Branch Differences and Lambert W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Continuability of Multivalued Analytic Functions to an Analytic Subset*
Functional Analysis and Its Applications, Vol. 35, No. 1, pp. 51–59, 2001 On the Continuability of Multivalued Analytic Functions to an Analytic Subset* A. G. Khovanskii UDC 517.9 In the paper it is shown that a germ of a many-valued analytic function can be continued analytically along the branching set at least until the topology of this set is changed. This result is needed to construct the many-dimensional topological version of the Galois theory. The proof heavily uses the Whitney stratification. Introduction In the topological version of Galois theory for functions of one variable (see [1–4]) it is proved that the character of location of the Riemann surface of a function over the complex line can prevent the representability of this function by quadratures. This not only explains why many differential equations cannot be solved by quadratures but also gives the sharpest known results on their nonsolvability. I always thought that there is no many-dimensional topological version of Galois theory of full value. The point is that, to construct such a version in the many-variable case, it would be necessary to have information not only on the continuability of germs of functions outside their branching sets but also along these sets, and it seemed that there is nowhere one can obtain this information from. Only in spring of 1999 did I suddenly understand that germs of functions are sometimes automatically continued along the branching set. Therefore, a many-dimensional topological version of the Galois theory does exist. I am going to publish it in forthcoming papers. -
Draftfebruary 16, 2021-- 02:14
Exactification of Stirling’s Approximation for the Logarithm of the Gamma Function Victor Kowalenko School of Mathematics and Statistics The University of Melbourne Victoria 3010, Australia. February 16, 2021 Abstract Exactification is the process of obtaining exact values of a function from its complete asymptotic expansion. This work studies the complete form of Stirling’s approximation for the logarithm of the gamma function, which consists of standard leading terms plus a remainder term involving an infinite asymptotic series. To obtain values of the function, the divergent remainder must be regularized. Two regularization techniques are introduced: Borel summation and Mellin-Barnes (MB) regularization. The Borel-summed remainder is found to be composed of an infinite convergent sum of exponential integrals and discontinuous logarithmic terms from crossing Stokes sectors and lines, while the MB-regularized remainders possess one MB integral, with similar logarithmic terms. Because MB integrals are valid over overlapping domains of convergence, two MB-regularized asymptotic forms can often be used to evaluate the logarithm of the gamma function. Although the Borel- summed remainder is truncated, albeit at very large values of the sum, it is found that all the remainders when combined with (1) the truncated asymptotic series, (2) the leading terms of Stirling’s approximation and (3) their logarithmic terms yield identical valuesDRAFT that agree with the very high precision results obtained from mathematical software packages.February 16, -
Black Holes with Lambert W Function Horizons
Black holes with Lambert W function horizons Moises Bravo Gaete,∗ Sebastian Gomezy and Mokhtar Hassainez ∗Facultad de Ciencias B´asicas,Universidad Cat´olicadel Maule, Casilla 617, Talca, Chile. y Facultad de Ingenier´ıa,Universidad Aut´onomade Chile, 5 poniente 1670, Talca, Chile. zInstituto de Matem´aticay F´ısica,Universidad de Talca, Casilla 747, Talca, Chile. September 17, 2021 Abstract We consider Einstein gravity with a negative cosmological constant endowed with distinct matter sources. The different models analyzed here share the following two properties: (i) they admit static symmetric solutions with planar base manifold characterized by their mass and some additional Noetherian charges, and (ii) the contribution of these latter in the metric has a slower falloff to zero than the mass term, and this slowness is of logarithmic order. Under these hypothesis, it is shown that, for suitable bounds between the mass and the additional Noetherian charges, the solutions can represent black holes with two horizons whose locations are given in term of the real branches of the Lambert W functions. We present various examples of such black hole solutions with electric, dyonic or axionic charges with AdS and Lifshitz asymptotics. As an illustrative example, we construct a purely AdS magnetic black hole in five dimensions with a matter source given by three different Maxwell invariants. 1 Introduction The AdS/CFT correspondence has been proved to be extremely useful for getting a better understanding of strongly coupled systems by studying classical gravity, and more specifically arXiv:1901.09612v1 [hep-th] 28 Jan 2019 black holes. In particular, the gauge/gravity duality can be a powerful tool for analyzing fi- nite temperature systems in presence of a background magnetic field. -
Universit`A Degli Studi Di Perugia the Lambert W Function on Matrices
Universita` degli Studi di Perugia Facolta` di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Informatica The Lambert W function on matrices Candidato Relatore MassimilianoFasi BrunoIannazzo Contents Preface iii 1 The Lambert W function 1 1.1 Definitions............................. 1 1.2 Branches.............................. 2 1.3 Seriesexpansions ......................... 10 1.3.1 Taylor series and the Lagrange Inversion Theorem. 10 1.3.2 Asymptoticexpansions. 13 2 Lambert W function for scalar values 15 2.1 Iterativeroot-findingmethods. 16 2.1.1 Newton’smethod. 17 2.1.2 Halley’smethod . 18 2.1.3 K¨onig’s family of iterative methods . 20 2.2 Computing W ........................... 22 2.2.1 Choiceoftheinitialvalue . 23 2.2.2 Iteration.......................... 26 3 Lambert W function for matrices 29 3.1 Iterativeroot-findingmethods. 29 3.1.1 Newton’smethod. 31 3.2 Computing W ........................... 34 3.2.1 Computing W (A)trougheigenvectors . 34 3.2.2 Computing W (A) trough an iterative method . 36 A Complex numbers 45 A.1 Definitionandrepresentations. 45 B Functions of matrices 47 B.1 Definitions............................. 47 i ii CONTENTS C Source code 51 C.1 mixW(<branch>, <argument>) ................. 51 C.2 blockW(<branch>, <argument>, <guess>) .......... 52 C.3 matW(<branch>, <argument>) ................. 53 Preface Main aim of the present work was learning something about a not- so-widely known special function, that we will formally call Lambert W function. This function has many useful applications, although its presence goes sometimes unrecognised, in mathematics and in physics as well, and we found some of them very curious and amusing. One of the strangest situation in which it comes out is in writing in a simpler form the function . -
Various Mathematical Properties of the Generalized Incomplete Gamma Functions with Applications
Various Mathematical Properties of the Generalized Incomplete Gamma Functions with Applications by Bader Ahmed Al-Humaidi A Dissertation Presented to the DEANSHIP OF GRADUATE STUDIES In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY IN MATHEMATICS KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DHAHRAN, SAUDI ARABIA May, 2011 \l'.r..41gzi4r-,1*-414444.4-14444:4414r.14p414.1.4.4*4(4,444 4 VARIOUS MATHEMATICAL PROPERTIES OF THE GENERALIZED INCOMPLETE GAMMA FUNCTIONS 4 WITH APPLICATIONS 4 4 4 BY is BADER AHMED AL HUMAIDI A Dissertation Presented to the DEANSHIP OF GRADUATE STUDIES 4 KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DHAHRAN, SAUDI ARABIA fit,. in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY In 4 MATHEMATICS **. 4 MAY 2011 •> 4 ;4`19PV't4 W4.Lc L'Ff KING FAHD UNIVERSITY OF PETROLEUM & MINIRALS DHAHRAN, SAUDI ARABIA DEANSHIP OF GRADUATE STUDIES this dissertation, written by BADER AHMED AL HUMAIDI under the direction of his thesis advisors and approved by his thesis committee, has been presented to and accepted by the Dean of Graduate Studies, in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN MATHEMATICS. Dissertation Committee Prof. M. A. Chaudhry Dissertation Committee Chairman Prof. S. M. Zubair Co-Chairman Prof. M. A. EI-Gebeily Member Dr. Hattan Tawfiq Prof. A. H. Bokhari Department Chairman Member Dr. Salam Zummo Prof. M. T. Mustafa 10, sr Dean of Graduate Studies i- .eiPiKOY ..;:.-- Member /.0„ ." vtGRADOos" ► 2-1-6 I" Date To my parents, wife, kids, brothers and sisters iii Acknowledgements First, praise be to ALLAH who helped and guided me to accomplish this work. -
The Strange Properties of the Infinite Power Tower Arxiv:1908.05559V1
The strange properties of the infinite power tower An \investigative math" approach for young students Luca Moroni∗ (August 2019) Nevertheless, the fact is that there is nothing as dreamy and poetic, nothing as radical, subversive, and psychedelic, as mathematics. Paul Lockhart { \A Mathematician's Lament" Abstract In this article we investigate some "unexpected" properties of the \Infinite Power Tower 1" function (or \Tetration with infinite height"): . .. xx y = f(x) = xx where the \tower" of exponentiations has an infinite height. Apart from following an initial personal curiosity, the material collected here is also intended as a potential guide for teachers of high-school/undergraduate students interested in planning an activity of \investigative mathematics in the classroom", where the knowledge is gained through the active, creative and cooperative use of diversified mathematical tools (and some ingenuity). The activity should possibly be carried on with a laboratorial style, with no preclusions on the paths chosen and undertaken by the students and with little or no information imparted from the teacher's desk. The teacher should then act just as a guide and a facilitator. The infinite power tower proves to be particularly well suited to this kind of learning activity, as the student will have to face a challenging function defined through a rather uncommon infinite recursive process. They'll then have to find the right strategies to get around the trickiness of this function and achieve some concrete results, without the help of pre-defined procedures. The mathematical requisites to follow this path are: functions, properties of exponentials and logarithms, sequences, limits and derivatives. -
Note on De Sitter Vacua from Perturbative and Non-Perturbative Dynamics in Type IIB/F-Theory Compactifications ∗ Vasileios Basiouris, George K
Physics Letters B 810 (2020) 135809 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Note on de Sitter vacua from perturbative and non-perturbative dynamics in type IIB/F-theory compactifications ∗ Vasileios Basiouris, George K. Leontaris Physics Department, University of Ioannina, 45110, Ioannina, Greece a r t i c l e i n f o a b s t r a c t Article history: The properties of the effective scalar potential are studied in the framework of type IIB string theory, Received 1 August 2020 taking into account perturbative and non-perturbative corrections. The former modify the Kähler Received in revised form 21 September potential and include α and logarithmic corrections generated when intersecting D7branes are part of 2020 the internal geometric configuration. The latter add exponentially suppressed Kähler moduli dependent Accepted 23 September 2020 terms to the fluxed superpotential. The possibility of partial elimination of such terms which may Available online 1 October 2020 happen for particular choices of world volume fluxes is also taken into account. That being the case, Editor: A. Volovichis a simple set up of three Kähler moduli is considered in the large volume regime, where only one of them is assumed to induce non-perturbative corrections. It is found that the shape of the F-term potential crucially depends on the parametric space associated with the perturbative sector and the volume modulus. De Sitter vacua can be obtained by implementing one of the standard mechanisms, i.e., either relying on D-terms related to U (1) symmetries associated with the D7branes, or introducing D3 branes. -
Digitally Continuous Multivalued Functions, Morphological Operations and Thinning Algorithms
Digitally Continuous Multivalued Functions, Morphological Operations and Thinning Algorithms Carmen Escribano • Antonio Giraldo • María Asunción Sastre Abstract In a recent paper (Escribano et al. in Discrete Introduction Geometry for Computer Imagery 2008. Lecture Notes in Computer Science, vol. 4992, pp. 81-92, 2008) we have in The notion of continuous function is a fundamental concept troduced a notion of continuity in digital spaces which ex in the study of topological spaces. For dealing with digital tends the usual notion of digital continuity. Our approach, spaces, several approaches to define a reasonable notion of which uses multivalued functions, provides a better frame continuous function have been proposed. The first one goes work to define topological notions, like retractions, in a far back to A. Rosenfeld [19] in 1986. He defined continuous more realistic way than by using just single-valued digitally functions in a way similar to that used for continuous maps continuous functions. in W1. It turned out that continuous functions agreed with In this work we develop properties of this family of con functions taking 4-adjacent points into 4-adjacent points. He tinuous functions, now concentrating on morphological op proved, amongst other results, that a function between digi erations and thinning algorithms. We show that our notion of tal spaces is continuous if and only if it takes connected sets continuity provides a suitable framework for the basic oper into connected sets. Independently of Rosenfeld, L. Chen ations in mathematical morphology: erosion, dilation, clos [5, 6] seems to have developed the same notion of continu ing, and opening. -
On the Lambert W Function and Its Utility in Biochemical Kinetics
Biochemical Engineering Journal 63 (2012) 116–123 Contents lists available at SciVerse ScienceDirect Biochemical Engineering Journal j ournal homepage: www.elsevier.com/locate/bej Review On the Lambert W function and its utility in biochemical kinetics ∗ Marko Golicnikˇ Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia a r t i c l e i n f o a b s t r a c t Article history: This article presents closed-form analytic solutions to three illustrative problems in biochemical kinetics Received 6 October 2011 that have usually been considered solvable only by various numerical methods. The problems solved Received in revised form concern two enzyme-catalyzed reaction systems that obey diversely modified Michaelis–Menten rate 20 December 2011 equations, and biomolecule surface binding that is limited by mass transport. These problems involve Accepted 21 January 2012 the solutions of transcendental equations that include products of variables and their logarithms. Such Available online 3 February 2012 equations are solvable by the use of the Lambert W(x) function. Thus, these standard kinetics examples are solved in terms of W(x) to show the applicability of this commonly unknown function to the biochemical Keywords: Biokinetics community. Hence, this review first of all describes the mathematical definition and properties of the W(x) Biosensors function and its numerical evaluations, together with analytical approximations, and then it describes the Enzymes use of the W(x) function in biochemical kinetics. Other applications of the function in various engineering Integrated rate equation sciences are also cited, although not described. -
On the Lambert W Function 329
On the Lambert W function 329 The text below is the same as that published in Advances in Computational Mathematics, Vol 5 (1996) 329 – 359, except for a minor correction after equation (1.1). The pagination matches the published version until the bibliography. On the Lambert W Function R. M. Corless1,G.H.Gonnet2,D.E.G.Hare3,D.J.Jeffrey1 andD.E.Knuth4 1Department of Applied Mathematics, University of Western Ontario, London, Canada, N6A 5B7 2Institut f¨ur Wissenschaftliches Rechnen, ETH Z¨urich, Switzerland 3Symbolic Computation Group, University of Waterloo, Waterloo, Canada, N2L 3G1 4Department of Computer Science, Stanford University, Stanford, California, USA 94305-2140 Abstract The Lambert W function is defined to be the multivalued inverse of the function w → wew. It has many applications in pure and applied mathematics, some of which are briefly described here. We present a new discussion of the complex branches of W ,an asymptotic expansion valid for all branches, an efficient numerical procedure for evaluating the function to arbitrary precision, and a method for the symbolic integration of expressions containing W . 1. Introduction In 1758, Lambert solved the trinomial equation x = q +xm by giving a series develop- ment for x in powers of q. Later, he extended the series to give powers of x as well [48,49]. In [28], Euler transformed Lambert’s equation into the more symmetrical form xα − xβ =(α − β)vxα+β (1.1) by substituting x−β for x and setting m = α/β and q =(α − β)v. Euler’s version of Lambert’s series solution was thus n 1 2 x =1+nv + 2 n(n + α + β)v + 1 n(n + α +2β)(n +2α + β)v3 6 (1.2) 1 4 + 24 n(n + α +3β)(n +2α +2β)(n +3α + β)v +etc. -
Multivalued Functions in Digital Topology, Journal of Mathematical Imaging and Vision 55 (3) (2016), 370-377
Multivalued Functions in Digital Topology Laurence Boxer ∗ Abstract We study several types of multivalued functions in digital topology. Key words and phrases: digital topology, digital image, multivalued function 1 Introduction A common method of composing a movie or a video is via a set of “frames” or images that are projected sequentially. If a frame is an m × n grid of pixels, then a transition between projections of consecutive frames requires reading and then outputting to the screen each of the mn pixels of the incoming frame. Since many frames must be displayed each second (in current technology, 30 per second is common), a video composed in this fashion uses a lot of memory, and requires that a lot of data be processed rapidly. Often, consecutive frames have a great deal of resemblance. In particular, there are many pairs (i, j) such that the pixel in row i and column j is unchanged between one frame and its successor. If, further, one can efficiently compute for all changing pixels how they change between successive frames, then it is not necessary to use as much storage for the video, as the pixels not changed between successive frames need not be subjected to the i/o described above; and a larger number of frames or their equivalent can be processed per second. E.g., this approach can be taken in computer graphics when the changes in the viewer’s screen is due to the movements or transformations of sprites. Thus, the world of applications motivates us to understand the properties of structured arXiv:1703.01700v1 [math.GN] 6 Mar 2017 single-valued and multivalued functions between digital images. -
Much Ado About Functions
Much Ado about Functions Alan L. Selman Department of Computer Science State University of New York at Buffalo Buffalo, NY 14260 Abstract questions about NP search problems and about the dif®- culty of inverting polynomial-time computable functions. This paper surveys basic results on complexity classes Most importantly, by studying complexity classes of par- of partial multivalued functions. We stress basic inclusion tial multivalued functions, we directly illuminate interest- relations, interesting hierarchies, and results that demon- ing questions that otherwise would not surface. We will see strate that hierarchies are extant. that properties of complexity classes of partial multivalued functions may be identical to or may differ from those of their corresponding well-known complexity classes of lan- 1 Introduction guages. There are several hierarchies of function classes: a query hierarchy that closely re¯ects the query hierarchy of language classes, a difference hierarchy that only super®- The fundamental data type that a nondeterministic pro- cially resembles the difference hierarchy for languages, and cess computes is a partial multivalued function, partial be- at least one new hierarchy that seems not to correspond to cause nondeterministic computations do not necessarily ac- any collection of language classes. We will see that sev- cept every input, and multivalued because nondeterminis- eral of the interesting questions remain open. In brief, we tic computations may output different values on different will see that studying the complexity of partial multivalued accepting paths. As understanding the power of nondeter- functions is not much ado about nothing. minism is one of the fundamental goals of complexity the- ory, surely, we must study the computational complexity of partial multivalued functions.