Optics Start with a Point Source of Light

Total Page:16

File Type:pdf, Size:1020Kb

Optics Start with a Point Source of Light Optics Start with a point source of light Photographic plate object We do not get a sharp picture of the source; we just get a diffuse blur The lens Rays get bent downwards object image Outer rays bend more Middle ray goes straight through If we arrange the shape of the lens just right, the rays will focus to a point Question: If we make the lens so that an object at A focuses, then will objects at B, C, ... focus somewhere as well? B C A A' Answer: No, they will not ... at best we can manage a good approximation .... The approximation (a) The lens in thin compared to the distances of the object and image small (b) The objects are small compared to the curvature radius of the lens surfaces curvature radius of lens surface small All the concerned rays have angles to the horizontal that are small Why do the rays bend ? sin ✓1 n2 Snell's law = sin ✓2 n1 n1 ✓1 The ray bends closer to the normal when it enters a denser medium n2 ✓2 n1 ✓1 The path of light rays is n always reversible 2 ✓2 The ray bends away from the normal when it enters a rarer medium GR9677 38 GR9677 sin ✓ 1 = sin 90o 1.33 n1 =1 sin ✓ 0.75 ⇡ n2 =1.33 ✓ 38 98. Suppose that a system in quantum state i has energy Ei . In thermal equilibrium, the expression -EkTi / Â Eei i -EkT/ Â e i i represents which of the following? (A) The average energy of the system (B) The partition function (C) Unity (D) The probability to find the system with 97. A beam of light has a small wavelength spread energy Ei d l about a central wavelength l . The beam (E) The entropy of the system travels in vacuum until it enters a glass plate at an angle q relative to the normal to the plate, as 99. A photon strikes an electron of mass m that is shown in the figure above. The index of refraction initially at rest, creating an electron-positron pair. of the glass is given by n()l . The angular spread The photon is destroyed and the positron and two dq ¢ of the refracted beam is given by electrons move off at equal speeds along the initial direction of the photon. The energy of the 1 (A) dq¢ = dl photon was GR0177 n 98. Suppose that a system in quantum state i 2 (A) mc has energy Ei dn. In()l thermal equilibrium, the (B) 2mc2 (B) dq¢ = dl expression dl (C) 3mc2 2 Ee-EkTi / (D) 4mc 1 Âdl i 2 (C) dq¢= i dl (E) 5mc l dn -EkT/ Â e i sin qi dl (D) dq¢ = sin q l represents which of¢ the following? (A) The averagetan energyq ¢ dn() lof the system (E) dq¢ = dl (B) The partitionn functiondl (C) Unity (D) The probability to find the system with 97. A beam of light has a small wavelength spread energy Ei d l about a central wavelength l . The beam (E) The entropy of the system travels in vacuum until it enters a glass plate at an angle q relative to the normal to the plate, as 99. A photon strikes an electron of mass m that is shown in the figure above. The index of refraction initially at rest, creating an electron-positron pair. of the glass is given by n()l . The angular spread The photon is destroyed and the positron and two dq ¢ of the refracted beam is given by electrons move off at equal speeds along the initial direction of the photon. The energy of the 1 (A) dq¢ = dl photon was n 2 (A) mc dn()l (B) 2mc2 (B) dq¢ = dl dl (C) 3mc2 Unauthorized(D) 4mc2 copying or reuse of any part of this page is illegal. GO ON TO THE NEXT PAGE. 1 dl (E) 5mc2 (C) dq¢= dl l dn 66 sin q dl (D) dq¢ = sin q ¢ l tan q ¢ dn()l (E) dq¢ = dl n dl Unauthorized copying or reuse of any part of this page is illegal. GO ON TO THE NEXT PAGE. 66 98. Suppose that a system in quantum state i has energy Ei . In thermal equilibrium, the expression -EkTi / Â Eei i -EkT/ Â e i i represents which of the following? (A) The average energy of the system (B) The partition function (C) Unity (D) The probability to find the system with 97. A beam of light has a small wavelength spread energy Ei d l about a central wavelength l . The beam (E) The entropy of the system travels in vacuum until it enters a glass plate at an angle q relative to the normal to the plate, as 99. A photon strikes an electron of mass m that is shown in the figure above. The index of refraction initially at rest, creating an electron-positron pair. of the glass is given by n()l . The angular spread The photon is destroyed and the positron and two dq ¢ of the refracted beam is given by electrons move off at equal speeds along the initial direction of the photon. The energy of the 1 GR0177 (A) dq¢ = dl photon was 98. Suppose that an system in quantum state i (A) mc2 has energy E . In thermal equilibrium, the idn ()l (B) 2mc2 expression(B) dq¢ = dl dl (C) 3mc2 Ee-EkTi / (D) 4mc2 1 Âdl i (C) dq¢= i dl (E) 5mc2 l dn -EkTi / Â e sin qi dl (D) dq¢ = represents whichsin qof¢ thel following? (A) The average energy of the system tan q ¢ dn()l (E) dq¢ = dl (B) The partitionn functiondl (C) Unity (D) The probability to find the system with 97. A beam of light has a small wavelength spread energy Ei d l about a central wavelength l . The beam (E) The entropy of the system travels in vacuum until it enters a glass plate at an angle q relative to the normal to the plate, as 99. A photon strikes an electron of mass m that is shown in the figure above. The index of refraction initially at rest, creating an electron-positron pair. of the glass is given by n()l . The angular spread The photon is destroyed and the positron and two dq ¢ of the refracted beam is given by electrons move off at equal speeds along the initial direction of the photon. The energy of the 1 (A) dq¢ = dl photon was n 2 (A) mc dn()l (B) 2mc2 (B) dq¢ = dl 2 dl (C) 3mc 2 Unauthorized(D) 4mc copying or reuse of 1 dl any part of this page is illegal. (C) dq¢= dl (E) 5mc2 GO ON TO THE NEXT PAGE. l dn 66 sin q dl (D) dq¢ = sin q ¢ l tan q ¢ dn()l (E) dq¢ = dl n dl Unauthorized copying or reuse of any part of this page is illegal. GO ON TO THE NEXT PAGE. 66 What shape of then lens will do this job ? Where do the rays focus? small object large If the object if very far away, and we are looking at a small transverse region near the lens, the the rays look almost parallel focal point focal length f Rays from infinity focus at the focal point f If the object comes closer, then it is harder to focus the rays, so the image forms further away object distance o image distance i 1 1 1 + = o i f f 1 1 1 + = o i f object distance o image distance i f Object moves from infinity to focal point Image moves from focal point to infinity Magnification How do we locate the image of a point off the axis ? We rotate the rays object height h image height h 0 object distance o image distance i image height h 0 image distance i (a) Size is given by = object height h object distance o (b) The image is inverted h0 i We write = h − o HRW 28E: The sun subtends an angle of 0.5 degrees. You produce an image of the sun on a screen, using a convex lens of focal length 20 cm. What is the diameter of the image ? HRW 28E: The sun subtends an angle of 0.5 degrees. You produce an image of the sun on a screen, using a convex lens of focal length 20 cm. What is the diameter of the image ? 1 1 ∆✓ 0.50 radians ⇡ ⇡ 2 57 rays from top of object Diameter f ∆✓ 0.18 cm ⇡ ⇡ o image distance i = f rays from bottom of object Two lenses focal length f 1 focal length f 2 final image object height h height h 00 image height h 0 object distance o image distance i object distance o 0 image distance i 0 1 1 1 1 1 1 + = + = o i f1 o0 i0 f2 h h h Magnification M = 00 = 0 00 h h h ✓ ◆ ✓ ◆✓ 0 ◆ i i0 i i0 Final image is = = −o −o o o upright ✓ ◆✓ 0 ◆ ✓ ◆✓ 0 ◆ HRW A beam expander is made of two lenses as shown. What is the ratio of the intensities of the emergent beam to the incident beam, if f1 = 10 cm, f2 = 20 cm ? f1 f2 HRW A beam expander is made of two lenses as shown. What is the ratio of the intensities of the emergent beam to the incident beam, if f1 = 10 cm, f2 = 20 cm ? f1 f2 I f 2 1 f = 1 = I f 4 i ✓ 2 ◆ GR9677 38 GR9677 f 2 = 10 f1 f2 = 15 cm f1 + f2 = 16.5 cm f1 f2 38 The telescope Angular magnification The magnification relation is h0 i hi = h0 = h − o − o An object like the sun is very far away.
Recommended publications
  • Galileo and the Telescope
    Galileo and the Telescope A Discussion of Galileo Galilei and the Beginning of Modern Observational Astronomy ___________________________ Billy Teets, Ph.D. Acting Director and Outreach Astronomer, Vanderbilt University Dyer Observatory Tuesday, October 20, 2020 Image Credit: Giuseppe Bertini General Outline • Telescopes/Galileo’s Telescopes • Observations of the Moon • Observations of Jupiter • Observations of Other Planets • The Milky Way • Sunspots Brief History of the Telescope – Hans Lippershey • Dutch Spectacle Maker • Invention credited to Hans Lippershey (c. 1608 - refracting telescope) • Late 1608 – Dutch gov’t: “ a device by means of which all things at a very great distance can be seen as if they were nearby” • Is said he observed two children playing with lenses • Patent not awarded Image Source: Wikipedia Galileo and the Telescope • Created his own – 3x magnification. • Similar to what was peddled in Europe. • Learned magnification depended on the ratio of lens focal lengths. • Had to learn to grind his own lenses. Image Source: Britannica.com Image Source: Wikipedia Refracting Telescopes Bend Light Refracting Telescopes Chromatic Aberration Chromatic aberration limits ability to distinguish details Dealing with Chromatic Aberration - Stop Down Aperture Galileo used cardboard rings to limit aperture – Results were dimmer views but less chromatic aberration Galileo and the Telescope • Created his own (3x, 8-9x, 20x, etc.) • Noted by many for its military advantages August 1609 Galileo and the Telescope • First observed the
    [Show full text]
  • Compound Light Microscopes Magnification
    Compound Light Microscopes • Frequently used tools of biologists. • Magnify organisms too small to be seen with the unaided eye. • To use: – Sandwich specimen between transparent slide and thin, transparent coverslip. – Shine light through specimen into lenses of microscope. • Lens closest to object is objective lens. • Lens closest to your eye is the ocular lens. • The image viewed through a compound light microscope is formed by the projection of light through a mounted specimen on a slide. Eyepiece/ ocular lens Magnification Nosepiece Arm Objectives/ • Magnification - the process of objective lens enlarging something in appearance, not Stage Clips Light intensity knob actual physical size. Stage Coarse DiaphragmDiaphragm Adjustment Fine Adjustment Light Positioning knobs Source Base Always carry a microscope with one hand holding the arm and one hand under the base. What’s my power? Comparing Powers of Magnification To calculate the power of magnification or total magnification, multiply the power of the ocular lens by the We can see better details with higher power of the objective. the powers of magnification, but we cannot see as much of the image. Which of these images would be viewed at a higher power of magnification? 1 Resolution Limit of resolution • Resolution - the shortest distance • As magnifying power increases, we see between two points more detail. on a specimen that • There is a point where we can see no can still be more detail is the limit of resolution. distinguished as – Beyond the limit of resolution, objects get two points. blurry and detail is lost. – Use electron microscopes to reveal detail beyond the limit of resolution of a compound light microscope! Proper handling technique Field of view 1.
    [Show full text]
  • Object-Image Real Image Virtual Image
    Object-Image • A physical object is usually observed by reflected light that diverges from the object. • An optical system (mirrors or lenses) can 3.1 Images formed by Mirrors and Lenses produce an image of the object by redirecting the light. • Images – Real Image • Image formation by mirrors – Virtual Image • Images formed by lenses Real Image Virtual Image Optical System ing diverging erg converging diverging diverging div Object Object real Image Optical System virtual Image Light appears to come from the virtual image but does not Light passes through the real image pass through the virtual image Film at the position of the real image is exposed. Film at the position of the virtual image is not exposed. Each point on the image can be determined Image formed by a plane mirror. by tracing 2 rays from the object. B p q B’ Object Image The virtual image is formed directly behind the object image mirror. Light does not A pass through A’ the image mirror A virtual image is formed by a plane mirror at a distance q behind the mirror. q = -p 1 Parabolic Mirrors Parabolic Reflector Optic Axis Parallel rays reflected by a parabolic mirror are focused at a point, called the Parabolic mirrors can be used to focus incoming parallel rays to a small area Focal Point located on the optic axis. or to direct rays diverging from a small area into parallel rays. Spherical mirrors Parallel beams focus at the focal point of a Concave Mirror. •Spherical mirrors are much easier to fabricate than parabolic mirrors • A spherical mirror is an approximation of a parabolic Focal point mirror for small curvatures.
    [Show full text]
  • Curriculum Overview Physics/Pre-AP 2018-2019 1St Nine Weeks
    Curriculum Overview Physics/Pre-AP 2018-2019 1st Nine Weeks RESOURCES: Essential Physics (Ergopedia – online book) Physics Classroom http://www.physicsclassroom.com/ PHET Simulations https://phet.colorado.edu/ ONGOING TEKS: 1A, 1B, 2A, 2B, 2C, 2D, 2F, 2G, 2H, 2I, 2J,3E 1) SAFETY TEKS 1A, 1B Vocabulary Fume hood, fire blanket, fire extinguisher, goggle sanitizer, eye wash, safety shower, impact goggles, chemical safety goggles, fire exit, electrical safety cut off, apron, broken glass container, disposal alert, biological hazard, open flame alert, thermal safety, sharp object safety, fume safety, electrical safety, plant safety, animal safety, radioactive safety, clothing protection safety, fire safety, explosion safety, eye safety, poison safety, chemical safety Key Concepts The student will be able to determine if a situation in the physics lab is a safe practice and what appropriate safety equipment and safety warning signs may be needed in a physics lab. The student will be able to determine the proper disposal or recycling of materials in the physics lab. Essential Questions 1. How are safe practices in school, home or job applied? 2. What are the consequences for not using safety equipment or following safe practices? 2) SCIENCE OF PHYSICS: Glossary, Pages 35, 39 TEKS 2B, 2C Vocabulary Matter, energy, hypothesis, theory, objectivity, reproducibility, experiment, qualitative, quantitative, engineering, technology, science, pseudo-science, non-science Key Concepts The student will know that scientific hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. The student will know that scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers.
    [Show full text]
  • Lab 11: the Compound Microscope
    OPTI 202L - Geometrical and Instrumental Optics Lab 9-1 LAB 9: THE COMPOUND MICROSCOPE The microscope is a widely used optical instrument. In its simplest form, it consists of two lenses Fig. 9.1. An objective forms a real inverted image of an object, which is a finite distance in front of the lens. This image in turn becomes the object for the ocular, or eyepiece. The eyepiece forms the final image which is virtual, and magnified. The overall magnification is the product of the individual magnifications of the objective and the eyepiece. Figure 9.1. Images in a compound microscope. To illustrate the concept, use a 38 mm focal length lens (KPX079) as the objective, and a 50 mm focal length lens (KBX052) as the eyepiece. Set them up on the optical rail and adjust them until you see an inverted and magnified image of an illuminated object. Note the intermediate real image by inserting a piece of paper between the lenses. Q1 ● Can you demonstrate the final image by holding a piece of paper behind the eyepiece? Why or why not? The eyepiece functions as a magnifying glass, or simple magnifier. In effect, your eye looks into the eyepiece, and in turn the eyepiece looks into the optical system--be it a compound microscope, a spotting scope, telescope, or binocular. In all cases, the eyepiece doesn't view an actual object, but rather some intermediate image formed by the "front" part of the optical system. With telescopes, this intermediate image may be real or virtual. With the compound microscope, this intermediate image is real, formed by the objective lens.
    [Show full text]
  • Depth of Focus (DOF)
    Erect Image Depth of Focus (DOF) unit: mm Also known as ‘depth of field’, this is the distance (measured in the An image in which the orientations of left, right, top, bottom and direction of the optical axis) between the two planes which define the moving directions are the same as those of a workpiece on the limits of acceptable image sharpness when the microscope is focused workstage. PG on an object. As the numerical aperture (NA) increases, the depth of 46 focus becomes shallower, as shown by the expression below: λ DOF = λ = 0.55µm is often used as the reference wavelength 2·(NA)2 Field number (FN), real field of view, and monitor display magnification unit: mm Example: For an M Plan Apo 100X lens (NA = 0.7) The depth of focus of this objective is The observation range of the sample surface is determined by the diameter of the eyepiece’s field stop. The value of this diameter in 0.55µm = 0.6µm 2 x 0.72 millimeters is called the field number (FN). In contrast, the real field of view is the range on the workpiece surface when actually magnified and observed with the objective lens. Bright-field Illumination and Dark-field Illumination The real field of view can be calculated with the following formula: In brightfield illumination a full cone of light is focused by the objective on the specimen surface. This is the normal mode of viewing with an (1) The range of the workpiece that can be observed with the optical microscope. With darkfield illumination, the inner area of the microscope (diameter) light cone is blocked so that the surface is only illuminated by light FN of eyepiece Real field of view = from an oblique angle.
    [Show full text]
  • The Microscope Parts And
    The Microscope ­ Parts and Use Name:_______________________ Period:______ Historians credit the invention of the compound microscope to the Dutch spectacle maker, Zacharias Janssen, around the year 1590. The compound microscope uses lenses and light to enlarge the image and is also called an optical or light microscope (vs./ an electron microscope). The simplest optical microscope is the magnifying glass and is good to about ten times (10X) magnification. The compound microscope has two systems of lenses for greater magnification, 1) the ocular, or eyepiece lens that one looks into and 2) the objective lens, or the lens closest to the object. Before purchasing or using a microscope, it is important to know the functions of each part. Eyepiece Lens: the lens at the top that you look through. They are usually 10X or 15X power. Tube: Connects the eyepiece to the objective lenses Arm: Supports the tube and connects it to the base. It is used along with the base to carry the microscope Base: The bottom of the microscope, used for support Illuminator: A steady light source (110 volts) used in place of a mirror. Stage: The flat platform where you place your slides. Stage clips hold the slides in place. Revolving Nosepiece or Turret: This is the part that holds two or more objective lenses and can be rotated to easily change power. Objective Lenses: Usually you will find 3 or 4 objective lenses on a microscope. They almost always consist of 4X, 10X, 40X and 100X powers. When coupled with a 10X (most common) eyepiece lens, we get total magnifications of 40X (4X times 10X), 100X , 400X and 1000X.
    [Show full text]
  • How Do the Lenses in a Microscope Work?
    Student Name: _____________________________ Date: _________________ How do the lenses in a microscope work? Compound Light Microscope: A compound light microscope uses light to ​ ​ transmit an image to your eye. Compound ​ deals with the microscope having more than one lens. Microscope is the ​ ​ combination of two words; "micro" meaning small and "scope" meaning view. Early microscopes, like Leeuwenhoek's, were called simple because they only had one lens. Simple scopes work like magnifying glasses that you have seen and/or used. These early microscopes had limitations to the amount of magnification no matter how they were constructed. The creation of the compound microscope by the Janssens helped to advance the field of microbiology light years ahead of where it had been only just a few years earlier. The Janssens added a second lens to magnify the image of the primary (or first) lens. Simple light microscopes of the past could magnify an object to 266X as in the case of Leeuwenhoek's microscope. Modern compound light microscopes, under optimal conditions, can magnify an object from 1000X to 2000X (times) the specimens original diameter. "The Compound Light Microscope." The Compound Light Microscope. Web. 16 Feb. 2017. ​ ​ http://www.cas.miamioh.edu/mbi-ws/microscopes/compoundscope.html Text is available under the Creative Commons Attribution-NonCommercial 4.0 ​ International (CC BY-NC 4.0) license. - 1 – Student Name: _____________________________ Date: _________________ Now we will describe how a microscope works in somewhat more detail. The first lens of a microscope is the one closest to the object being examined and, for this reason, is called the objective.
    [Show full text]
  • A. Introduction B. Magnification, Resolution, and Working Distance
    SOURCE: http://abacus.bates.edu/~ganderso/biology/resources/microscopy.html Compound Microscopes | mag vs resolution | working distance | monocular parts | care of the microscopes | | monocular focusing | oil immersion | measuring field diameter | binocular parts | binocular focusing | | Microscopy Exercises | A. Introduction The typical compound light microscope (Fig.1) is capable of increasing our ability to see detail by 1000 times so that objects as small as 0.1 micrometer (um) or 100 nanometers (nm) can be seen. Electron microscopes extend this range further allowing us to see objects as small as 0.5 nm in diameter or roughly 1/200,000th the size we can see with a naked eye. Needless to say, development and use of microscopes has vastly improved our understanding of cells and their structure and function. Figure 1. Binocular compound microscope. B. Magnification, Resolution, and Working Distance Magnification is simply a function of making an object appear bigger, such as when we use a hand lens to enlarge printed word. Merely magnifying an object without a simultaneous increase in the amount of detail seen will not provide the viewer with a good image. The ability of a microscope (or eye) to see detail is a function of its resolving power. Resolving power is defined as the minimum distance between two objects at which the objects can just be distinguished as separate and is a function of the wavelength of light used and the quality of the optics. In general, the shorter the wavelength of the light source, the higher the resolution of the microscope. Working distance is the distance between the objective lens and the specimen.
    [Show full text]
  • Scope & Spotting Scope Resolution and Magnification
    Scope & Spotting Scope Resolution and Magnification Eyesight Resolution Limits The normal or median human visual resolution limit is 1 MOA (minute of angle). This is also called normal visual acuity when use by your eye doctor. On the typical Snellen eye chart, the 20/20 line (20 foot line in USA) or 6/6 line (6 meters in the rest of the world) was designed to be readable with a visual resolution or acuity of 1 MOA. The other lines/characters are scaled accordingly. Telescopes were developed as visual aids to overcome this limited visual resolution or acuity. The principal tool for resolution improvement is magnification. It is obvious that magnification increases the apparent size of objects. However and more importantly magnification increases visual resolution. In the following illustration note how even small (doublings – powers of 2) increases in magnification greatly increase our ability to resolve (distinguish) small but important details by both increasing their apparent size and making better use of the available field of view. Fred Bohl, 10 June 2007 Page 1 of 6 Scope & Spotting Scope Resolution and Magnification Scope Resolution Limits Diffraction Limited Optics A long historical record holds that diffraction defines the ultimate resolution limit of telescopes. Generally we can say that any aperture with a finite size will cause diffraction and hence its resolution will be limited. The finite aperture (front lens, main mirror) must cut off a part of the incoming plane wave front. This missing part is disturbing the otherwise perfect interference of the propagating waves in a certain way. The result is a modulation of the wave front called the Point Spread Function (PSF).
    [Show full text]
  • Laboratory 7: Properties of Lenses and Mirrors
    Laboratory 7: Properties of Lenses and Mirrors Converging and Diverging Lens Focal Lengths: A converging lens is thicker at the center than at the periphery and light from an object at infinity passes through the lens and converges to a real image at the focal point on the other side of the lens. A diverging lens is thinner at the center than at the periphery and light from an object at infinity appears to diverge from a virtual focus point on the same side of the lens as the object. The principal axis of a lens is a line drawn through the center of the lens perpendicular to the face of the lens. The principal focus is a point on the principal axis through which incident rays parallel to the principal axis pass, or appear to pass, after refraction by the lens. There are principle focus points on either side of the lens equidistant from the center (See Figure 1a). Figure 1a: Converging Lens, f>0 Figure 1b: Diverging Lens, f<0 In Fig. 1 the object and image are represented by arrows. Two rays are drawn from the top of the object. One ray is parallel to the principal axis which bends at the lens to pass through the principle focus. The second ray passes through the center of the lens and undeflected. The intersection of these two rays determines the image position. The focal length, f, of a lens is the distance from the optical center of the lens to the principal focus. It is positive for a converging lens, negative for a diverging lens.
    [Show full text]
  • THE STUDY of SATURN's RINGS 1 Thesis Presented for the Degree Of
    1 THE STUDY OF SATURN'S RINGS 1610-1675, Thesis presented for the Degree of Doctor of Philosophy in the Field of History of Science by Albert Van Haden Department of History of Science and Technology Imperial College of Science and Teohnology University of London May, 1970 2 ABSTRACT Shortly after the publication of his Starry Messenger, Galileo observed the planet Saturn for the first time through a telescope. To his surprise he discovered that the planet does.not exhibit a single disc, as all other planets do, but rather a central disc flanked by two smaller ones. In the following years, Galileo found that Sa- turn sometimes also appears without these lateral discs, and at other times with handle-like appendages istead of round discs. These ap- pearances posed a great problem to scientists, and this problem was not solved until 1656, while the solution was not fully accepted until about 1670. This thesis traces the problem of Saturn, from its initial form- ulation, through the period of gathering information, to the final stage in which theories were proposed, ending with the acceptance of one of these theories: the ring-theory of Christiaan Huygens. Although the improvement of the telescope had great bearing on the problem of Saturn, and is dealt with to some extent, many other factors were in- volved in the solution of the problem. It was as much a perceptual problem as a technical problem of telescopes, and the mental processes that led Huygens to its solution were symptomatic of the state of science in the 1650's and would have been out of place and perhaps impossible before Descartes.
    [Show full text]