Investigations Into Alkene Hydration and Alkene Oxidation Catalysis

Total Page:16

File Type:pdf, Size:1020Kb

Investigations Into Alkene Hydration and Alkene Oxidation Catalysis Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2013 Investigations into alkene hydration and alkene oxidation catalysis William Schreiter Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemistry Commons Recommended Citation Schreiter, William, "Investigations into alkene hydration and alkene oxidation catalysis" (2013). LSU Doctoral Dissertations. 473. https://digitalcommons.lsu.edu/gradschool_dissertations/473 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. INVESTIGATIONS INTO ALKENE HYDRATION AND ALKENE OXIDATION CATALYSIS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy In The Department of Chemistry by William James Schreiter B. A., Lawrence University, 2004 May 2013 TABLE OF CONTENTS ABSTRACT .......................................................................................................................................v CHAPTER 1. INTRODUCTION .....................................................................................................1 1.1 Alkene Hydration ...................................................................................................................1 1.2 Alkene Oxidation ...................................................................................................................9 1.3 References ..............................................................................................................................20 CHAPTER 2. INVESTIGATION INTO ALKENE HYDRATION CATALYSIS .........................27 2.1 Motivation ..............................................................................................................................27 2.2 Attempted Alkene Hydration Catalysis with Ni/Phosphine Complexes ...............................29 2.3 Attempted Hydration Catalysis Utilizing Other Metal/Phosphine Complexes .....................33 2.4 The White Solid “Product” – How to Waste a Year in Graduate School and Get Your Advisor Excited (at least initially) ...............................................................................................36 2.5 Catalytic Screening for Possible Alkene Hydration Catalysis ...............................................40 2.6 Conclusions ............................................................................................................................45 2.7 References ..............................................................................................................................47 CHAPTER 3. INVESTIGATION INTO ALKENE OXIDATION CATALYSIS UTILIZING Ni/PHOSPHINE COMPLEXES ................................................................................49 3.1 Motivation ..............................................................................................................................49 3.2 Alkene Oxidative Cleavage via Bimetallic Ni/Phosphine Complexes ..................................51 3.3 Identification of the Broad Resonances .................................................................................65 3.4 Monometallic Metal Complexes as Possible Oxidative Cleavage Catalysts .........................72 3.5 Other Oxidizing Agents .........................................................................................................74 3.6 Mechanistic Possibilities ........................................................................................................76 3.7 Conclusions ............................................................................................................................83 1 31 1 CHAPTER 4. H AND P{ H} NMR STUDIES OF RAC- AND MESO-Ni2Cl4(et,ph-P4), Ni21R and Ni21M ......................................................................................................87 4.1 Introduction ............................................................................................................................87 4.2 Ni2Cl4(meso-et,ph-P4), Ni21M, and Ni2Cl4(rac-et,ph-P4), Ni21R ........................................89 4.3 Effect of Water on Ni21M......................................................................................................92 4.4 Effect of the Organic Solvent on the Reaction Between Ni21M and Water ..........................96 4.5 Varying the Concentration of Water ......................................................................................104 4.6 Identification of F and Attempts to Synthesize A, B and C ..................................................107 4.7 Ni21R and Water ....................................................................................................................112 4.8 Effect of Other Additives on the Reaction (NaCl, O2. Inhibitors, Heat) ...............................119 4.9 Conclusions and Proposals ....................................................................................................124 4.10 References ............................................................................................................................134 CHAPTER 5. SYNTHESIS, SEPARATION AND CHARACTERIZATION OF 2R AND 2M AND Ni22M AND Ni22R ..........................................................................................135 5.1 Introduction ............................................................................................................................135 5.2 Synthesis and Characterization of 2R and 2M ......................................................................136 5.3 Synthesis and Separation of Ni22M and Ni22R .....................................................................138 ii 5.4 Cyanolysis of Ni22M and Ni22R and Isolation of the Pure Diastereomers ...........................141 5.5 Preliminary Investigation into the Solution-State Chemistry and Reactivity of Ni22M and Ni22R ...........................................................................................................................................146 5.6 Conclusions ............................................................................................................................148 5.7 References ..............................................................................................................................150 CHAPTER 6. EXPERIMENTAL PROCEDURES ..........................................................................152 6.1 General ...................................................................................................................................152 6.2 Attempts at Alkene Hydration Catalysis................................................................................153 6.2.1 General Comments........................................................................................................153 6.2.2 Reaction Types..............................................................................................................154 6.2.3 Reaction Table ..............................................................................................................155 6.3 Hydration Screening Experiments .........................................................................................169 6.3.1 The Ligand Solution .....................................................................................................169 6.3.2 Reaction Setup ..............................................................................................................169 6.3.3 Reaction Table ..............................................................................................................170 6.4 Oxidative Cleavage Reactions ...............................................................................................173 6.4.1 Reaction Types..............................................................................................................173 6.4.2 Reaction Tables .............................................................................................................173 6.5 NMR Reactions ......................................................................................................................183 6.5.1 Reaction Conditions When Acetone-d6 was Utilized ...................................................183 6.5.2 Reaction Conditions When CD3CN or DMSO-d6 was Utilized ...................................183 6.5.3 Reaction Table ..............................................................................................................184 6.6 Ni21M Under Balloon Pressure O2 ........................................................................................187 6.6.1 Acetone and Water ........................................................................................................187 6.6.2 Acetonitrile and Water ..................................................................................................187 6.6.3 DMSO and Water .........................................................................................................187 6.6.4 Added Substrate ............................................................................................................187
Recommended publications
  • Opportunities for Catalysis in the 21St Century
    Opportunities for Catalysis in The 21st Century A Report from the Basic Energy Sciences Advisory Committee BASIC ENERGY SCIENCES ADVISORY COMMITTEE SUBPANEL WORKSHOP REPORT Opportunities for Catalysis in the 21st Century May 14-16, 2002 Workshop Chair Professor J. M. White University of Texas Writing Group Chair Professor John Bercaw California Institute of Technology This page is intentionally left blank. Contents Executive Summary........................................................................................... v A Grand Challenge....................................................................................................... v The Present Opportunity .............................................................................................. v The Importance of Catalysis Science to DOE.............................................................. vi A Recommendation for Increased Federal Investment in Catalysis Research............. vi I. Introduction................................................................................................ 1 A. Background, Structure, and Organization of the Workshop .................................. 1 B. Recent Advances in Experimental and Theoretical Methods ................................ 1 C. The Grand Challenge ............................................................................................. 2 D. Enabling Approaches for Progress in Catalysis ..................................................... 3 E. Consensus Observations and Recommendations..................................................
    [Show full text]
  • Dehydrogenation by Heterogeneous Catalysts
    Dehydrogenation by Heterogeneous Catalysts Daniel E. Resasco School of Chemical Engineering and Materials Science University of Oklahoma Encyclopedia of Catalysis January, 2000 1. INTRODUCTION Catalytic dehydrogenation of alkanes is an endothermic reaction, which occurs with an increase in the number of moles and can be represented by the expression Alkane ! Olefin + Hydrogen This reaction cannot be carried out thermally because it is highly unfavorable compared to the cracking of the hydrocarbon, since the C-C bond strength (about 246 kJ/mol) is much lower than that of the C-H bond (about 363 kJ/mol). However, in the presence of a suitable catalyst, dehydrogenation can be carried out with minimal C-C bond rupture. The strong C-H bond is a closed-shell σ orbital that can be activated by oxide or metal catalysts. Oxides can activate the C-H bond via hydrogen abstraction because they can form O-H bonds, which can have strengths comparable to that of the C- H bond. By contrast, metals cannot accomplish the hydrogen abstraction because the M- H bonds are much weaker than the C-H bond. However, the sum of the M-H and M-C bond strengths can exceed the C-H bond strength, making the process thermodynamically possible. In this case, the reaction is thought to proceed via a three centered transition state, which can be described as a metal atom inserting into the C-H bond. The C-H bond bridges across the metal atom until it breaks, followed by the formation of the corresponding M-H and M-C bonds.1 Therefore, dehydrogenation of alkanes can be carried out on oxides as well as on metal catalysts.
    [Show full text]
  • Elucidating How Wood Adhesives Bond to Wood Cell Walls Using High-Resolution Solution-State NMR Spectroscopy
    Elucidating How Wood Adhesives Bond to Wood Cell Walls using High-Resolution Solution-State NMR Spectroscopy Daniel J. Yelle U.S. Forest Service, Forest Products Laboratory Madison, WI, 53726, USA [email protected] Introduction Lignin, 25-30% of wood, is a phenolic polymer made Some extensively used wood adhesives, such as up of branched phenylpropanoid units that are capable of pMDI (polymeric methylene diphenyl diisocyanate) and reacting with other phenols during adhesive bonding. PF (phenol formaldehyde) have shown excellent adhesion Model compound studies have shown that under alkaline properties with wood. However, distinguishing whether conditions and ≥100 °C, β-aryl ether linkages release for- the strength is due to physical bonds (i.e., van der Waals, maldehyde to give vinyl ether linkages (Figure 2a) [10]. London, or hydrogen bond forces) or covalent bonds be- Phenylcourmaran linkages release formaldehyde in a simi- tween the adherend and the adhesive is not fully under- lar fashion to give stilbene linkages (Figure 2b) [10]. 13C stood. Previous studies, where pMDI model compounds NMR spectroscopy showed that most of this released for- were reacted with wood, showed that carbamate (urethane) maldehyde ends up as the methylene bridge between the 5- formation with wood polymers is only possible when: 1. positions on guaiacyl units (Figure 2c) [11]. the number of moles of isocyanate is significantly higher a. HO H O than the moles of water molecules in the wood, 2. high γ γ HO β β α O 4 α β O 4 α O 4 temperatures are used, and 3. the isocyanate-based com- OCH3 OCH - OH 3 OCH3 O + CH pound is of low molecular weight [1].
    [Show full text]
  • Sustainable Catalysis
    Green Process Synth 2016; 5: 231–232 Book review Sustainable catalysis DOI 10.1515/gps-2016-0016 Sustainable catalysis provides an excellent in-depth over- view of the applications of non-endangered elements in Michael North (Ed.) all aspects of catalysis from heterogeneous to homogene- Sustainable catalysis: with non-endangered metals ous, from catalyst supports to ligands. The Royal Society of Chemistry, 2015 Four volumes of the book series are divided into RSC Green Chemistry series nos. 38–41 two sub-topics devoted to (i) metal-based catalysts and Part 1 (ii) catalysts without metals or other endangered ele- Print ISBN: 978-1-78262-638-1 ments. Each sub-topic comprises of two books due to the PDF eISBN: 978-1-78262-211-6 detailed analysis of catalytic applications described. All Part 2 chapters are written by the world-leading researchers in Print ISBN: 978-1-78262-639-8 the area; however, covering far beyond the scope of their PDF eISBN: 978-1-78262-642-8 immediate research interests, which makes the book par- ticularly valuable for a wide range of readers. Sustainable catalysis: without metals or other Sustainable catalysis: with non-endangered metals endangered elements begins with a very brief chapter which describes the Part 1 concept of elemental sustainability, overviewing the Print ISBN: 978-1-78262-640-4 abundance of the critical elements and perspectives on PDF eISBN: 978-1-78262-209-3 sustainable catalysts. The chapters follow the groups of EPUB eISBN: 978-1-78262-752-4 the periodic table from left to right, from alkaline metals to Part 2 lead spanning 22 chapters.
    [Show full text]
  • Synthesis, Structure and Attempted Polymerization of a Diepoxide Macrocycle Paul Yarincik Sacred Heart University
    Sacred Heart University DigitalCommons@SHU Chemistry & Physics Faculty Publications Chemistry and Physics 10-2012 Synthesis, Structure and Attempted Polymerization of a Diepoxide Macrocycle Paul Yarincik Sacred Heart University Jeffrey H. Glans Sacred Heart University, [email protected] Follow this and additional works at: http://digitalcommons.sacredheart.edu/chem_fac Part of the Polymer Chemistry Commons Recommended Citation Yarincik, Paul and Glans, Jeffrey H., "Synthesis, Structure and Attempted Polymerization of a Diepoxide Macrocycle" (2012). Chemistry & Physics Faculty Publications. 1. http://digitalcommons.sacredheart.edu/chem_fac/1 This Article is brought to you for free and open access by the Chemistry and Physics at DigitalCommons@SHU. It has been accepted for inclusion in Chemistry & Physics Faculty Publications by an authorized administrator of DigitalCommons@SHU. For more information, please contact [email protected]. Letters in Organic Chemistry, 2012, 9, 545-548 545 Synthesis, Structure and Attempted Polymerization of a Diepoxide Macrocycle Paul Yarincik and Jeffrey H. Glans* Department of Chemistry, Sacred Heart University, Fairfield, CT 06825, USA Received October 19, 2011: Revised December 31, 2011: Accepted January 04, 2012 Abstract: A novel diepoxide containing paracyclophane was synthesized by peracid oxidation of a known paracyclo- phane diene. The resulting diepoxide was characterized. It was investigated as a potential monomer for a cyclophane con- taining polyether by cationic ring opening polymerization. None of the standard catalyst systems for such a polymeriza- tion were successful in producing polymer. Keywords: Cationic polymerization, cyclophane, diepoxide, macrocycle. R INTRODUCTION R O O O+ Cationic polymerization of olefins is one of the major R+ routes to high molecular weight polymers [1]. The mecha- O O+ O nism involves nucleophilic attack of the alkene functional group on the electron poor initiator (initiation) or the grow- ing cationic chain end (propagation).
    [Show full text]
  • The Early History of Catalysis
    The Early History of Catalysis By Professor A. J. B. Robertson Department of Chemistry, King’s College, London One hundred and forty years ago it was Berzelius proceeded to propose the exist- possible for one man to prepare an annual ence of a new force which he called the report on the progress of the whole of “catalytic force” and he called “catalysis” the chemistry, and for many years this task was decomposition of bodies by this force. This undertaken by the noted Swedish chemist is probably the first recognition of catalysis J. J. Berzelius for the Stockholm Academy of as a wide-ranging natural phenomenon. Sciences. In his report submitted in 1835 and Metallic catalysts had in fact been used in published in 1836 Berzelius reviewed a num- the laboratory before 1800 by Joseph Priestley, ber of earlier findings on chemical change in the discoverer of oxygen, and by the Dutch both homogeneous and heterogeneous sys- chemist Martinus van Marum, both of whom tems, and showed that these findings could be made observations on the dehydrogenation of rationally co-ordinated by the introduction alcohol on metal catalysts. However, it seems of the concept of catalysis. In a short paper likely that these investigators regarded the summarising his ideas on catalysis as a new metal merely as a source of heat. In 1813, force, he wrote (I): Louis Jacques Thenard discovered that ammonia is decomposed into nitrogen and “It is, then, proved that several simple or compound bodies, soluble and insoluble, have hydrogen when passed over various red-hot the property of exercising on other bodies an metals, and ten years later, with Pierre action very different from chemical affinity.
    [Show full text]
  • Or· 8-Annoquriioltlmb WITH. NIT~~~OI,4
    BIBIUD.~; TliE REACTION 8-AnNOQuriiOLtlmB WITH. NIT~~~OI,4 •' >'•' • or·I,' ",i. by Hugh Bu:rknla·p.·,:Ilona.hoe B.s.• ,. Rookhurst College, 194.3 M.A.,, Univ&rESi.ty of ICansas, · 1947 . Submitted to the Department of ·chemistry and the Faculty. of. the . G:raduate School or the University of Kansas in partial fulfillment ot the ?'equirements for the de• gree of Doctor ot Philosophy. Advisory Committee · May, 19.$0 AOKNOWLEOOMENT The author wishes to ex.press his thanks and appreciation to Dr. J. H. Burokhalter,, who suggested this problem, and Dr. a. A. Vanderwerf for ·their helpful suggestions and guidance during the course of this work. H.B.D. TABLE OF OONTEN'TS Chapter Page I • THE PROBLE?i Olr MALARIA. A. Introduction • • • • • . • • 1 B. The types of malaria. • • • • • • •• 2 O. The biology of malarial infection • • 3 D. The prophylaxis and treatment of malaria: •. ;•' •. • • •. • . ;.. • • : •••• ·• • • ., 6 II. ·Atfl'IMALARIAL ·:DRUGS. :· • · ,, A. Olassific at ion and. screening of antimalarial drugs • • . ,, . .. ' . • • • • 12 B. Historical • • • • • • • • • • • • • 1~ c. Quinine • .. • • • .. • • • • • • • • • 16 D. Synthetic substitutes • • • • • • • • 19 l. Plasmochin • • • • • .. • • • • • 19 2 •. Quinaorine • • • • • .. • • • • • 21 3. Ohloroquine • • • • • • • • • •• 21 q.. Pentaquine •• • • • • • • • • • 23 s. Paludrine • • • • • • • • • • • • 2q. E. Me(lhanism ot action of antimalarial drugs • • • • • • • •• • • • • • • • 2$ 1. The metabolite-antimetaboli te relationship • • • • • • • •• • 2.$ 2. The quinoid•Quinonimine theory • 26 3. Conclusions • • • • • • • • • •• 28 · -Ohapter III.· THE ANTIMALARIAL PROGRAM 1941-1945 . .A. The overall program • • • • • • • • • 30 .a. :._ Tb(j ·4•aminoquinolinea • • • • • • • • .32 · <h ·. The 8-aminoqu.inolines • : • . • • • • • • 34. IV. • DISCUSSION Of THE PROBLEM ) • • • • • .• • • • .38 ·V. · DISCUSSION OF· RESULTS. · - . A.;, Unsymmetrical hybrids related to '. propanediemine * • • • • •. • • • • • 46 B. ··Symmetrical: hybrida related to prc,pan~di8J1iinet ~d methanediamine • • S2 .
    [Show full text]
  • Physical Organic Chemistry
    CHM 8304 Physical Organic Chemistry Catalysis Outline: General principles of catalysis • see section 9.1 of A&D – principles of catalysis – differential bonding 2 Catalysis 1 CHM 8304 General principles • a catalyst accelerates a reaction without being consumed • the rate of catalysis is given by the turnover number • a reaction may alternatively be “promoted” (accelerated, rather than catalysed) by an additive that is consumed • a heterogeneous catalyst is not dissolved in solution; catalysis typically takes place on its surface • a homogeneous catalyst is dissolved in solution, where catalysis takes place • all catalysis is due to a decrease in the activation barrier, ΔG‡ 3 Catalysts • efficient at low concentrations -5 -4 -5 – e.g. [Enz]cell << 10 M; [Substrates]cell < 10 - 10 M • not consumed during the reaction – e.g. each enzyme molecule can catalyse the transformation of 20 - 36 x 106 molecules of substrate per minute • do not affect the equilibrium of reversible chemical reactions – only accelerate the rate of approach to equilibrium end point • most chemical catalysts operate in extreme reaction conditions while enzymes generally operate under mild conditions (10° - 50 °C, neutral pH) • enzymes are specific to a reaction and to substrates; chemical catalysts are far less selective 4 Catalysis 2 CHM 8304 Catalysis and free energy • catalysis accelerates a reaction by stabilising a TS relative to the ground state ‡ – free energy of activation, ΔG , decreases – rate constant, k, increases • catalysis does not affect the end point
    [Show full text]
  • The Arene–Alkene Photocycloaddition
    The arene–alkene photocycloaddition Ursula Streit and Christian G. Bochet* Review Open Access Address: Beilstein J. Org. Chem. 2011, 7, 525–542. Department of Chemistry, University of Fribourg, Chemin du Musée 9, doi:10.3762/bjoc.7.61 CH-1700 Fribourg, Switzerland Received: 07 January 2011 Email: Accepted: 23 March 2011 Ursula Streit - [email protected]; Christian G. Bochet* - Published: 28 April 2011 [email protected] This article is part of the Thematic Series "Photocycloadditions and * Corresponding author photorearrangements". Keywords: Guest Editor: A. G. Griesbeck benzene derivatives; cycloadditions; Diels–Alder; photochemistry © 2011 Streit and Bochet; licensee Beilstein-Institut. License and terms: see end of document. Abstract In the presence of an alkene, three different modes of photocycloaddition with benzene derivatives can occur; the [2 + 2] or ortho, the [3 + 2] or meta, and the [4 + 2] or para photocycloaddition. This short review aims to demonstrate the synthetic power of these photocycloadditions. Introduction Photocycloadditions occur in a variety of modes [1]. The best In the presence of an alkene, three different modes of photo- known representatives are undoubtedly the [2 + 2] photocyclo- cycloaddition with benzene derivatives can occur, viz. the addition, forming either cyclobutanes or four-membered hetero- [2 + 2] or ortho, the [3 + 2] or meta, and the [4 + 2] or para cycles (as in the Paternò–Büchi reaction), whilst excited-state photocycloaddition (Scheme 2). The descriptors ortho, meta [4 + 4] cycloadditions can also occur to afford cyclooctadiene and para only indicate the connectivity to the aromatic ring, and compounds. On the other hand, the well-known thermal [4 + 2] do not have any implication with regard to the reaction mecha- cycloaddition (Diels–Alder reaction) is only very rarely nism.
    [Show full text]
  • Converting Disulfide Bridges in Native Peptides to Stable Methylene Thioacetals
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Converting disulfide bridges in native peptides to stable methylene thioacetals† Cite this: Chem. Sci.,2016,7, 7007 C. M. B. K. Kourra and N. Cramer* Disulfide bridges play a crucial role in defining and rigidifying the three-dimensional structure of peptides. However, disulfides are inherently unstable in reducing environments. Consequently, the development of strategies aiming to circumvent these deficiencies – ideally with little structural disturbance – are highly sought after. Herein, we report a simple protocol converting the disulfide bond of peptides into highly stable methylene thioacetal. The transformation occurs under mild, biocompatible conditions, enabling the conversion of unprotected native peptides into analogues with enhanced stability. The developed Received 23rd May 2016 protocol is applicable to a range of peptides and selective in the presence of a multitude of potentially Accepted 24th July 2016 reactive functional groups. The thioacetal modification annihilates the reductive lability and increases the DOI: 10.1039/c6sc02285e serum, pH and temperature stability of the important peptide hormone oxytocin. Moreover, it is shown www.rsc.org/chemicalscience that the biological activities for oxytocin are retained. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Introduction disulde bond engineering emerged as an important strategy to improve the metabolic stability of disulde-containing peptides, Peptides have recently been enjoying a renewed interest in whilst maintaining their biological activity. For instance, their application as therapeutic agents.1 They provide a large replacements of the disulde group with a lactam,10 thioether,11 a chemical space with a diverse array of molecular frameworks selenium12 or dicarba13 analogues have been reported.5 Many of for the development of novel therapeutics for a plethora of these methods require signicant modication of the synthetic biomedical applications.
    [Show full text]
  • Aromatic Compounds
    OCR Chemistry A Aromatic Compounds Aromatic Compounds Naming Aromatic compounds contain one or more benzene rings (while aliphatic compounds do not contain benzene rings). Another term for a compound containing a benzene ring is arene. The basic benzene ring, C6H6 is commonly represented as a hexagon with a ring inside. You should be aware that there is a hydrogen at each corner although this is not normally shown. N.B. it is OK to use benzene in this form in structural formulae too! Arenes occur naturally in many substances, and are present in coal and crude oil. Aspirin, for example, is an aromatic compound, an arene: HO O O CH 3 O Naming of substances based on benzene follows familiar rules: CH Br NO 3 2 benzene methylbenzene bromobenzene nitrobenzene Numbers are needed to identify the positions of substituents. The carbons around the ring are numbered from 1-6 consecutively and the name which gives the lowest number(s) is chosen: CH3 CH3 Cl Br Cl Br 2-bromomethylbenzene 4-bromomethylbenzene 1,2-dichlorobenzene Cl Cl Cl 1,3,5-trichlorobenzene Page 1 OCR Chemistry A Aromatic Compounds Determining the structure of benzene (historical) 1825 – substance first isolated by Michael Faraday, who also determined its empirical formula as CH 1834 – RFM of 78 and molecular formula of C6H6 determined H H H C C C Much speculation over the structure. Many suggested structures like: C C C H H H 1865 – Kekulé publishes suggestion of a ring with alternating double and single bonds: H H C H C C displayed C C skeletal H C H H This model persisted until 1922, but not all chemists accepted the structure because it failed to explain the chemical and physical properties of benzene fully: if C=C bonds were present as Kekulé proposed, then benzene would react like alkenes.
    [Show full text]
  • Introduction to Alkenes and Alkynes in an Alkane, All Covalent Bonds
    Introduction to Alkenes and Alkynes In an alkane, all covalent bonds between carbon were σ (σ bonds are defined as bonds where the electron density is symmetric about the internuclear axis) In an alkene, however, only three σ bonds are formed from the alkene carbon -the carbon thus adopts an sp2 hybridization Ethene (common name ethylene) has a molecular formula of CH2CH2 Each carbon is sp2 hybridized with a σ bond to two hydrogens and the other carbon Hybridized orbital allows stronger bonds due to more overlap H H C C H H Structure of Ethylene In addition to the σ framework of ethylene, each carbon has an atomic p orbital not used in hybridization The two p orbitals (each with one electron) overlap to form a π bond (p bonds are not symmetric about the internuclear axis) π bonds are not as strong as σ bonds (in ethylene, the σ bond is ~90 Kcal/mol and the π bond is ~66 Kcal/mol) Thus while σ bonds are stable and very few reactions occur with C-C bonds, π bonds are much more reactive and many reactions occur with C=C π bonds Nomenclature of Alkenes August Wilhelm Hofmann’s attempt for systematic hydrocarbon nomenclature (1866) Attempted to use a systematic name by naming all possible structures with 4 carbons Quartane a alkane C4H10 Quartyl C4H9 Quartene e alkene C4H8 Quartenyl C4H7 Quartine i alkine → alkyne C4H6 Quartinyl C4H5 Quartone o C4H4 Quartonyl C4H3 Quartune u C4H2 Quartunyl C4H1 Wanted to use Quart from the Latin for 4 – this method was not embraced and BUT has remained Used English order of vowels, however, to name the groups
    [Show full text]