Branch Differences and Lambert W

Total Page:16

File Type:pdf, Size:1020Kb

Branch Differences and Lambert W 2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing Branch differences and Lambert W D. J. Jeffrey and J. E. Jankowski Department of Applied Mathematics, The University of Western Ontario, London, Canada N6A 5B7 Email: [email protected] Abstract—The Lambert W function possesses In fact, this has already been noticed in a branches labelled by an index k. The value of W variety of contexts, with some instances pre- therefore depends upon the value of its argument dating the naming of the Lambert W function. z and the value of its branch index. Given two branches, labelled n and m, the branch difference For example, in [10], Jordan and Glasser, ap- is the difference between the two branches, when parently working independently, used a substi- x both are evaluated at the same argument z. tution equivalent to W (xe ) to evaluate the It is shown that elementary inverse functions definite integral have trivial branch differences, but Lambert W ∞ √ u has nontrivial differences. The inverse sine func- e−w/2 w u, w , d where = −u tion has real-valued branch differences for real 0 1 − e arguments, and the natural logarithm function has purely imaginary branch differences. The a problem posed by Logan, Mallows & Shepp. Lambert W function, however, has both real- Karamata [11] derived a series expansion for valued differences and complex-valued differ- W as part of his solution of a problem posed by ences. Applications and representations of the branch differences of W are given. Ramanujan. Definite integrals containing the tree T function, a cognate of W , used branch Keywords -complex analysis; special functions; differences in [3]. Further applications can be elementary functions; Lambert W; multivalued functions seen in [12]. In order to establish the significance of I. INTRODUCTION branch differences, we begin by discussing the branches of some of the elementary functions. W The Lambert function is a multi-branched This will explain the meaning of ‘trivial differ- function (also called a multivalued function). ences’ referred to above. The branches are indexed by an integer k, W z ∈ C and written k.For , the branches are II. ELEMENTARY INVERSE FUNCTIONS defined for |z|→∞by [1] Branch information was added to the nat- Wk(z) Wk(z)e = z and Wk(z) → lnk z, ural logarithm function in [7]. Although the notation loga is widely used to denote log- z z πik k where lnk =ln +2 is the th branch arithm to the base a, this notation does not of logarithm. The branch cuts vary between apply to natural logarithm, since the base must branches. For the principle branch, the cut is be e. Therefore lnk denotes the kth branch −∞, − /e ( 1 ], while for other branches it is of logarithm. Modern convention places the −∞, ( 0]. branch cut for ln along the negative real axis Unlike the elementary multivalued functions, (−∞, 0] and hence the range of lnk obeys such as logarithm or the inverse trigonometric lnk ∈ ((2k − 1)π, (2k +1)π]. Therefore, W functions, the branches of the Lambert for the logarithm function, two consecutive function are not trivially related. This means branches differ by the imaginary constant that the difference between branches is a new function with interesting and useful properties. lnk+1 z − lnk z =2πi . 978-1-4799-8448-0/15 $31.00 © 2015 IEEE 61 DOI 10.1109/SYNASC.2014.16 Figure 1. The domain of the sine function in the complex Figure 2. The range of the sine function in the complex z- plane, denoted the w-plane. The variable w will become plane, and the domain of the inverse sine functions. Before the argument of sin w, or equivalently, w will be mapped a point in this plane can be mapped to the w-plane, the to the z-plane (shown in figure 2) by the sine function. branch of the inverse function must be specified. Notice The red vertical lines separate the branch regions. Each that the real axes contain the red lines which map back to region between the red lines maps to the entire z-plane. the separating lines in the w-plane, and hence are branch When returning from z back to w using the inverse sine cuts in this plane. function, the branch information must be specified. Thus this figure is also the union of the ranges of each of the branches of invsink. and hence the branch difference is invsink+2 z − invsink z =2π. Thus, there is no new function created by π taking the difference. Note in figure 1 that points differing by 2 are In contrast with logarithm, the inverse sine in regions 2 branches apart. Similar considera- function has real-valued differences. Without tions show that consecutive branches differ by branch information, inverse sine is denoted invsink+1 z − invsink z = π − 2 arcsin z. arcsin, but when branch information is added to the inverse sine, it is denoted invsink, for Thus in either case, no new function is cre- convenience in software implementation [6]. ated by the branch difference, and the existing We consider the pair of equations function is recovered. Further the difference in purely real. z =sinw, Therefore we turn to the Lambert W func- tion for more interesting properties. w =invsink z. III. ALGEBRAIC PROPERTIES To understand these equations, it is easiest to start in the w-plane, shown in figure 1, and As with Lambert W, there is an algebraic W consider the mapping under sine. The sine equation solved by . z,d ∈ C d function does not have branches, but each Theorem 1: For , satisfies the region labelled as a branch maps to the entire equation z-plane as shown. Two points in the w-plane d d π exp = z (1) differing by 2 map to the same point e−d − 1 e−d − 1 z =sin(w)=sin(w +2π) , if and only if d = Wmn(z) for m, n ∈ Z. 62 Proof: Observe that Using (2), we see W z W z / W z W(−z) exp ( mn( )) = exp ( m( )) exp ( n( )) q cosech q = exp(W/2) − exp(−W/2) = Wn(z)/Wm(z) . (2) W −z 1/2 −W −z −1( ) Wm W Wn = 0( ) Since = + , this becomes W0(−z) W 1/2 W n , W−1W0 exp ( mn)= −W0 W Wn = 2 + W0 W 1/2 which can be solved for n as =(W−1W0) , Wmn(z) Wn(z)= , (3) where the signs of the quantities have been exp(−Wmn(z)) − 1 taken into account when manipulating the and for Wm as square roots. Similarly 2 1/2 Wmn(z) −q coth q z Wm(z)= . (4) e = . 1 − exp(Wmn(z)) W0(−z)W−1(−z) Since Wn exp(Wn)=z, then (1) follows. For Thus combining these expressions and taking the converse, assume (1) holds, then ∃n ∈ Z, the signs of the quantities into account, we see z such that that both sides of (5) equal . Corollary 1: If we make the substitution d q iv = Wn(z) . = in (5), then the equation becomes e−d − 1 v −v cot v e = z, (6) Look for d in the form d = v − Wn. Then sin v e−d z/W e−v =( n) and hence in which form it has appeared in a variety −v of integration problems; for example, in [13] ze −v v − Wn = Wn − 1 = ze − Wn . the following integral was studied by Nuttall, Wn Bouwkamp and Hornor & Rousseau. v Thus ve = z and v = Wm(z) for m ∈ Z. π p p sin v v cot v πp e dv = ,p∈ N . Lauwerier [12] studied a parametric repre- 0 v p! W sentation of and his work gives another IV. RANGE OF BRANCH DIFFERENCE equation that can be solved in terms of W. We consider first the principal difference Theorem 2: For z ∈ R and 0 <z≤ 1/e, W z W0 z − W−1 z , where we shall the equation ( )= ( ) ( ) suppress the subscripts as being the default −q coth q + qe cosech q = z (5) case. Denoting the positive real axis by R and the positive imaginary axis by I+, we prove the has a real solution being given by following theorem. 1 Theorem 3: The range of W is the region in q = ± W0(−1)(−z) . + + 2 C bounded by R , I and the curves given by x ∈ − /e, Proof: In this proof, we shall abbreviate the following. For [ 1 0) W W q 0(−1) to . The left-side of (5) is even in , W0(x) − W−2(x) , (7) so we need consider only the case q>0. The range of the left side of (5) is (0, 1/e], with and for x ∈ (−∞, −1/e] the maximum at q =0equal to 1/e, which W−1(x) − W−2(x) . (8) determines the restrictions on z in the theorem. Since for x ∈ [−1/e, 0),wehaveW0(x) ∈ Proof: We begin by recalling important [−1, 0] and W−1(x) ∈ (−∞, −1], we can note properties of the branches of W . The principal that W(x) ∈ [0, ∞). branch W0 has branch cut (−∞, −1/e], while 63 the branch cut for W−1 is (−∞, 0]. Further, be seen in the figure when (W) →∞and the both branches are closed on the top, meaning imaginary component of the domain becomes that for x ≤−1/e asymptotic to the interval [0, 2π]. The series expansions around the branch point z = −1/e W0(x) = lim W0(x + iy) , y↓0 depend on the side of the branch cut.
Recommended publications
  • On the Continuability of Multivalued Analytic Functions to an Analytic Subset*
    Functional Analysis and Its Applications, Vol. 35, No. 1, pp. 51–59, 2001 On the Continuability of Multivalued Analytic Functions to an Analytic Subset* A. G. Khovanskii UDC 517.9 In the paper it is shown that a germ of a many-valued analytic function can be continued analytically along the branching set at least until the topology of this set is changed. This result is needed to construct the many-dimensional topological version of the Galois theory. The proof heavily uses the Whitney stratification. Introduction In the topological version of Galois theory for functions of one variable (see [1–4]) it is proved that the character of location of the Riemann surface of a function over the complex line can prevent the representability of this function by quadratures. This not only explains why many differential equations cannot be solved by quadratures but also gives the sharpest known results on their nonsolvability. I always thought that there is no many-dimensional topological version of Galois theory of full value. The point is that, to construct such a version in the many-variable case, it would be necessary to have information not only on the continuability of germs of functions outside their branching sets but also along these sets, and it seemed that there is nowhere one can obtain this information from. Only in spring of 1999 did I suddenly understand that germs of functions are sometimes automatically continued along the branching set. Therefore, a many-dimensional topological version of the Galois theory does exist. I am going to publish it in forthcoming papers.
    [Show full text]
  • Draftfebruary 16, 2021-- 02:14
    Exactification of Stirling’s Approximation for the Logarithm of the Gamma Function Victor Kowalenko School of Mathematics and Statistics The University of Melbourne Victoria 3010, Australia. February 16, 2021 Abstract Exactification is the process of obtaining exact values of a function from its complete asymptotic expansion. This work studies the complete form of Stirling’s approximation for the logarithm of the gamma function, which consists of standard leading terms plus a remainder term involving an infinite asymptotic series. To obtain values of the function, the divergent remainder must be regularized. Two regularization techniques are introduced: Borel summation and Mellin-Barnes (MB) regularization. The Borel-summed remainder is found to be composed of an infinite convergent sum of exponential integrals and discontinuous logarithmic terms from crossing Stokes sectors and lines, while the MB-regularized remainders possess one MB integral, with similar logarithmic terms. Because MB integrals are valid over overlapping domains of convergence, two MB-regularized asymptotic forms can often be used to evaluate the logarithm of the gamma function. Although the Borel- summed remainder is truncated, albeit at very large values of the sum, it is found that all the remainders when combined with (1) the truncated asymptotic series, (2) the leading terms of Stirling’s approximation and (3) their logarithmic terms yield identical valuesDRAFT that agree with the very high precision results obtained from mathematical software packages.February 16,
    [Show full text]
  • Black Holes with Lambert W Function Horizons
    Black holes with Lambert W function horizons Moises Bravo Gaete,∗ Sebastian Gomezy and Mokhtar Hassainez ∗Facultad de Ciencias B´asicas,Universidad Cat´olicadel Maule, Casilla 617, Talca, Chile. y Facultad de Ingenier´ıa,Universidad Aut´onomade Chile, 5 poniente 1670, Talca, Chile. zInstituto de Matem´aticay F´ısica,Universidad de Talca, Casilla 747, Talca, Chile. September 17, 2021 Abstract We consider Einstein gravity with a negative cosmological constant endowed with distinct matter sources. The different models analyzed here share the following two properties: (i) they admit static symmetric solutions with planar base manifold characterized by their mass and some additional Noetherian charges, and (ii) the contribution of these latter in the metric has a slower falloff to zero than the mass term, and this slowness is of logarithmic order. Under these hypothesis, it is shown that, for suitable bounds between the mass and the additional Noetherian charges, the solutions can represent black holes with two horizons whose locations are given in term of the real branches of the Lambert W functions. We present various examples of such black hole solutions with electric, dyonic or axionic charges with AdS and Lifshitz asymptotics. As an illustrative example, we construct a purely AdS magnetic black hole in five dimensions with a matter source given by three different Maxwell invariants. 1 Introduction The AdS/CFT correspondence has been proved to be extremely useful for getting a better understanding of strongly coupled systems by studying classical gravity, and more specifically arXiv:1901.09612v1 [hep-th] 28 Jan 2019 black holes. In particular, the gauge/gravity duality can be a powerful tool for analyzing fi- nite temperature systems in presence of a background magnetic field.
    [Show full text]
  • Universit`A Degli Studi Di Perugia the Lambert W Function on Matrices
    Universita` degli Studi di Perugia Facolta` di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Informatica The Lambert W function on matrices Candidato Relatore MassimilianoFasi BrunoIannazzo Contents Preface iii 1 The Lambert W function 1 1.1 Definitions............................. 1 1.2 Branches.............................. 2 1.3 Seriesexpansions ......................... 10 1.3.1 Taylor series and the Lagrange Inversion Theorem. 10 1.3.2 Asymptoticexpansions. 13 2 Lambert W function for scalar values 15 2.1 Iterativeroot-findingmethods. 16 2.1.1 Newton’smethod. 17 2.1.2 Halley’smethod . 18 2.1.3 K¨onig’s family of iterative methods . 20 2.2 Computing W ........................... 22 2.2.1 Choiceoftheinitialvalue . 23 2.2.2 Iteration.......................... 26 3 Lambert W function for matrices 29 3.1 Iterativeroot-findingmethods. 29 3.1.1 Newton’smethod. 31 3.2 Computing W ........................... 34 3.2.1 Computing W (A)trougheigenvectors . 34 3.2.2 Computing W (A) trough an iterative method . 36 A Complex numbers 45 A.1 Definitionandrepresentations. 45 B Functions of matrices 47 B.1 Definitions............................. 47 i ii CONTENTS C Source code 51 C.1 mixW(<branch>, <argument>) ................. 51 C.2 blockW(<branch>, <argument>, <guess>) .......... 52 C.3 matW(<branch>, <argument>) ................. 53 Preface Main aim of the present work was learning something about a not- so-widely known special function, that we will formally call Lambert W function. This function has many useful applications, although its presence goes sometimes unrecognised, in mathematics and in physics as well, and we found some of them very curious and amusing. One of the strangest situation in which it comes out is in writing in a simpler form the function .
    [Show full text]
  • Various Mathematical Properties of the Generalized Incomplete Gamma Functions with Applications
    Various Mathematical Properties of the Generalized Incomplete Gamma Functions with Applications by Bader Ahmed Al-Humaidi A Dissertation Presented to the DEANSHIP OF GRADUATE STUDIES In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY IN MATHEMATICS KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DHAHRAN, SAUDI ARABIA May, 2011 \l'.r..41gzi4r-,1*-414444.4-14444:4414r.14p414.1.4.4*4(4,444 4 VARIOUS MATHEMATICAL PROPERTIES OF THE GENERALIZED INCOMPLETE GAMMA FUNCTIONS 4 WITH APPLICATIONS 4 4 4 BY is BADER AHMED AL HUMAIDI A Dissertation Presented to the DEANSHIP OF GRADUATE STUDIES 4 KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DHAHRAN, SAUDI ARABIA fit,. in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY In 4 MATHEMATICS **. 4 MAY 2011 •> 4 ;4`19PV't4 W4.Lc L'Ff KING FAHD UNIVERSITY OF PETROLEUM & MINIRALS DHAHRAN, SAUDI ARABIA DEANSHIP OF GRADUATE STUDIES this dissertation, written by BADER AHMED AL HUMAIDI under the direction of his thesis advisors and approved by his thesis committee, has been presented to and accepted by the Dean of Graduate Studies, in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN MATHEMATICS. Dissertation Committee Prof. M. A. Chaudhry Dissertation Committee Chairman Prof. S. M. Zubair Co-Chairman Prof. M. A. EI-Gebeily Member Dr. Hattan Tawfiq Prof. A. H. Bokhari Department Chairman Member Dr. Salam Zummo Prof. M. T. Mustafa 10, sr Dean of Graduate Studies i- .eiPiKOY ..;:.-- Member /.0„ ." vtGRADOos" ► 2-1-6 I" Date To my parents, wife, kids, brothers and sisters iii Acknowledgements First, praise be to ALLAH who helped and guided me to accomplish this work.
    [Show full text]
  • The Strange Properties of the Infinite Power Tower Arxiv:1908.05559V1
    The strange properties of the infinite power tower An \investigative math" approach for young students Luca Moroni∗ (August 2019) Nevertheless, the fact is that there is nothing as dreamy and poetic, nothing as radical, subversive, and psychedelic, as mathematics. Paul Lockhart { \A Mathematician's Lament" Abstract In this article we investigate some "unexpected" properties of the \Infinite Power Tower 1" function (or \Tetration with infinite height"): . .. xx y = f(x) = xx where the \tower" of exponentiations has an infinite height. Apart from following an initial personal curiosity, the material collected here is also intended as a potential guide for teachers of high-school/undergraduate students interested in planning an activity of \investigative mathematics in the classroom", where the knowledge is gained through the active, creative and cooperative use of diversified mathematical tools (and some ingenuity). The activity should possibly be carried on with a laboratorial style, with no preclusions on the paths chosen and undertaken by the students and with little or no information imparted from the teacher's desk. The teacher should then act just as a guide and a facilitator. The infinite power tower proves to be particularly well suited to this kind of learning activity, as the student will have to face a challenging function defined through a rather uncommon infinite recursive process. They'll then have to find the right strategies to get around the trickiness of this function and achieve some concrete results, without the help of pre-defined procedures. The mathematical requisites to follow this path are: functions, properties of exponentials and logarithms, sequences, limits and derivatives.
    [Show full text]
  • Note on De Sitter Vacua from Perturbative and Non-Perturbative Dynamics in Type IIB/F-Theory Compactifications ∗ Vasileios Basiouris, George K
    Physics Letters B 810 (2020) 135809 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Note on de Sitter vacua from perturbative and non-perturbative dynamics in type IIB/F-theory compactifications ∗ Vasileios Basiouris, George K. Leontaris Physics Department, University of Ioannina, 45110, Ioannina, Greece a r t i c l e i n f o a b s t r a c t Article history: The properties of the effective scalar potential are studied in the framework of type IIB string theory, Received 1 August 2020 taking into account perturbative and non-perturbative corrections. The former modify the Kähler Received in revised form 21 September potential and include α and logarithmic corrections generated when intersecting D7branes are part of 2020 the internal geometric configuration. The latter add exponentially suppressed Kähler moduli dependent Accepted 23 September 2020 terms to the fluxed superpotential. The possibility of partial elimination of such terms which may Available online 1 October 2020 happen for particular choices of world volume fluxes is also taken into account. That being the case, Editor: A. Volovichis a simple set up of three Kähler moduli is considered in the large volume regime, where only one of them is assumed to induce non-perturbative corrections. It is found that the shape of the F-term potential crucially depends on the parametric space associated with the perturbative sector and the volume modulus. De Sitter vacua can be obtained by implementing one of the standard mechanisms, i.e., either relying on D-terms related to U (1) symmetries associated with the D7branes, or introducing D3 branes.
    [Show full text]
  • Digitally Continuous Multivalued Functions, Morphological Operations and Thinning Algorithms
    Digitally Continuous Multivalued Functions, Morphological Operations and Thinning Algorithms Carmen Escribano • Antonio Giraldo • María Asunción Sastre Abstract In a recent paper (Escribano et al. in Discrete Introduction Geometry for Computer Imagery 2008. Lecture Notes in Computer Science, vol. 4992, pp. 81-92, 2008) we have in­ The notion of continuous function is a fundamental concept troduced a notion of continuity in digital spaces which ex­ in the study of topological spaces. For dealing with digital tends the usual notion of digital continuity. Our approach, spaces, several approaches to define a reasonable notion of which uses multivalued functions, provides a better frame­ continuous function have been proposed. The first one goes work to define topological notions, like retractions, in a far back to A. Rosenfeld [19] in 1986. He defined continuous more realistic way than by using just single-valued digitally functions in a way similar to that used for continuous maps continuous functions. in W1. It turned out that continuous functions agreed with In this work we develop properties of this family of con­ functions taking 4-adjacent points into 4-adjacent points. He tinuous functions, now concentrating on morphological op­ proved, amongst other results, that a function between digi­ erations and thinning algorithms. We show that our notion of tal spaces is continuous if and only if it takes connected sets continuity provides a suitable framework for the basic oper­ into connected sets. Independently of Rosenfeld, L. Chen ations in mathematical morphology: erosion, dilation, clos­ [5, 6] seems to have developed the same notion of continu­ ing, and opening.
    [Show full text]
  • On the Lambert W Function and Its Utility in Biochemical Kinetics
    Biochemical Engineering Journal 63 (2012) 116–123 Contents lists available at SciVerse ScienceDirect Biochemical Engineering Journal j ournal homepage: www.elsevier.com/locate/bej Review On the Lambert W function and its utility in biochemical kinetics ∗ Marko Golicnikˇ Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia a r t i c l e i n f o a b s t r a c t Article history: This article presents closed-form analytic solutions to three illustrative problems in biochemical kinetics Received 6 October 2011 that have usually been considered solvable only by various numerical methods. The problems solved Received in revised form concern two enzyme-catalyzed reaction systems that obey diversely modified Michaelis–Menten rate 20 December 2011 equations, and biomolecule surface binding that is limited by mass transport. These problems involve Accepted 21 January 2012 the solutions of transcendental equations that include products of variables and their logarithms. Such Available online 3 February 2012 equations are solvable by the use of the Lambert W(x) function. Thus, these standard kinetics examples are solved in terms of W(x) to show the applicability of this commonly unknown function to the biochemical Keywords: Biokinetics community. Hence, this review first of all describes the mathematical definition and properties of the W(x) Biosensors function and its numerical evaluations, together with analytical approximations, and then it describes the Enzymes use of the W(x) function in biochemical kinetics. Other applications of the function in various engineering Integrated rate equation sciences are also cited, although not described.
    [Show full text]
  • On the Lambert W Function 329
    On the Lambert W function 329 The text below is the same as that published in Advances in Computational Mathematics, Vol 5 (1996) 329 – 359, except for a minor correction after equation (1.1). The pagination matches the published version until the bibliography. On the Lambert W Function R. M. Corless1,G.H.Gonnet2,D.E.G.Hare3,D.J.Jeffrey1 andD.E.Knuth4 1Department of Applied Mathematics, University of Western Ontario, London, Canada, N6A 5B7 2Institut f¨ur Wissenschaftliches Rechnen, ETH Z¨urich, Switzerland 3Symbolic Computation Group, University of Waterloo, Waterloo, Canada, N2L 3G1 4Department of Computer Science, Stanford University, Stanford, California, USA 94305-2140 Abstract The Lambert W function is defined to be the multivalued inverse of the function w → wew. It has many applications in pure and applied mathematics, some of which are briefly described here. We present a new discussion of the complex branches of W ,an asymptotic expansion valid for all branches, an efficient numerical procedure for evaluating the function to arbitrary precision, and a method for the symbolic integration of expressions containing W . 1. Introduction In 1758, Lambert solved the trinomial equation x = q +xm by giving a series develop- ment for x in powers of q. Later, he extended the series to give powers of x as well [48,49]. In [28], Euler transformed Lambert’s equation into the more symmetrical form xα − xβ =(α − β)vxα+β (1.1) by substituting x−β for x and setting m = α/β and q =(α − β)v. Euler’s version of Lambert’s series solution was thus n 1 2 x =1+nv + 2 n(n + α + β)v + 1 n(n + α +2β)(n +2α + β)v3 6 (1.2) 1 4 + 24 n(n + α +3β)(n +2α +2β)(n +3α + β)v +etc.
    [Show full text]
  • Multivalued Functions in Digital Topology, Journal of Mathematical Imaging and Vision 55 (3) (2016), 370-377
    Multivalued Functions in Digital Topology Laurence Boxer ∗ Abstract We study several types of multivalued functions in digital topology. Key words and phrases: digital topology, digital image, multivalued function 1 Introduction A common method of composing a movie or a video is via a set of “frames” or images that are projected sequentially. If a frame is an m × n grid of pixels, then a transition between projections of consecutive frames requires reading and then outputting to the screen each of the mn pixels of the incoming frame. Since many frames must be displayed each second (in current technology, 30 per second is common), a video composed in this fashion uses a lot of memory, and requires that a lot of data be processed rapidly. Often, consecutive frames have a great deal of resemblance. In particular, there are many pairs (i, j) such that the pixel in row i and column j is unchanged between one frame and its successor. If, further, one can efficiently compute for all changing pixels how they change between successive frames, then it is not necessary to use as much storage for the video, as the pixels not changed between successive frames need not be subjected to the i/o described above; and a larger number of frames or their equivalent can be processed per second. E.g., this approach can be taken in computer graphics when the changes in the viewer’s screen is due to the movements or transformations of sprites. Thus, the world of applications motivates us to understand the properties of structured arXiv:1703.01700v1 [math.GN] 6 Mar 2017 single-valued and multivalued functions between digital images.
    [Show full text]
  • Much Ado About Functions
    Much Ado about Functions Alan L. Selman Department of Computer Science State University of New York at Buffalo Buffalo, NY 14260 Abstract questions about NP search problems and about the dif®- culty of inverting polynomial-time computable functions. This paper surveys basic results on complexity classes Most importantly, by studying complexity classes of par- of partial multivalued functions. We stress basic inclusion tial multivalued functions, we directly illuminate interest- relations, interesting hierarchies, and results that demon- ing questions that otherwise would not surface. We will see strate that hierarchies are extant. that properties of complexity classes of partial multivalued functions may be identical to or may differ from those of their corresponding well-known complexity classes of lan- 1 Introduction guages. There are several hierarchies of function classes: a query hierarchy that closely re¯ects the query hierarchy of language classes, a difference hierarchy that only super®- The fundamental data type that a nondeterministic pro- cially resembles the difference hierarchy for languages, and cess computes is a partial multivalued function, partial be- at least one new hierarchy that seems not to correspond to cause nondeterministic computations do not necessarily ac- any collection of language classes. We will see that sev- cept every input, and multivalued because nondeterminis- eral of the interesting questions remain open. In brief, we tic computations may output different values on different will see that studying the complexity of partial multivalued accepting paths. As understanding the power of nondeter- functions is not much ado about nothing. minism is one of the fundamental goals of complexity the- ory, surely, we must study the computational complexity of partial multivalued functions.
    [Show full text]