the thesis. February, 2005 P. P. Wadgaonkar Pune (Research Guide ) iii Abstract High performance / high temperature polymers such as polyimides, poly(amideimide)s, polyamides, polyesters etc are characterized by their excellent balance of thermal and mechanical properties which makes them useful materials for engineering applications. However, these polymers particularly those with para- substituted rings exhibit poor processability and limited solubility in organic solvents. Therefore, many efforts have been made to chemically modify the structure of these polymers with the aim of improving their solubility in organic solvents and / or lowering their transition temperatures to a range which facilitates their processing in the melt. The main goal of the present research was the synthesis of polyimides, poly(amideimide)s, polyamides and polyesters with improved processability by incorporation of pendent flexible alkoxy chains along the polymer backbone making use of appropriate difunctional monomers. Another objective of the work was to evaluate the applications of selected polymers as alignment layers for liquid crystal display devices and as membrane materials for gas separations. Thus, our synthetic research effort was directed towards structural modifications designed to disturb regularity and chain packing via meta- catenation and internal plasticization thus providing better processability to the polymers. A series of 5-alkoxyisophthalic acids, 5-alkoxyisophthaloyl dichlorides, 5-alkoxy-1,3- phenylene diisocyanates, and 5-alkoxyisophthalic acid dihydrazides were synthesized. Aromatic diamines containing pre-formed amide linkages and aromatic diamines containing pre-formed ester linkages and possessing pendent flexible alkoxy chains were designed and synthesized. By relatively easy and inexpensive chemical routes, these monomers could be prepared that provide the structural characteristics needed for the improvement of properties such as processability, and specifically properties like pretilt angle and gas permeability. The length of pendent side chains iv was varied in order to study the effects of chain length on the properties of polymers, such as, solubility, thermal stability, Tg and processabilty. A series of polyimides and poly(amideimide)s containing pendent flexible alkoxy groups was synthesized from 5-alkoxy-1,3-phenylenediisocyanates, 5- alkoxyisphthalic acid dihydrazides and aromatic diamines containing pre-formed amide linkages by polycondensation with commercially available aromatic dianhydrides. Polyimides and poly(amideimide)s were of moderate to reasonably high molecular weights and could be cast into tough, transparent, and flexible films. The incorporation of pendent flexible alkoxy groups resulted in lowering of glass transition temperature. A large window between glass transition and polymer degradation temperature was observed. This gives an opportunity for these polyimides and poly(amideimide)s to be melt - processed or compression molded. It was demonstrated that improvement in solubility could be achieved by incorporation of pendent alkoxy chains along the backbone of rigid chain polymers and by proper selection of the comonomers (dianhydride). Wide angle X-ray diffraction analysis revealed that layered structures were formed for polyimides and poly(amideimide)s with long pendent alkoxy chains. The application of organo-soluble polyimide derived from 5-octyloxy-1,3- phenylene diisocyanate and 4, 4’- oxydiphthalic anhydride(ODPA) as alignment layer for liquid crystal display was evaluated in brief. A pretilt angle of 2.97o was observed which is adequate for display applications. Poly(amideimide)s containing octyloxy and hexadecyloxy side chains exhibited a good rubbing processability and excellent performance in controlling of both the alignment and the pretilt of LC molecules in the LC cell. The pretilt angle of LC molecules was easily achieved in a wide range of 3.8 – 17.5o depending upon the rubbing density as well as the length of the alkoxy chain. These values are in the desirable range for super twisted nematic (STN) LCD devices. High molecular weight (Mn 101050- 399400, GPC PS Standard) polyesters were synthesized by interfacial polycondensation of 5-alkoxyisophthaloyl dichlorides v with aromatic diols namely BPA and HFBPA. Polyesters could be cast into tough, transparent and flexible films from their solution in chloroform. Thermal degradation kinetics of polyesters revealed that degradation obeyed first order kinetics. The relationship between the chemical structure of polyesters and their thermal degradation behaviour was established. Polyesters based on 5-alkoxy isophthaloyl dichlorides and BPA showed increase in permeability and decrease in selectivity as length of pendent alkoxy group increases. However, HFBPA- based polyesters behaved differently owing to the presence of bulky hexafluoroisopropylidene group. The permeability behaviour of poly(amideimide) series was similar to that of BPA – polyester series. The marked increase in CO2 permeability than permeability of other gases tested namely He, O2 and N2 indicated potential of these membrane materials for CO2 – based separation applications. Polyamides were synthesized from 5-alkoxyisophthalic acids and 4,4’- oxydianiline employing Yamazaki- Higashi reaction conditions. Polyamides containing pendent alkoxy groups were soluble in DMF, DMAc, NMP and pyridine. Tough, transparent, and flexible films could be cast from DMAc solution of polyamides. Overall, internal plasticization through the incorporation of pendent alkoxy groups was shown to be successful in improving solubility and processability characteristics of polyimides, poly(amideimide)s, polyamides and polyesters with a compromise on thermal stability. Poly(amideimide)s and a polyimide were proved to be suitable as alignment layers for liquid crystal display devices. vi CONTENTS Description Page No. * Abstract i * List of Tables iv * List of Schemes vii * List of Figures ix CHAPTER 1 Introduction and literature survey 1.1 Introduction 1 1.2 Polyimides 4 1.2.1 Synthesis of polyimides 5 1.2.1.1 Classical two-step method via poly(amic acid)s 5 1.2.1.2 One-step high temperature solution synthesis of polyimides 16 1.2.1.3 Other synthetic routes to polyimides 17 1.2.1.3.1 Polyimides via derivatized poly(amic acid) 17 precursors 1.2.1.3.2 Polyimides via polyisoimide precursors 19 1.2.1.3.3 Polyimides from diester-acids and diamines 21 (Ester-acid route) 1.2.1.3.4 Polyimides from tetracarboxylic acids and 21 diamines 1.2.1.3.5 Polyimides from dianhydrides and diisocyanates 22 1.2.1.3.6 Polyetherimides via nucleophilic aromatic 26 substitution reactions 1.2.1.3.7 Other routes to polyimide formation 27 1.2.2 Structure-property relationship of aromatic polyimides 28 1.2.2.1 Liquid crystal displays 29 1.2.2.2 Polyimides for LCD Application 31 1.2.2.3 Applications of polyimides 36 1.3 Poly(amideimide)s 37 1.3.1 Synthesis of poly(amideimide)s 38 1.3.2 Structure- property relationship in poly(amideimide)s 38 1.3.3 Applications of poly(amideimide)s 38 1.4 Polyamides 39 1.4.1 Synthetic methods for the preparation of aromatic polyamides 40 1.4.1.1 Low temperature polycondensation of diamines and diacid 40 chlorides 1.4.1.2(a) Solution polycondensation of dicarboxylic acids and 41 diamines 1.4.1.3(b) Interfacial polycondensation of diamine and diacid chloride 41 1.4.1.4 High temperature solution polycondensation of dicarboxylic 42 acids and diamines 1.4.1.5 Polycondensation of N-silylated diamines and diacid 43 chlorides 1.4.1.6 Polycondensation of diisocyanates and dicarboxylic acids 44 1.4.1.7 Transition metal catalyzed polycondensation of aromatic 45 diamines,dihalides and carbon monoxide 1.4.2 Structure- property relationship of aromatic polyamides 45 1.4.3 Applications of polyamides 48 1.5 Polyesters 48 1.5.1 Synthesis of polyesters 49 1.5.1.1 Acid chloride route 49 1.5.1.1.1 Interfacial polycondensation 49 1.5.1.1.2 Low temperature solution polycondensation 51 1.5.1.1.3 High temperature solution polycondensation 52 1.5.1.2 Transesterification route 52 1.5.1.2.1 Phenyl ester route 52 1.5.1.2.2 Phenol acetate route 53 1.5.1.2.3 Phenyl ester and phenol acetate route 54 1.5.1.3 Other routes for polyester synthesis 55 1.5.1.3.1 Phenol silyl ether route 55 1.5.1.3.2 Direct esterification route 55 1.5.1.3.3 Palladium-catalyzed carbonylation of aromatic 57 dibromides and bisphenols 1.5.2 Structure- property relationship in polyesters 57 1.5.2.1 Gas separation 58 1.5.2.2 Polyarylates for gas separation 61 1.5.3 Applications of polyarylates 62 References 65 CHAPTER 2 Scope and Objectives 82 CHAPTER 3 Synthesis and Characterization of Difunctional Monomers Containing Pendent Flexible Alkoxy Groups 3.1 Introduction 88 3.2 Experimental 103 3.2.1 Materials 103 3.2.2 Measurements 103 3.3 Preparations 104 3.3.1 Preparation of dimethyl-5-hydroxyisophthalate
Recommended publications
  • Benzene Derivatives Bearing Electron-Withdrawing Substituents
    Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016 Highly efficient anion transport mediated by 1,3-bis(benzimidazol-2- yl)benzene derivatives bearing electron-withdrawing substituents Chen-Chen Peng, Meng-Jia Zhang, Xiao-Xiao Sun, Xiong-Jie Cai, Yun Chen and Wen-Hua Chen* Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China Supporting Information Experimental Generals. 1H NMR spectra were recorded using a Bruker Avance AV 400 spectrometer and the solvents as internal standards. LR and HR-ESI MS spectra were measured on Waters UPLC/Quattro Premier XE and Agilent 6210 LC/MSD TOF mass spectrometers, respectively. Silica gel 60 Å (reagent pure, Qingdao Haiyang Chemical Co. Ltd) was used for column chromatography. Analytical thin-layer chromatography (TLC) was performed on silica gel plates 60 GF254. Detection on TLC was made by use of iodine and UV (254 or 365 nm). UV-Vis and Fluorescence spectra were measured on a Perkin Elmer Lambda 25 spectrophotometer and LS55 spectrofluorimeter, respectively. EYPC, pyranine and lucigenin were purchased from Sigma Chemical Co. (St Louis, USA), whereas calcein was from J&K Chemical Co. (Beijing, China). All the other chemicals and reagents were obtained from commercial sources and used without further purification. Buffer solutions were prepared in triply distilled deionized water. S1 Chemistry 4 N (ii) NH N N 1 N N 4 2 (i) 1 3 R (3-, R1 = H) 2 H COOH + NH N N HOOC 3 R1 NH 2-, R1 = H (o-Bimbe) 1 2 2 1 Me bimbe R1 4-, R = H (p-Bimbe) 2 3-, R1 = Me (Me-Bimbe) 1 3-, R = F (F-Bimbe) N N 1 (iv) 3-, R = H (m-Bimbe) NH HN COOH NH2 (i) N Imbe + O N NO -Bimbe NO NH N 2 2 2 2 H R1 = Cl (Cl-Bimbe) NH2 (iii) N N 1 + NH HN R = Br (Br-Bimbe) OHC CHO R1 NH 1 2 R = CF3 (CF3-Bimbe) R1 R1 Scheme S1.
    [Show full text]
  • Federal Register / Vol. 60, No. 136 / Monday, July 17, 1995 / Notices
    36598 Federal Register / Vol. 60, No. 136 / Monday, July 17, 1995 / Notices ENVIRONMENTAL PROTECTION TDD (202) 554±0551. e-mail: TSCA- to comply with the requirements of AGENCY [email protected]. TSCA, to conserve EPA resources, and SUPPLEMENTARY INFORMATION to streamline the process and make it [OPPTS±51841; FRL±4959±3] : Under the provisions of TSCA, EPA is required to more timely, EPA is consolidating these Certain Chemicals; Premanufacture publish notice of receipt and status separate notices into one comprehensive Notices reports of chemicals subject to section 5 notice that will be issued at regular reporting requirements. The notice intervals. AGENCY: Environmental Protection requirements are provided in TSCA EPA believes the new format of the Agency (EPA). sections 5(d)(2) and 5(d)(3). Specifically, notice will be easier to understand by ACTION: Notice. EPA is required to provide notice of the interested public, and provides the receipt of PMNs, polymer exemption SUMMARY: Section 5 of the Toxic information that is of greatest interest to notices and TME application requests Substances Control Act (TSCA) requires the public users. Certain information received. EPA also is required to any person who intends to manufacture provided in the earlier notices will not identify those chemical submissions for or import a new chemical to notify EPA be provided under the new format. The which data has been received, the uses and comply with the statutory status reports of substances under or intended uses of such chemicals, and provisions pertaining to the review, potential production volume, the nature of any test data which may manufacture or import of substances not and summaries of health and safety data have been developed.
    [Show full text]
  • Umted States Patent [19] [111 4,303,779 Stenzenberger [45] Dec
    Umted States Patent [19] [111 4,303,779 Stenzenberger [45] Dec. 1, 1981 [54] THERMOSETTING IMIDE RESINS FROM Primary Examiner-—-Harold D. Anderson DIHYDRAZIDE Attorney, Agent, or Firm—Schwartz, Jeffery, Schwaab, [75] Inventor: Horst Stenzenberger, Schriesheim, Mack’ Blumemhal & Koch Fed. Rep. of Germany [57] ABSTRACT [73] Assignee: Technochemie Novel imide resins are prepared by reacting a mixture GmbH-Verfahrenstechnik, of a bisimide of an unsaturated dicarboxylic acid and a Dossenheim, Fed. Rep. of Germany monoimide with a dihydrazide of a dicarboxylic acid, [211 App]. NO; 97,657 preferably in an organic solvent or diluent at elevated temperature for a period of time insufficient to yield an [22] Fi1ed= Nov- 27, 1979 insoluble, infusible, fully cured imide resin. Solutions of [51] Int. Cl.3 ............................................ .. C08G 73/12 the resulting prepolymerilation PrOduCt are Stable at [52] US. (:1. ............................... .. 528/312; 428/473.5; room temperature and their viseeeity remains substan 525/422; 528/170; 528/210; 528/211; 528/321; tielly unchanged for a prolonged period of time- Fully 528/322 cured imide resins and articles thereof of a high heat [58] Field of Search ............. .. 528/322, 170, 312, 315, resistance are obtained by heating said prepolymerized 528/321, 210, 211; 525/422 imide resin or materials such as ?bers, metal wire webs, . and others im re nated therewith, if desired, in the [56] References Cited presence of curringgcatalysts, inhibitors, ?llers and other US PATENT DOCUMENTS materials to curing temperature up to 350° C. 3,562,223 2/1971 Bargain et al. .................... .. 528/322 4,211,860 7/1980 Stenzenberger .................. .. 528/322 17 Claims, N0 Drawings ‘4,303,779 1 2 are mixed with the bisimides and this mixture is reacted with a dicarboxylic acid dihydrazide of the general THERMOSETTINGDIl-IYDRAZIDE IMIDE RESINS , , .
    [Show full text]
  • Non-Aqueous Inkjet Inks of Quinacridone Mixed Crystal
    (19) TZZ_96Z8B_T (11) EP 1 960 478 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C09B 67/22 (2006.01) C09D 11/00 (2006.01) 14.11.2012 Bulletin 2012/46 (86) International application number: (21) Application number: 06830163.9 PCT/EP2006/069013 (22) Date of filing: 28.11.2006 (87) International publication number: WO 2007/060258 (31.05.2007 Gazette 2007/22) (54) NON-AQUEOUS INKJET INKS OF QUINACRIDONE MIXED CRYSTAL PIGMENTS NICHT WÄSSRIGE TINTENSTRAHLTINTEN AUS MIT CHINACRIDON GEMISCHTEN KRISTALLPIGMENTEN ENCRES D’IMPRESSION PAR JET D’ENCRE NON AQUEUSES DE PIGMENTS DE QUINACRIDONE SOUS FORME CRISTALLINE MELANGEE (84) Designated Contracting States: (72) Inventor: DEROOVER, Geert AT BE BG CH CY CZ DE DK EE ES FI FR GB GR B-2640 Mortsel (BE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR (74) Representative: Goedeweeck, Rudi et al Agfa Graphics N.V. (30) Priority: 28.11.2005 EP 05111358 IP Department 3622 15.12.2005 US 750577 P Septestraat 27 2640 Mortsel (BE) (43) Date of publication of application: 27.08.2008 Bulletin 2008/35 (56) References cited: EP-A- 0 348 347 EP-A1- 0 530 142 (73) Proprietor: AGFA GRAPHICS NV DE-A1- 10 106 147 GB-A- 1 085 680 2640 Mortsel (BE) US-A1- 2005 196 697 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Rapid Determination of Eight Related Aromatic Acids in the P-Phthalic
    Rapid Determination of Eight Related Aromatic Acids in the p-Phthalic Acid Mother Liquid Using an Agilent 1260 Infi nity LC System and an Agilent Poroshell 120 SB-C18 Column Application Note Author Abstract Xinlei Yang This Application Note describes a method to determine eight aromatic acids Agilent Technologies Co. Ltd simultaneously in p-phthalic acid mother liquid using an Agilent 1260 Infi nity Shanghai, China Quaternary LC system with a diode array detector (DAD). Good resolution was achieved for all eight target analytes on an Agilent Poroshell 120 SB-C18 column without interference from other impurities of the mother liquid. The analysis was completed in 13 minutes. Due to the excellent performance of the 1260 Infi nity LC System, good precision was obtained using six sequential injections. The results showed an RSD % ≤ 0.18 % (peak area) and RSD % ≤ 0.05 % (retention time) for eight aromatic acids. This study showed that this method is applicable for the analysis of related aromatic acids in the p-phthalic acid mother liquid. Introduction Experimental Mixed working solution Purifi ed p-phthalic acid (PTA) is Instruments A 2.5 mL amount of each stock an important raw material in the solution was pipetted into a 100-mL production of synthetic resin, polyester This method was developed on an volumetric fl ask and diluted to 100 mL Agilent 1260 Infi nity Quaternary LC fi ber, and other chemical products. with MeOH/H2O (10/90, V/V). The The content of p-toluic acid (TA) and System, consisting of a quaternary concentration of each standard in the 4-carboxybenzaldehyde (4-CBA) is often pump (G1311B, built-in four-channel mixed working solution was 25 µg/mL.
    [Show full text]
  • Process for Producing High Purity Isophthalic Acid
    Europa,schesP_ MM M II M M MM I M I M Ml M Ml J European Patent Office _ ^ _ _ © Publication number: 0 465 100 B1 Office europeen- desj brevets^ . © EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification: 28.09.94 © Int. CI.5: C07C 63/24, C07C 51/265 © Application number: 91305756.8 @ Date of filing: 25.06.91 © Process for producing high purity isophthalic acid. ® Priority: 25.06.90 JP 164217/90 Inventor: Yoshida, Terumasa, Mizushima 23.04.91 JP 117896/91 Works of Mitsubishi Gas Chem. Co. Inc, @ Date of publication of application: 10 Mizushima Kaigantori 3-chome 08.01.92 Bulletin 92/02 Kurashiki-shi, Okayama-ken (JP) Inventor: Okoshi, Fumio, c/o Mizushima © Publication of the grant of the patent: Works of Mitsubishi 28.09.94 Bulletin 94/39 Gas Chem. Co. Inc, 10 Mizushima Kaigantori 3-chome © Designated Contracting States: Kurashiki-shi, Okayama-ken (JP) BE DE ES FR GB IT Inventor: Motoyama, Ichihei, Mizushima Works of Mitsubishi © References cited: Gas Chem. Co. Inc, EP-A- 0 021 747 10 Mizushima Kaigantori 3-chome GB-A- 1 555 246 Kurashiki-shi, Okayama-ken (JP) GB-A- 1 577 019 Inventor: Ohta, Tazuo, c/o Mitsubishi Gas US-A- 3 859 344 Chemical Co. Inc. 5-2 Marunouchi 2-chome © Proprietor: MITSUBISHI GAS CHEMICAL COM- Chiyoda-ku, Tokyo (JP) PANY, INC. Inventor: Abe, Toshiaki 5-2, Marunouchi 2-chome 38-3, Yokodai 6-chome, Chiyoda-Ku Isogo-ku Tokyo, 100 (JP) Yokohama-shi, Kanagawa-ken (JP) 00 @ Inventor: Tanaka, Kazuo, c/o Mizushima Works of Mitsubishi Gas Chem.
    [Show full text]
  • Process for Producing High Purity Isophthalic Acid
    Europaisches Patentamt 19 European Patent Office Office europeen des brevets © Publication number : 0 465 1 00 A1 12 EUROPEAN PATENT APPLICATION © Application number : 91305756.8 © int. ci.5: C07C 63/24, C07C 51/265 @ Date of filing : 25.06.91 © Priority: 25.06.90 JP 164217/90 Inventor : Yoshida, Terumasa, Mizushima 23.04.91 JP 117896/91 Works of Mitsubishi Gas Chem. Co. Inc, 10 Mizushima Kaigantori 3-chome @ Date of publication of application : 08.01.92 Bulletin 92/02 Kurashiki-shi, Okayama-ken (JP) Inventor : Okoshi, Fumio, c/o Mizushima Works of Mitsubishi @ Designated Contracting States : Gas Chem. Co. Inc, 10 Mizushima Kaigantori BE DE ES FR GB IT 3-chome Kurashiki-shi, Okayama-ken (JP) Inventor : Motoyama, Ichihei, Mizushima © Applicant : MITSUBISHI GAS CHEMICAL INC. Works of Mitsubishi COMPANY, Gas Chem. Co. 10 Mizushima Marunouchi 2-chome Inc, Kaigantori 5-2, Chiyoda-Ku 3-chome Tokyo, 100 (JP) Kurashiki-shi, Okayama-ken (JP) Inventor : Ohta, Tazuo, c/o Mitsubishi Gas (72) Inventor : Tanaka, Kazuo, c/o Mizushima Chemical Co. Inc. Works of Mitsubishi 5-2 Marunouchi 2-chome Gas Chem. Co. Inc, 10 Mizushima Kaigantori Chiyoda-ku, Tokyo (JP) 3-chome Inventor : Abe, Toshiaki Kurashiki-shi, Okayama-ken (JP) 38-3, Yokodai 6-chome, Isogo-ku Yokohama-shi, Kanagawa-ken (JP) © Representative : Myerscough, Philip Boyd et al J.A. Kemp & Co. 14 South Square, Gray's Inn London WC1R 5LX (GB) © Process for producing high purity isophthalic acid. © A process for producing high-purity isophthalic acid by oxidation of m-xylene with an oxygen- containing
    [Show full text]
  • Dissociation Constants of Organic Acids and Bases
    DISSOCIATION CONSTANTS OF ORGANIC ACIDS AND BASES This table lists the dissociation (ionization) constants of over pKa + pKb = pKwater = 14.00 (at 25°C) 1070 organic acids, bases, and amphoteric compounds. All data apply to dilute aqueous solutions and are presented as values of Compounds are listed by molecular formula in Hill order. pKa, which is defined as the negative of the logarithm of the equi- librium constant K for the reaction a References HA H+ + A- 1. Perrin, D. D., Dissociation Constants of Organic Bases in Aqueous i.e., Solution, Butterworths, London, 1965; Supplement, 1972. 2. Serjeant, E. P., and Dempsey, B., Ionization Constants of Organic Acids + - Ka = [H ][A ]/[HA] in Aqueous Solution, Pergamon, Oxford, 1979. 3. Albert, A., “Ionization Constants of Heterocyclic Substances”, in where [H+], etc. represent the concentrations of the respective Katritzky, A. R., Ed., Physical Methods in Heterocyclic Chemistry, - species in mol/L. It follows that pKa = pH + log[HA] – log[A ], so Academic Press, New York, 1963. 4. Sober, H.A., Ed., CRC Handbook of Biochemistry, CRC Press, Boca that a solution with 50% dissociation has pH equal to the pKa of the acid. Raton, FL, 1968. 5. Perrin, D. D., Dempsey, B., and Serjeant, E. P., pK Prediction for Data for bases are presented as pK values for the conjugate acid, a a Organic Acids and Bases, Chapman and Hall, London, 1981. i.e., for the reaction 6. Albert, A., and Serjeant, E. P., The Determination of Ionization + + Constants, Third Edition, Chapman and Hall, London, 1984. BH H + B 7. Budavari, S., Ed., The Merck Index, Twelth Edition, Merck & Co., Whitehouse Station, NJ, 1996.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7.687,568 B2 Mueller Et Al
    USOO7687568B2 (12) United States Patent (10) Patent No.: US 7.687,568 B2 Mueller et al. (45) Date of Patent: Mar. 30, 2010 (54) POLYESTER COLORANT CONCENTRATE 4,782,111 A 1 1/1988 Klein et al. 5,484.837 A 1/1996 Kung et al. (75) Inventors: Wolfgang Mueller, Premnitz/OT 5,604,279 A 2f1997 Bernhardt et al. Doeberitz (DE); Harald Eckhardt, EG R. 19O Whs tal Niederwerth (DE); Hans-Peter Koenig, -- w enzel et al. Montabaur (DE); Nathalie Fischbach, 7,066,993 B2 6/2006 Wuzik et al. ERAp.) Franz Thurnherr, FOREIGN PATENT DOCUMENTS a SC DE 1183,195 12, 1964 (73) Assignee: Clariant Masterbatches (Deutschland) DE 1594216 8, 1969 GmbH, Lahnstein (DE) DE 1965379 7, 1970 EP OOO8373 3, 1980 (*) Notice: Subject to any disclaimer, the term of this 3. patent is extended or adjusted under 35 GB 1044378 9, 1966 U.S.C. 154(b) by 0 days. GB 1249.720 10, 1971 WO WO91f13931 9, 1991 (21) Appl. No.: 11/663,521 OTHER PUBLICATIONS (22) PCT Filed: Sep. 17, 2005 PCT Search Report for PCT/EP2005/010054, mailed Dec. 21, 2005. (86). PCT No.: PCT/EP2005/010054 Kim D- et al., “Effects of Dispersing Agents on Dispersity and Mechanical Properties of Carbon Black/PET.” Polymer Engineering S371 (c)(1) and Science, Wiley, Hoboken, NJ. US vol. 39 No. 3, ppp. 500-507: . Mar. 1999. (2), (4) Date: Mar. 21, 2007 PCT English Translation of PCT International Preliminary Reporton (87) PCT Pub. No.: WO2006/032423 Patentability for PCT/EP 2005/010054, mailed Jul. 12, 2007.
    [Show full text]
  • (CDR) by CASRN Or Accession Number
    List of Chemicals Reported for the 2012 Chemical Data Reporting (CDR) by CASRN or Accession Number For the 2012 CDR, 7,674 unique chemicals were reported by manufacturers (including importers). Chemicals are listed by CAS Registry Number (for non-confidential chemicals) or by TSCA Accession Number (for chemicals listed on the confidential portion of the TSCA Inventory). CASRN or CASRN or ACCESSION ACCESSION NUMBER CA INDEX NAME or GENERIC NAME NUMBER CA INDEX NAME or GENERIC NAME 100016 Benzenamine, 4-nitro- 10042769 Nitric acid, strontium salt (2:1) 10006287 Silicic acid (H2SiO3), potassium salt (1:2) 10043013 Sulfuric acid, aluminum salt (3:2) 1000824 Urea, N-(hydroxymethyl)- 10043115 Boron nitride (BN) 100107 Benzaldehyde, 4-(dimethylamino)- 10043353 Boric acid (H3BO3) 1001354728 4-Octanol, 3-amino- 10043524 Calcium chloride (CaCl2) 100174 Benzene, 1-methoxy-4-nitro- 100436 Pyridine, 4-ethenyl- 10017568 Ethanol, 2,2',2''-nitrilotris-, phosphate (1:?) 10043842 Phosphinic acid, manganese(2+) salt (2:1) 2,7-Anthracenedisulfonic acid, 9,10-dihydro- 100447 Benzene, (chloromethyl)- 10017591 9,10-dioxo-, sodium salt (1:?) 10045951 Nitric acid, neodymium(3+) salt (3:1) 100185 Benzene, 1,4-bis(1-methylethyl)- 100469 Benzenemethanamine 100209 1,4-Benzenedicarbonyl dichloride 100470 Benzonitrile 100210 1,4-Benzenedicarboxylic acid 100481 4-Pyridinecarbonitrile 10022318 Nitric acid, barium salt (2:1) 10048983 Phosphoric acid, barium salt (1:1) 9-Octadecenoic acid (9Z)-, 2-methylpropyl 10049044 Chlorine oxide (ClO2) 10024472 ester Phosphoric acid,
    [Show full text]
  • Some Decom Position Routes in the Mass Spectra of Aromatic
    MASS SPECTRA OF AROMATIC CARBOXYLIC ACIDS 883 (u_ = Elektronendriftgeschwindigkeit). Der entspre­ chende induzierte Stromimpuls folgt aus (A.l) mit m D2 ( r + ft)J) (A.9). Wir berechnen den Stromimpuls zur Zeit t, ist aber der komplexe Leitwert des Lawinenraums welchen eine bei £ = 0 gestartete Lawine erzeugt; sie nach Abb. 4 bei Anwesenheit nur einer einzigen Lawine befindet sich am Ort x = u_t und besteht aus (qje) e^x der Ladung q0 e t!x. Bei genügend vielen, im Mittel Elektronen. Es wird gleichmäßig verteilten Lawinen der mittleren Häufig­ t keit Zges Lawinen/sec und der Laufzeit tt findet man i(t) = J a'it, ta) dts+ (A.10) mit I = zges q0 eaD leicht den Leitwert der gesamten o Strecke aus m iti(i, £s) aus (A.9). Der letzte Summand berücksich­ tigt die beim Lawinenstart bereits vorhandenen Primär­ elektronen. Bei der Ausführung der Integration (A.10) 0 erhält man einen Ausdrude ^ U ^ cos co t , welcher im eI(v—j(o) eaD — l Fall v l/r und bei gleichzeitigem Übergang auf Zei­ a D m D(oj2 + v2) eaD (A.12) gergrößen U = U „ ei<ot die folgende einfache Form eI(v—j(o) annimmt: a D m u - D (co2+v2) Some Decomposition Routes in the Mass Spectra of Aromatic Carboxylic Acids J. H. B eynon , B. E. Job, and A. E. W illia m s Imperial Chemical Industries Limited, Dyestuffs Division and Petrochemical and Polymer Laboratory, Hexagon House, Blackley, Manchester 9 (Z. Naturforschg. 20 a, 883— 887 [1965] ; received 21 May 1965) The mass spectra of benzoic acid, phthalic acid, isophthalic acid and terephthalic acid, to­ gether with the analogues deuterated on the carboxylic acid group have been studied.
    [Show full text]
  • <Predator> Carlton
    pred.txt The selected rants of Michael <predator> Carlton Cover design by Stacy Scheff "Note: I consider my "grabs" to be GPL Copyleft. Available for nonprofit distribution, I retain ownership, not to be copyrighted, and not to be used by for-profit corporate entities." -From "mol" by <predator> First printed in Sydney, Australia November 2004 Breakout Design + Print P.O. Box 386, Broadway, NSW 2007 This printing was a limited run of 150. Any additional copies will be retained by cat@lyst: [email protected] The .pdf of this book will be linked from http://tinyurl.com/2tzxq Table of Contents Introduction - Stacy 2 Introduction - GDM 3 Predatory, a quote 4 I luv a sunburnt country 5 The approach text on drain exploration 6 The Information Paradigm 74 Thoughts on the information-systemic nature of reality 195 Why nature's large complex pesticides are less likely to engender resistance in target organisms than the simple ones we humans manufacture 240 Thoughts on molecular genetics 255 The blogs 292 Introduction to the blogs - Joss................293 consent.txt...................................294 gutful.txt....................................297 gutting.txt...................................308 gutted.txt....................................317 hunting.txt...................................326 bill_me.txt...................................348 getting_it.txt................................359 losing_it.txt.................................373 ides.txt......................................397 march.txt.....................................426 foolish.txt...................................463 fools.txt.....................................464 mayday.txt....................................505 Epilogue 526 1 Introduction - Stacy I started this project because Andy Nicholson offered to print out pred's blogs for himself and some friends because it was hard reading so much text on the screen. I thought it would be nice to have them printed and bound in a book instead.
    [Show full text]