Late Precambrian to Triassic History of the East

Total Page:16

File Type:pdf, Size:1020Kb

Late Precambrian to Triassic History of the East VU Research Portal Late Precambrian to Triassic history of the East European craton: dynamics of sedimentary basin evolution Nikishin, A.M.; Ziegler, P.A.; Stephenson, R.A.; Cloetingh, S.A.P.L.; Furne, A.V.; Fokin, P.A.; Ershov, A.V.; Boloytov, S.N.; Korotaev, M.V.; Alekseev, A.S.; Gorbachev, V.I.; Shipilov, E.V.; Lankreijer, A.C.; Bembinova, E.Y.; Shalimov, I.V. published in Default journal 1996 DOI (link to publisher) 10.1016/S0040-1951(96)00228-4 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Nikishin, A. M., Ziegler, P. A., Stephenson, R. A., Cloetingh, S. A. P. L., Furne, A. V., Fokin, P. A., Ershov, A. V., Boloytov, S. N., Korotaev, M. V., Alekseev, A. S., Gorbachev, V. I., Shipilov, E. V., Lankreijer, A. C., Bembinova, E. Y., & Shalimov, I. V. (1996). Late Precambrian to Triassic history of the East European craton: dynamics of sedimentary basin evolution. Default journal. https://doi.org/10.1016/S0040-1951(96)00228-4 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 25. Sep. 2021 TECTONOPHYSICS ELSEVIER Tectonophysics 268 (1996) 23-63 Late Precambrian to Triassic history of the East European Craton: dynamics of sedimentary basin evolution A.M. Nlkishin• " " a*, , P.A. Ziegler b, R.A. Stephenson c, S.A.P.L. Cloetingh c, A.V. Fume a, P.A. Fokin a, A.V. Ershov a, S.N. Bolotov a, M.V. Korotaev ", A.S. Alekseev a, V.I. Gorbachev d, E.V. Shipilov e, A. Lankreijer c, E.Yu. Bembinova a, I.V. Shalimov a a Geological Faculty, Moscow State University, Leninskie Gory, 119899 Moscow, Russia b Geological-Palaeontological Institute, University of Basel, Bernoullistr. 32, 4056 Basel, Switzerland c Vrije Universiteit, Faculty of Earth Sciences, De Boelelaan 1085, 1081 HVAmsterdam, Netherlands d NEDRA, Yaroslavl, Russia e Institute of Marine Geophysics, Murmansk, Russia Received 5 September 1995; accepted 31 May 1996 Abstract During its Riphean to Palaeozoic evolution, the East European Craton was affected by rift phases during Early, Middle and Late Riphean, early Vendian, early Palaeozoic, Early Devonian and Middle-Late Devonian times and again at the transition from the Carboniferous to the Permian and the Permian to the Triassic. These main rifting cycles were separated by phases of intraplate compressional tectonics at the transition from the Early to the Middle Riphean, the Middle to the Late Riphean, the Late Riphean to the Vendian, during the mid-Early Cambrian, at the transition from the Cambrian to the Ordovician, the Silurian to the Early Devonian, the Early to the Middle Devonian, the Carboniferous to Permian and the Triassic to the Jurassic. Main rift cycles axe dynamically related to the separation of continental terranes from the margins of the East European Craton and the opening of Atlantic-type palaeo-oceans and/or back-arc basins. Phases of intraplate compression, causing inversion of extensional basins, coincide with the development of collisional belts along the margins of the East European Craton. The origin and evolution of sedimentary basins on the East European Craton was governed by repeatedly changing regional stress fields. Periods of stress field changes coincide with changes in the drift direction, velocity and rotation of the East European plate and its interaction with adjacent plates. Intraplate magmatism was controlled by changes in stress fields and by mantle hot-spot activity. Geodynamieally speaking, different types of magmatism occurred simultaneously. Keywords: East European Craton; palaeotectonics; sedimentary basins; palaeogeography 1. Introduction basins, intraplate tectonic phenomena and for the analysis of the dynamic processes governing them. The East European Craton (EEC) is a classical The EEC is bounded in the east by the Uralian- region for the study of intracratonic sedimentary Novaya Zemlya-Taymyr orogen, to the south by the Scythian and Crimean-Caucasus orogens, to the * Corresponding author. southwest by the Tornquist Line, to the northwest 0040-1951/96/$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved. PIIS0040-1951(96)00228-4 24 A.M. Nikishin et al./Tectonophysics 268 (1996) 23-63 1 2 3 4 5 6 ÷ ! 4 7 * t 4 8 9 "1 10 , ÷ 1 , ~l FENNOSARMATrAN+CRATON,+ + , ~ + • Va,riBcan.fold = . k v v v v v v ~v v v Vv v ~ v v ¢ v v v /_ v v v ~ v 4 v v ( v v v v v v ~ v v v v v Fig. 1. Main provinces of the East European Craton. 1 = Archaean and Early Proterozoic terranes, undivided; 2 = 1.1-0.55 Ga age terranes; 3 = Precambrian terranes, undivided; 4 = early Palaeozoic fold belts; 5 = late Palaeozoic fold belts; 6 = Mesozoic fold belts; 7 = Alpine fold belts; 8 = outlines of East-European Craton; 9 = passive continental margins; 10 = area with very thin continental or oceanic crust. by the Scandinavian Caledonides and to the north vestigated by many researchers, including Shatsky by the oceanic Eurasian Basin (Fig. 1). The EEC (1964), Vinogradov (1969), Bogdanov (1976), is characterized by a Precambrian crystalline base- Bronguleev (1978), Bogdanov and Khain (1981), ment outcropping in the Fennoscandian (Baltic) and Bronguleev (1985), Milanovsky (1987), Ziegler Ukrainian shields and the Voronezh Massif; else- (1989, 1990) and Khain and Seslavinsky (1991). where, this basement is covered by sediments with This paper reviews, on the basis of a set of inter- thicknesses up to 23 km. The Late Precambrian pretative palaeogeographic-palaeotectonic maps and and Phanerozoic evolution of the EEC has been in- supporting basin analysis studies, the Late Precam- A.M. Nikishin et al./Tectonophysics 268 (1996) 23-63 25 brian and Palaeozoic evolution of the EEC. The a large anorogenic rapakivi-granite province devel- dynamics of the evolution of sedimentary basins are oped between 1.65 and 1.55 Ga (Gorbatchev and Bog- analyzed in the framework of processes affecting the danova, 1993). The rapakivi granites of the Ukrainian margins of the craton, resulting from its interaction Shield are 0.1-0.2 Ga older (Shcherbak, 1991; Gor- with adjacent plates. This paper provides the reader batchev and Bogdanova, 1993). with an introduction to our current understanding of The Pechora-Barents Sea basement province is the geology and geodynamics of Eastern Europe. poorly known. The few wells which reached base- ment yield ages ranging from 1.0 to 0.55 Ga (Dedeev 2. Basement provinces and Zaporozhtseva, 1985; Kogaro et al., 1992; Senin, 1993; Shipilov, 1993; Puchkov, 1993). The compos- The Precambrian EEC consists of several base- ite Pechora-Barentsia terrane was probably welded ment provinces which differ in the age of their to Fennosarmatia at the end of the Precambrian (D- consolidation (Fig. 1). The main constituents are: edeev and Zaporozhtseva, 1985; Zonenshain et al., the Early Precambrian Fennosarmatian Craton (ter- 1993; Puchkov, 1993). minology of H. Stille; Milanovsky, 1987); the Goth- The Late Precambrian Northern Taymyr-Sever- ian Sveconorwegian terrane (1.75-1.55 Ga), which naya Zemlya block contains remnants of Cambrian was welded to Fennosarmatia during the Dalslandian flysch, unconformably covered by Ordovician plat- orogeny (1.2-0.9 Ga; Gorbatchev and Bogdanova, form series (Milanovsky, 1987). Reconstruction of 1993); the Late Precambrian Pechora-Barents Sea the early Palaeozoic history of this region is prob- orogenic belt (Pechora-Barentsia), which was ac- lematic; however, it is possible that the Northern creted to the northeastern margin of Fennosarmatia Taymyr-Severnaya Zemlya block was accreted to during Vendian-Early Cambrian times; the Late Pre- the Pechora-Barentsia terrane at the transition from cambrian Taymyr-Severnaya Zemlya terrane, which the Cambrian to the Ordovician. was accreted to the evolving EEC probably at the No reliable age dates are available for the possi- end of the Cambrian (Dedeev and Zaporozhtseva, bly Late Precambrian (Dalslandian?) Astrakhan and 1985; Getsen, 1987; Uflyand et al., 1991; Zonen- Pre-Dobrogea blocks. shain et al., 1993); and the Astrakhan-Peri-Caspian (Nevolin, 1988) and Pre-Dobrogea blocks of pos- 3. Working methods sibly Late Precambrian age (Garetsky, 1990). The palaeo-continent incorporating all these older than The sedimentary cover of the EEC records its Late Early Riphean blocks is here referred to as Baltica. Precambrian and Phanerozoic evolution (Fig. 2). Fennosarmatia is the core of the Baltica palaeo-con- Geophysical and well data provide information on tinent, the outlines of which changed significantly the geometry and deformation of sedimentary basins through time. and permit analysis of their subsidence and uplift The Fennosarmatian craton consists of Archaean histories and of the dynamic processes governing domains and Early Proterozoic
Recommended publications
  • Introduction to the 2008 Circum-Arctic Resource Appraisal (CARA) Professional Paper
    Introduction to the 2008 Circum-Arctic Resource Appraisal (CARA) Professional Paper Chapter A of The 2008 Circum-Arctic Resource Appraisal Professional Paper 1824 U.S. Department of the Interior U.S. Geological Survey Cover. View to the east of the Lisburne well during active drilling in July 1979, Ivotuk Hills, northern Alaska. U.S. Geological Survey photo by Thomas Moore. Introduction to the 2008 Circum-Arctic Resource Appraisal (CARA) Professional Paper By Donald L. Gautier and Thomas E. Moore Chapter A of The 2008 Circum-Arctic Resource Appraisal Edited by T.E. Moore and D.L. Gautier Professional Paper 1824 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey William H. Werkheiser, Acting Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Gautier, D.L., and Moore, T.E., 2017, Introduction to the 2008 Circum-Arctic Resource Appraisal (CARA) professional paper, chap.
    [Show full text]
  • Proceedings of the Open University Geological Society
    0 OUGS Proceedings 5 2019_OUGSJ 26/02/2019 11:45 Page i Proceedings of the Open University Geological Society Volume 5 2019 Including articles from the AGM 2018 Geoff Brown Memorial Lecture, the ‘Music of the Earth’ Symposium 2018 lectures (Worcester University), OUGS Members’ field trip reports, the Annual Report for 2018, and the 2018 Moyra Eldridge Photographic Competition Winning and Highly Commended photographs Edited and designed by: Dr David M. Jones 41 Blackburn Way, Godalming, Surrey GU7 1JY e-mail: [email protected] The Open University Geological Society (OUGS) and its Proceedings Editor accept no responsibility for breach of copyright. Copyright for the work remains with the authors, but copyright for the published articles is that of the OUGS. ISSN 2058-5209 © Copyright reserved Proceedings of the OUGS 5 2019; published 2019; printed by Hobbs the Printers Ltd, Totton, Hampshire 0 OUGS Proceedings 5 2019_OUGSJ 26/02/2019 11:46 Page 35 The complex tectonic evolution of the Malvern region: crustal accretion followed by multiple extensional and compressional reactivation Tim Pharaoh British Geological Survey, Keyworth, Nottingham, NG12 5GG ([email protected]) Abstract The Malvern Hills include some of the oldest rocks in southern Britain, dated by U-Pb zircon analysis to c. 680Ma. They reflect calc- alkaline arc magmatic activity along a margin of the Rodinia palaeocontinent, hints of which are provided by inherited zircon grains as old as 1600Ma. Metamorphic recrystallisation under upper greenschist/amphibolite facies conditions occurred from c. 650–600Ma. Subsequently, rifting of the magmatic arc (c.f. the modern western Pacific) at c. 565Ma led to the formation of a small oceanic mar- ginal basin, evidenced by basaltic pillow lavas and tuffs of the Warren House Formation, and Kempsey Formation equivalents beneath the Worcester Graben.
    [Show full text]
  • Assembly, Configuration, and Break-Up History of Rodinia
    Author's personal copy Available online at www.sciencedirect.com Precambrian Research 160 (2008) 179–210 Assembly, configuration, and break-up history of Rodinia: A synthesis Z.X. Li a,g,∗, S.V. Bogdanova b, A.S. Collins c, A. Davidson d, B. De Waele a, R.E. Ernst e,f, I.C.W. Fitzsimons g, R.A. Fuck h, D.P. Gladkochub i, J. Jacobs j, K.E. Karlstrom k, S. Lu l, L.M. Natapov m, V. Pease n, S.A. Pisarevsky a, K. Thrane o, V. Vernikovsky p a Tectonics Special Research Centre, School of Earth and Geographical Sciences, The University of Western Australia, Crawley, WA 6009, Australia b Department of Geology, Lund University, Solvegatan 12, 223 62 Lund, Sweden c Continental Evolution Research Group, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia d Geological Survey of Canada (retired), 601 Booth Street, Ottawa, Canada K1A 0E8 e Ernst Geosciences, 43 Margrave Avenue, Ottawa, Canada K1T 3Y2 f Department of Earth Sciences, Carleton U., Ottawa, Canada K1S 5B6 g Tectonics Special Research Centre, Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia h Universidade de Bras´ılia, 70910-000 Bras´ılia, Brazil i Institute of the Earth’s Crust SB RAS, Lermontova Street, 128, 664033 Irkutsk, Russia j Department of Earth Science, University of Bergen, Allegaten 41, N-5007 Bergen, Norway k Department of Earth and Planetary Sciences, Northrop Hall University of New Mexico, Albuquerque, NM 87131, USA l Tianjin Institute of Geology and Mineral Resources, CGS, No.
    [Show full text]
  • Balkatach Hypothesis: a New Model for the Evolution of the Pacific, Tethyan, and Paleo-Asian Oceanic Domains
    Research Paper GEOSPHERE Balkatach hypothesis: A new model for the evolution of the Pacific, Tethyan, and Paleo-Asian oceanic domains 1,2 2 GEOSPHERE, v. 13, no. 5 Andrew V. Zuza and An Yin 1Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557, USA 2Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California 90095-1567, USA doi:10.1130/GES01463.1 18 figures; 2 tables; 1 supplemental file ABSTRACT suturing. (5) The closure of the Paleo-Asian Ocean in the early Permian was accompanied by a widespread magmatic flare up, which may have been CORRESPONDENCE: avz5818@gmail .com; The Phanerozoic history of the Paleo-Asian, Tethyan, and Pacific oceanic related to the avalanche of the subducted oceanic slabs of the Paleo-Asian azuza@unr .edu domains is important for unraveling the tectonic evolution of the Eurasian Ocean across the 660 km phase boundary in the mantle. (6) The closure of the and Laurentian continents. The validity of existing models that account for Paleo-Tethys against the southern margin of Balkatach proceeded diachro- CITATION: Zuza, A.V., and Yin, A., 2017, Balkatach hypothesis: A new model for the evolution of the the development and closure of the Paleo-Asian and Tethyan Oceans criti- nously, from west to east, in the Triassic–Jurassic. Pacific, Tethyan, and Paleo-Asian oceanic domains: cally depends on the assumed initial configuration and relative positions of Geosphere, v. 13, no. 5, p. 1664–1712, doi:10.1130 the Precambrian cratons that separate the two oceanic domains, including /GES01463.1. the North China, Tarim, Karakum, Turan, and southern Baltica cratons.
    [Show full text]
  • Oil Pollution in the Black and Caspian Seas
    Article Satellite Survey of Inner Seas: Oil Pollution in the Black and Caspian Seas Marina Mityagina and Olga Lavrova * Space Research Institute of Russian Academy of Sciences, Moscow 117997, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-495-333-4256 Academic Editors: Elijah Ramsey III, Ira Leifer, Bill Lehr, Xiaofeng Li and Prasad S. Thenkabail Received: 5 June 2016; Accepted: 17 October 2016; Published: 23 October 2016 Abstract: The paper discusses our studies of oil pollution in the Black and Caspian Seas. The research was based on a multi-sensor approach on satellite survey data. A combined analysis of oil film signatures in satellite synthetic aperture radar (SAR) and optical imagery was performed. Maps of oil spills detected in satellite imagery of the whole aquatic area of the Black Sea and the Middle and the Southern Caspian Sea are created. Areas of the heaviest pollution are outlined. It is shown that the main types of sea surface oil pollution are ship discharges and natural marine hydrocarbon seepages. For each type of pollution and each sea, regions of regular pollution occurrence were determined, polluted areas were estimated, and specific manifestation features were revealed. Long-term observations demonstrate that in recent years, illegal wastewater discharges into the Black Sea have become very common, which raises serious environmental issues. Manifestations of seabed hydrocarbon seepages were also detected in the Black Sea, primarily in its eastern part. The patterns of surface oil pollution of the Caspian Sea differ considerably from those observed in the Black Sea. They are largely determined by presence of big seabed oil and gas deposits.
    [Show full text]
  • Carboniferous Formations and Faunas of Central Montana
    Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa­ tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________
    [Show full text]
  • Northern England Serpukhovian (Early Namurian)
    1 Northern England Serpukhovian (early Namurian) 2 farfield responses to southern hemisphere glaciation 3 M.H. STEPHENSON1, L. ANGIOLINI2, P. CÓZAR3, F. JADOUL2, M.J. LENG4, D. 4 MILLWARD5, S. CHENERY1 5 1British Geological Survey, Keyworth, Nottingham, NG12 5GG, United Kingdom 6 2Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, Via 7 Mangiagalli 34, Milano, 20133, Italy 8 3Instituto de Geología Económica CSIC-UCM; Facultad de Ciencias Geológicas; 9 Departamento de Paleontología; C./ José Antonio Novais 228040-Madrid; Spain 10 4NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, 11 Nottingham, NG12 5GG, United Kingdom 12 5British Geological Survey, Murchison House, Edinburgh, United Kingdom 13 14 15 Word count 7967 16 7 figs 17 1 table 18 67 references 19 RUNNING HEADER: NAMURIAN FARFIELD GLACIATION REPONSE 1 20 Abstract: During the Serpukhovian (early Namurian) icehouse conditions were initiated 21 in the southern hemisphere; however nearfield evidence is inconsistent: glaciation 22 appears to have started in limited areas of eastern Australia in the earliest Serpukhovian, 23 followed by a long interglacial, whereas data from South America and Tibet suggest 24 glaciation throughout the Serpukhovian. New farfield data from the Woodland, 25 Throckley and Rowlands Gill boreholes in northern England allow this inconsistency to 26 be addressed. δ18O from well-preserved late Serpukhovian (late Pendleian to early 27 Arnsbergian) Woodland brachiopods vary between –3.4 and –6.3‰, and δ13C varies 28 between –2.0 and +3.2‰, suggesting a δ18O seawater (w) value of around –1.8‰ 29 VSMOW, and therefore an absence of widespread ice-caps. The organic carbon δ13C 30 upward increasing trend in the Throckley Borehole (Serpukhovian to Bashkirian; c.
    [Show full text]
  • Tectonic Regimes in the Baltic Shield During the Last 1200 Ma • a Review
    Tectonic regimes in the Baltic Shield during the last 1200 Ma • A review Sven Åke Larsson ' ', Bva-L^na Tuliborq- 1 Department of Geology Chalmers University of Technology/Göteborij U^vjrsivy 2 Terralogica AB November 1993 TECTONIC REGIMES IN THE BALTIC SHIELD DURING THE LAST 1200 Ma - A REVIEW Sven Åke Larsson12, Eva-Lena Tullborg2 1 Department of Geology, Chalmers University of Technology/Göteborg University 2 Terralogica AB November 1993 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32),. 1989 (TR 89-40), 1990 (TR 90-46), 1991 (TR 91-64) and 1992 (TR 92-46) is available through SKB. ) TECTONIC REGIMES IN THE BALTIC SHIELD DURING THE LAST 1200 Ma - A REVIEW by Sven Åke Larson and Eva-Lena Tullborg Department of Geology, Chalmers University of Technology / Göteborg University & Terralogica AB Gråbo, November, 1993 Keywords: Baltic shield, Tectonicregimes. Upper Protero/.oic, Phanerozoic, Mag- matism. Sedimentation. Erosion. Metamorphism, Continental drift. Stress regimes. , ABSTRACT 1 his report is a review about tectonic regimes in the Baltic (Fennoscandian) Shield from the Sveeonorwegian (1.2 Ga ago) to the present. It also covers what is known about palaeostress during this period, which was chosen to include both orogenic and anorogenic events.
    [Show full text]
  • Tectonic Evolution of the Northern Ural Orogen
    Journal of the Geological Society, London, Vol. 152, 1995, pp. 903-906, 5 figs. Printed in Northern Ireland compression in the Early Devonian led to the inversion of the Timan and Varandey-Adz'va rifts to form ridges, which Tectonic evolution of the northern Ural acted as the source for the Middle Devonian clastic rocks Orogen found in the Timan-Pechora Basin. However, by the mid-Frasnian, shallow marine conditions were re- established, with carbonates deposited on highs and S. C. OTTO 1 & R. J. BAILEY 2 'Domanik' facies organic-rich shales laid down in the lPetroconsultants (UK) Ltd, 266 Upper Richmond intervening lows. Road, London SW15 6TQ, UK Closure of the ocean began in the Tournaisian, and 2Victoria Villa, 5 Station Road, Southwell, eastward subduction under the Siberian craton is made Nottinghamshire NG25 OET, UK evident by basement of volcanic island arc affinity found only to the east of the Urals (Churkin et al. 1981). In the Timan-Pechora Basin, the transpressional reactivation of faults resulted in the complete inversion of the earlier rifts. Local highs were formed, such as the Usa and Vozey highs, The closure of the Uralian Ocean occurred in Early Permian-Early which were a source of clastics during the Late Triassic time. In the northern Ural fold belt, overthrusting to the Tournaisian-Early Visean. Throughout the remainder of west produced a major foreland basin to the west of the mountain chain. In contrast, in the northern extension of the Ural Orogen, the Carboniferous and into the earliest Permian, the basin the Taymyr fold belt, thrusting was directed to the SE.
    [Show full text]
  • Tectonic Synthesis and Contextual Setting for the Central North Sea
    CR/15/125; Draft 0.1 Last modified: 2016/03/24 15:18 Tectonic synthesis and contextual setting for the Central North Sea and adjacent onshore areas, 21CXRM Palaeozoic Project Energy and Marine Geoscience Programme Commissioned Report CR/15/125 Late Carboniferous asymmetric anticline in Eelwell Limestone (Alston Formation), Scremerston, Northumberland. Looking south. 1 CR/15/125; Draft 0.1 Last modified: 2016/03/24 15:18 BRITISH GEOLOGICAL SURVEY ENERGY AND MARINE GEOSCIENCE PROGRAMME COMMISSIONED REPORT CR/15/125 Tectonic synthesis and contextual setting for the Central North Sea The National Grid and other Ordnance Survey data © Crown Copyright and database rights and adjacent onshore areas, 2015. Ordnance Survey Licence No. 100021290 EUL. 21CXRM Palaeozoic Project Keywords North Sea, tectonics Front cover AG Leslie, D Millward, T Pharaoh, A A Monaghan, S Arsenikos, M Late Carboniferous asymmetric Quinn anticline in Eelwell Limestone (Alston Formation), Scremerston, Northumberland. Looking south. Bibliographical reference AG LESLIE, D MILLWARD, T PHARAOH, A A MONAGHAN, S ARSENIKOS, M QUINN, 2015. British Geological Survey Commissioned Report, CR/15/125. 18pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. Maps and diagrams in this book use topography based on Ordnance Survey mapping.
    [Show full text]
  • Rutile Mineral Chemistry and Zr-In-Rutile Thermometry In
    minerals Article Rutile Mineral Chemistry and Zr-in-Rutile Thermometry in Provenance Study of Albian (Uppermost Lower Cretaceous) Terrigenous Quartz Sands and Sandstones in Southern Extra-Carpathian Poland Jakub Kotowski * , Krzysztof Nejbert and Danuta Olszewska-Nejbert Faculty of Geology, University of Warsaw, Zwirki˙ i Wigury 93, 02-089 Warszawa, Poland; [email protected] (K.N.); [email protected] (D.O.-N.) * Correspondence: [email protected] Abstract: The geochemistry of detrital rutile grains, which are extremely resistant to weathering, was used in a provenance study of the transgressive Albian quartz sands in the southern part of extra-Carpathian Poland. Rutile grains were sampled from eight outcrops and four boreholes located on the Miechów, Szydłowiec, and Puławy Segments. The crystallization temperatures of the rutile grains, calculated using a Zr-in-rutile geothermometer, allowed for the division of the study area into three parts: western, central, and eastern. The western group of samples, located in the Citation: Kotowski, J.; Nejbert, K.; Miechów Segment, is characterized by a polymodal distribution of rutile crystallization temperatures ◦ ◦ ◦ Olszewska-Nejbert, D. Rutile Mineral (700–800 C; 550–600 C, and c. 900 C) with a significant predominance of high-temperature forms, Chemistry and Zr-in-Rutile and with a clear prevalence of metapelitic over metamafic rutile. The eastern group of samples, Thermometry in Provenance Study of corresponding to the Lublin Area, is monomodal and their crystallization temperatures peak at Albian (Uppermost Lower 550–600 ◦C. The contents of metapelitic to metamafic rutile in the study area are comparable. The Cretaceous) Terrigenous Quartz central group of rutile samples with bimodal distribution (550–600 ◦C and 850–950 ◦C) most likely Sands and Sandstones in Southern represents a mixing zone, with a visible influence from the western and, to a lesser extent, the eastern Extra-Carpathian Poland.
    [Show full text]
  • Tetrapod Localities from the Triassic of the SE of European Russia
    Earth-Science Reviews 60 (2002) 1–66 www.elsevier.com/locate/earscirev Tetrapod localities from the Triassic of the SE of European Russia Valentin P. Tverdokhlebova, Galina I. Tverdokhlebovaa, Mikhail V. Surkova,b, Michael J. Bentonb,* a Geological Institute of Saratov State University, Ulitsa Moskovskaya, 161, Saratov 410075, Russia b Department of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK Received 5 November 2001; accepted 22 March 2002 Abstract Fossil tetrapods (amphibians and reptiles) have been discovered at 206 localities in the Lower and Middle Triassic of the southern Urals area of European Russia. The first sites were found in the 1940s, and subsequent surveys, from the 1960s to the present day, have revealed many more. Broad-scale stratigraphic schemes have been published, but full documentation of the rich tetrapod faunas has not been presented before. The area of richest deposits covers some 900,000 km2 of territory between Samara on the River Volga in the NW, and Orenburg and Sakmara in the SW. Continental sedimentary deposits, consisting of mudstones, siltstones, sandstones, and conglomerates deposited by rivers flowing off the Ural Mountain chain, span much of the Lower and Middle Triassic (Induan, Olenekian, Anisian, Ladinian). The succession is divided into seven successive svitas, or assemblages: Kopanskaya (Induan), Staritskaya, Kzylsaiskaya, Gostevskaya, and Petropavlovskaya (all Olenekian), Donguz (Anisian), and Bukobay (Ladinian). This succession, comprising up to 3.5 km of fluvial and lacustrine sediments, documents major climatic changes. At the beginning of the Early Triassic, arid-zone facies were widely developed, aeolian, piedmont and proluvium. These were replaced by fluvial facies, with some features indicating aridity.
    [Show full text]