Lunar Flashlight Mapping Lunar Surface Volatiles Using a Cubesat

Total Page:16

File Type:pdf, Size:1020Kb

Lunar Flashlight Mapping Lunar Surface Volatiles Using a Cubesat Lunar Flashlight Mapping Lunar Surface Volatiles Using a CubeSat Dr. Barbara Cohen Lunar Flashlight PI/ Measurement Lead NASA Marshall Space FISO Telecon Flight Center 4/22/15 Lunar Flashlight: a secondary payload • 19 NASA center-led concepts were evaluated and 3 were down-selected by the Advanced Exploration Systems (AES) program • Primary selection criteria: – Relevance to Space Exploration Strategic Knowledge Gaps (SKGs) – Synergistic use of previously demonstrated technologies – Life-cycle cost and optimal use of available civil servant workforce • Other secondary payloads may be added (11 total) 2 Space Launch System (SLS) EM-1 (2018) • SLS Block 1 (70 mT) • Uncrewed circumlunar flight, duration 7 days, free- return trajectory • Demonstrate integrated systems, high-speed entry (11 km/s) EM-2 (2021-2022) • SLS Block 1 (70 mT) • Crewed lunar orbit mission (?) • Mission duration 10-14 days 3 Secondary payloads on EM-1 • Room for 11 6U cubesats on standard deployer • Secondary payloads will be integrated on the MPCV stage adapter (MSA) on the SLS upper stage MPCV • Secondary payloads will MPCV Stage Adapter (MSA) MSA be deployed on a trans- Diaphragm lunar trajectory after the Launch Vehicle Adapter upper stage disposal (LVSA) LVSA maneuver Diaphragm Core Stage Block 10001 4 Near Earth Asteroid Scout GOALS Marshall Space Flight Center/Jet Propulsion Characterize one Lab/LaRC/JSC/GSFC/NASA candidate NEA with an imager to address key One of three 6U Strategic Knowledge Cubesats sponsored Gaps (SKGs) by Advanced Demonstrates low cost Exploration System, capability for HEOMD for Joint Robotic Program NEA detection and to fly on SLS EM-1 reconnaissance Measurements: NEA volume, spectral type, spin and orbital properties, address key physical and regolith mechanical SKGs Biosentinel: DNA Damage-and-Repair Experiment Beyond Low Earth Orbit • What: Yeast radiation biosensor measures DNA damage caused by space radiation: specifically, double strand breaks (DSBs) • Why: Space radiation’s unique spectrum cannot be reproduced on Earth – Various high-energy particles/energy spectra; omnidirectional; continuous; low flux – Health risk for humans over long durations beyond LEO • How: Before launch, engineered S. cerevisiae cells (brewer’s yeast) are dried & placed in arrays of microwells – In space, a group of wells is rehydrated every few weeks – Cells remain dormant until growth is activated by a DSB + gene repair – Yeast repair mechanisms in common with human cells; well studied in space 6 Why look for water ice? • The Moon is highly depleted in volatile compounds, especially water • Humans exploring the Moon will need water: – Option 1: Carry it there. ↵ expensive (at $10K/lb, 1 gal H2O=$80K) – Option 2: Use water that may be there already. ↵ “live off the land” • Can mine O2 from minerals and H from solar wind implantation, however, this is very energy intensive • Life would be much easier and cheaper if we could use H2O from the Moon ­ At the surface or near surface ­ In “operationally useful” quantities 7 Water on the Moon Volcanic glass from the Moon Mineralogy Mapper (M3), Multiple ground-based and Apollo 15 landing site and EPOXI and Cassini instruments space assets (Clementine, apatite grains from the Apollo found trace H2O and OH on the Lunar Prospector, LRO, samples and lunar meteorites lunar surface near the poles, as a LCROSS, Kaguya) have contain trace amounts of monolayer on lunar dust grains or suggested water ice resides water (5-50 ppm) as part of bound into the mineral structures of in permanently-shadowed the mineral structures (e.g., surface materials (Pieters et al., regions (PSRs) at the lunar Saal et al. 2008; McCubbin et 2009; Sunshine et al., 2009; Clark, north and south poles. Too al. 2010, 2013). Too little. 2009). Too little. deep. 8 Water ice frost in PSRs? • Locations where Diviner measures the • Ultraviolet albedo data from coldest year-round temperatures also LAMP also show evidence for show high albedo in LOLA at 1.064 µm, water ice at the lunar surface, consistent with water frost but are not yet definitive 9 What we need to know Lunar Strategic Knowledge Gaps I. Understand the lunar resource potential D. Composition/quantity/distribution/form of water/H species and other volatiles associated with lunar cold traps. Narrative: Required “ground truth” in-situ measurement within permanently shadowed lunar craters or other sites identified using LRO data. Technology development required for operating in extreme environments. Enables prospecting of lunar resources and ISRU. Relevant to Planetary Science Decadal survey. • Lunar Flashlight will illuminate permanently-shadowed and detect water ice absorption bands in the near-infrared – Measurement goal • By repeating this measurement over multiple points, Lunar Flashlight will create a map of surficial ice concentration that can be correlated to previous mission data and used to guide future missions – Mapping goal 10 LF Mission Overview • 6U Cubesat (form factor 10 cm x 20 cm x 30 cm) • ~85 m2 sail reflects sunlight into permanently shadowed regions • IR 4-band point spectrometer measures H2O absorption & continuum • Teaming: JPL & MSFC – S/C, Payload, Mission Design & Nav: JPL – Propulsion: MSFC – I&T, Ops: JPL & MSFC not to scale – Science: MSFC, JPL, APL, UCLA • Leverages: • SLS Secondary: EM1 – Solar sail development expertise (NanoSail-D, • Schedule: Launch 2018 • Arrival Date: 2019 Sunjammer, LightSail-1) • Duration: 2 years – CubeSat developments and standards (INSPIRE, • MCR/SRR: August 2014 university & industry experience) – Synergies with NEA Scout (bus, solar sail, comm, I&T, ops) 11 LF Flight System overview • Lunar Flashlight: Custom spectrometer Payload • NEA Scout: Heritage JPL MSL/Mars 2020 imager (400-900 nm) Star Tracker ! Rad Tolerant C&DH • “6U” CubeSat form factor (~10x20x30 cm) (Blue Canyon) LGA Mechanical (JPL) (JPL) • <12 kg total launch mass & Structure LF Spectrometer • Modular flight system concept (JPL) • ~85 m2 aluminized Kapton solar sail (based Propulsion on NanoSail-D2) EPS (TBD) Avionics • Radiation tolerant LEON3-FT architecture • Simple deployable solar arrays with UTJ 18650 Lithium BaMeries (SDL/Panasonic) Electrical GaAs cells (~35 W at 1 AU solar distance) Power • 6.8 Ah Battery (3s2p 18650 Lithium Cells) Iris 2.0 Transponder System • 10.5-12.3 V unregulated, 5 V/3.5 V (JPL) regulated • JPL Iris 2.0 X-Band Transponder; 1 W RF, supports doppler, ranging, and D-DOR Telecom • 2 pairs of INSPIRE-heritage LGAs (RX/TX) TRAC Boom Assy x2 (MSFC) RWA x4 (Blue • Lunar Flashlight: ~500 bps to 34m DSN at Canyon) all times. • 15 mNm-s (x3) & 100 mNm-s RWAs • Zero-momentum slow spin during cruise Attitude • VACCO R-236fa (refrigerant gas) RCS Control Solar Sail x2 - Stowed system System (MSFC) Solar Panels x4 (MMA) • Nano StarTracker, Coarse Sun Sensors & MEMS IMU for attitude determination RCS (VACCO) 12 Solar Sail Development History 200m2 IKAROS JAXA 32m2 80m2 NEA Scout Lightsail-1 ~1200m2 NASA TDM Planetary (STMD) Sunjammer Society 3.5-m NanoSail-D2 (2010) 80m2 Lunar Flashlight 20-m ground demo (2005) 13 LF Concept of Operations (example) Moon • ~1.35 million km max Earth Disposal distance Science passes • Sail Lunar Capture • De-tumble deployment Spiraling down • ~8m/s dV to • Target second target first lunar lunar fly-by fly-by Lunar Fly-by 3 Cruise Lunar Fly-by 2 • ~1 year spiraling Separation phase around from SLS the moon Lunar Fly-by 1 Instrument Sail deployment Calibration & EPO Activity Calibration (Earthflash) (Jupiter) L+4.5 days L+2 month L+2.5 months L+6 months L+20months L+21.5 months Earth Mission Duration < 2 years Mission Lifetime < 2 years Not to scale 14 15 LF Goals and Objectives Lunar Flashlight Level 1 NASA Goals Measurement Objectives Requirements Human Exploration Strategic Knowledge Gaps for the “Moon Objective 1 (measurement) First” Human Exploration Scenario LF shall measure the I. Understand the lunar resource potential abundance of lunar volatiles ID. Composition/quantity/distribution/form present at levels ≥0.5 wt% in of water/H species and other volatiles the lunar regolith with a associated with lunar cold traps Lunar Flashlight shall have the precision of ±50% or better capability to address a key Strategic Science Knowledge Gap at the Moon Planetary Science Decadal Survey, Terrestrial Planets Characterize Planetary Surfaces to Objective 2 (mapping) Understand How They Are Modified by LF shall map the distribution Geologic Processes of exposed water ice with 1-2 • What are the compositions, distributions, km resolution within the and sources of planetary polar deposits? permanently shadowed regions at the lunar south pole Lunar Flashlight shall be in a 6U Technology cubesat form factor compatible with a Demonstrate low-cost reconnaissance NASA provided cubesat deployer for capability for HEOMD through the use of launch on a NASA provided launch innovative solutions vehicle 16 Objective 1: Measurement 0.6$ A B C D 0.55$ 0.5$ 0.45$ ice$ 0.5wt%$ • Reflectance 0.4$ 1.0wt%$ spectroscopy is the Reflectance( 2.0wt%$ 0.35$ standard technique for 5.0wt%$ identifying molecular 0.3$ 10wt%$ “fingerprints” from a 20wt%$ 0.25$ 40wt%$ distance 80wt%$ 0.2$ regolith$ • Measure absorption and 0.5$ 1$ 1.5$ 2$ 2.5$ continuum to understand Wavelength((microns)( ice abundance 17 Objective 1: Measurement 1.5 H2O ice, r = 10 micron 1.01 CO2 ice, r = 10 micron 1.005 CO2 ice 1.4 0.988 Mixtures 1 1.3 0.986 0.995 C/D 0.99 1.2 C/D C/D 0.984 0.985 Dry 1.1 0.899 A/B Water 0.98 regolith ice Mixtures 1 Dry 0.975 regolith 0.9
Recommended publications
  • The Cubesat Mission to Study Solar Particles (Cusp) Walt Downing IEEE Life Senior Member Aerospace and Electronic Systems Society President (2020-2021)
    The CubeSat Mission to Study Solar Particles (CuSP) Walt Downing IEEE Life Senior Member Aerospace and Electronic Systems Society President (2020-2021) Acknowledgements – National Aeronautics and Space Administration (NASA) and CuSP Principal Investigator, Dr. Mihir Desai, Southwest Research Institute (SwRI) Feature Articles in SYSTEMS Magazine Three-part special series on Artemis I CubeSats - April 2019 (CuSP, IceCube, ArgoMoon, EQUULEUS/OMOTENASHI, & DSN) ▸ - September 2019 (CisLunar Explorers, OMOTENASHI & Iris Transponder) - March 2020 (BioSentinnel, Near-Earth Asteroid Scout, EQUULEUS, Lunar Flashlight, Lunar Polar Hydrogen Mapper, & Δ-Differential One-Way Range) Available in the AESS Resource Center https://resourcecenter.aess.ieee.org/ ▸Free for AESS members ▸ What are CubeSats? A class of small research spacecraft Built to standard dimensions (Units or “U”) ▸ - 1U = 10 cm x 10 cm x 11 cm (Roughly “cube-shaped”) ▸ - Modular: 1U, 2U, 3U, 6U or 12U in size - Weigh less than 1.33 kg per U NASA's CubeSats are dispensed from a deployer such as a Poly-Picosatellite Orbital Deployer (P-POD) ▸NASA’s CubeSat Launch initiative (CSLI) provides opportunities for small satellite payloads to fly on rockets ▸planned for upcoming launches. These CubeSats are flown as secondary payloads on previously planned missions. https://www.nasa.gov/directorates/heo/home/CubeSats_initiative What is CuSP? NASA Science Mission Directorate sponsored Heliospheric Science Mission selected in June 2015 to be launched on Artemis I. ▸ https://www.nasa.gov/feature/goddard/2016/heliophys ics-cubesat-to-launch-on-nasa-s-sls Support space weather research by determining proton radiation levels during solar energetic particle events and identifying suprathermal properties that could help ▸ predict geomagnetic storms.
    [Show full text]
  • Lunar Flashlight & NEA Scout
    National Aeronautics and Space Administration Lunar Flashlight & NEA Scout A NanoSat Architecture for Deep Space Exploration Payam Banazadeh (JPL/Caltech) Andreas Frick (JPL/Caltech) EM-1 Secondary Payload Selection • 19 NASA center-led concepts were evaluated and 3 were down-selected for further refinement by AES toward a Mission Concept Review (MCR) planned for August 2014 • Primary selection criteria: - Relevance to Space Exploration Strategic Knowledge Gaps (SKGs) - Life cycle cost - Synergistic use of previously demonstrated technologies - Optimal use of available civil servant workforce Payload Strategic Knowledge Gaps Mission Concept NASA Centers Addressed BioSentinel Human health/performance in high- Study radiation-induced DNA ARC/JSC radiation space environments damage of live organisms in cis- • Fundamental effects on biological systems lunar space; correlate with of ionizing radiation in space environments measurements on ISS and Earth Lunar Flashlight Lunar resource potential Locate ice deposits in the Moon’s JPL/MSFC/MHS • Quantity and distribution of water and other permanently shadowed craters volatiles in lunar cold traps Near Earth Asteroid (NEA) NEA Characterization Slow flyby/rendezvous and Scout • NEA size, rotation state (rate/pole position) characterize one NEA in a way MSFC/JPL How to work on and interact with NEA that is relevant to human surface exploration • NEA surface mechanical properties 2 EM-1: Near Earth Asteroid (NEA) Scout concept WHY NEA Scout? – Characterize a NEA with an imager to address key Strategic
    [Show full text]
  • Lunar Life Sciences Payload Assessment
    Lunar Surface Science Workshop 2020 (LPI Contrib. No. 2241) 5077.pdf LUNAR LIFE SCIENCES PAYLOAD ASSESSMENT. S. C. Sun1, F. Karouia2, M. P. Lera3, M. P. Parra1, H. E. Ray4, A. J. Ricco1, S. M. Spremo1. 1NASA Ames Research Center, 2Blue Marble Space Institute of Science, 3KBR, 4ASRC Federal Space and Defense, Inc. Introduction: The Moon provides a unique site to ISS, including systems that integrate into EXPRESS study living organisms. The fractional gravity and (EXpedite the PRocessing of ExperimentS for Space) unique radiation environment have similarities to Mars Racks or are external space exposure research facilities. and will help us understand how life will respond to These same systems can be the basis for future payload conditions on the red planet. Martian and lunar envi- systems for experiments to be performed beyond Low ronments can be simulated on the ground but not to high Earth Orbit. Such facilities would need to be adapted to fidelity. Altered gravity and increased radiation are dif- be compatible with the new research platforms and ficult to replicate simultaneously, which makes study- function in the harsher radiation environment found out- ing their combined effect difficult. The International side the magnetosphere. If Gateway and a lunar based- Space Station, and previously, the Space Shuttle, pro- lab could provide EXPRESS-compatible interfaces, lev- vided a microgravity environment, and could simulate eraging hardware developed for ISS would be more fea- fractional-g only via an onboard centrifuge. Because sible. the ISS and Space Shuttle orbits were within the Earth’s Gaps in Capabilities: Many of the payload systems magnetosphere, experiments on those platforms have that have been developed require human tending.
    [Show full text]
  • Developing Technologies for Biological Experiments in Deep Space
    Developing technologies for biological experiments in deep space Sergio R. Santa Maria Elizabeth Hawkins Ada Kanapskyte NASA Ames Research Center [email protected] NASA’s life science programs STS-1 (1981) STS-135 (2011) 1973 – 1974 1981 - 2011 2000 – 2006 – Space Shuttle International Skylab Bio CubeSats Program Space Station Microgravity effects - Nausea / vomit - Disorientation & sleep loss - Body fluid redistribution - Muscle & bone loss - Cardiovascular deconditioning - Increase pathogenicity in microbes Interplanetary space radiation What type of radiation are we going to encounter beyond low Earth orbit (LEO)? Galactic Cosmic Rays (GCRs): - Interplanetary, continuous, modulated by the 11-year solar cycle - High-energy protons and highly charged, energetic heavy particles (Fe-56, C-12) - Not effectively shielded; can break up into lighter, more penetrating pieces Challenges: biology effects poorly understood (but most hazardous) Interplanetary space radiation Solar Particle Events (SPEs) - Interplanetary, sporadic, transient (several min to days) - High proton fluxes (low and medium energy) - Largest doses occur during maximum solar activity Challenges: unpredictable; large doses in a short time Space radiation effects Space radiation is the # 1 risk to astronaut health on extended space exploration missions beyond the Earth’s magnetosphere • Immune system suppression, learning and memory impairment have been observed in animal models exposed to mission-relevant doses (Kennedy et al. 2011; Britten et al. 2012) • Low doses of space radiation are causative of an increased incidence and early appearance of cataracts in astronauts (Cuccinota et al. 2001) • Cardiovascular disease mortality rate among Apollo lunar astronauts is 4-5-fold higher than in non-flight and LEO astronauts (Delp et al.
    [Show full text]
  • Performance Quantification of Heliogyro Solar Sails Using Structural
    PERFORMANCE QUANTIFICATION OF HELIOGYRO SOLAR SAILS USING STRUCTURAL, ATTITUDE, AND ORBITAL DYNAMICS AND CONTROL ANALYSIS by DANIEL VERNON GUERRANT B.S., California Polytechnic State University at San Luis Obispo, 2005 M.S., California Polytechnic State University at San Luis Obispo, 2005 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Aerospace Engineering Sciences 2015 This thesis entitled: Performance Quantification of Heliogyro Solar Sails Using Structural, Attitude, and Orbital Dynamics and Control Analysis written by Daniel Vernon Guerrant has been approved for the Department of Aerospace Engineering Sciences ________________________________________ Dr. Dale A. Lawrence ________________________________________ Dr. W. Keats Wilkie Date______________ The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Guerrant, Daniel Vernon (Ph.D., Aerospace Engineering Sciences) Performance Quantification of Heliogyro Solar Sails Using Structural, Attitude, and Orbital Dynamics and Control Analysis Thesis directed by Professor Dale A. Lawrence Solar sails enable or enhance exploration of a variety of destinations both within and without the solar system. The heliogyro solar sail architecture divides the sail into blades spun about a central hub and centrifugally stiffened. The resulting structural mass savings can often double acceleration verses kite-type square sails of the same mass. Pitching the blades collectively and cyclically, similar to a helicopter, creates attitude control moments and vectors thrust. The principal hurdle preventing heliogyros’ implementation is the uncertainty in their dynamics.
    [Show full text]
  • Pre-Launch Testing of the Lunar Flashlight (LF) Cubesat GNC System David C
    Sternberg, D. C. et al. (2021): JoSS, Vol. 10, No. 1, pp. 959–981 (Peer-reviewed article available at www.jossonline.com) www.adeepakpublishing.com www. JoSSonline.com Pre-Launch Testing of the Lunar Flashlight (LF) CubeSat GNC System David C. Sternberg, Peter C. Lai, Aadil Rizvi, Kevin F. Ortega, Kevin D. Lo, Philippe C. Adell, and John D. Baker Jet Propulsion Laboratory California Institute of Technology Pasadena, CA, US Abstract Lunar Flashlight (LF) is a 6U, 14 kg spacecraft that will measure potential surface water ice deposits in the permanently shadowed region (PSR) of the moon. The mission described in this paper will use IR laser technology to search for volatiles in preparation for future human lunar exploration. A CubeSat’s guidance, navigation and control (GNC) system is crucial for the spacecraft to successfully reach the moon, enter a lunar orbit, and acquire scientific data. The Jet Propulsion Laboratory (JPL) has adopted a commercial-off-the-shelf (COTS) integrated GNC spacecraft system after experience from over twenty CubeSat missions. When hardware is delivered to JPL by the vendor, thorough validation testing is performed to guarantee fundamental functionality before the hard- ware is integrated into the spacecraft. Moreover, while the validation processes for the first few CubeSats relying on similar COTS-integrated GNC systems at JPL were very fluid, LF represents the first attempt JPL has made to apply large-mission, rigorous testing processes to a CubeSat, with the intent of standardizing the testing process for a rapidly growing number of CubeSats at JPL. This paper presents the rigorous testing concept applied to the GNC system, the various tests that have been performed and standardized, and the data acquired during the testing campaign to ensure that the LF GNC system will function as part of the integrated spacecraft once launched.
    [Show full text]
  • Lunar Flashlight
    https://ntrs.nasa.gov/search.jsp?R=20160008001 2019-08-29T23:45:10+00:00Z Lunar Flashlight Project Manager(s)/Lead(s) John Baker (PM)/Jet Propulsion Laboratory (818) 354–5004 Barbara Cohen (PI)/ZP13 (256) 961–7901 Amy Walden (Project Lead)/FP30 (256) 961–2358 Sponsoring Program(s) Human Exploration and Operations Mission Directorate Advanced Exploration Systems Figure 1: Artist concept of the Lunar Flashlight mission over the lunar surface. Project Description The Lunar Flashlight is a Jet Propulsion Laboratory project, with NASA Marshall Space Flight Center (MSFC) serving as the principal investigator and pro- viding the solar sail propulsion system. The goal of Lunar Flashlight is to determine the presence and abun- dance of exposed lunar water ice within permanently shadowed regions (PSRs) at the lunar south pole, and to map its concentration at the 1–2 km scale to sup- port future exploration and use. After being ejected in cis-lunar space by the launch vehicle, Lunar Flashlight deploys solar panels and an 85-m2 solar sail and maneu- vers into a low-energy transfer to lunar orbit. The solar sail and attitude control system work to bring the satel- lite into an elliptical polar orbit, spiraling down over a period of 18 months to a perilune of 30–10 km above the south pole for data collection. Lunar Flashlight uses Figure 2: Reflectivity testing of the material that will be used to build the Lunar Flashlight solar sail. its solar sail to shine reflected sunlight onto the lunar surface, measuring surface reflectance with a four-filter point spectrometer.
    [Show full text]
  • Payload Design for the Lunar Flashlight Mission
    Lunar and Planetary Science XLVIII (2017) 1709.pdf Payload Design For The Lunar Flashlight Mission. B. A. Cohen1, P. O. Hayne2, B. T. Greenhagen3, D. A. Paige4, J. M. Camacho2, K. Crabtree5, C. Paine2, R. G. Sellar5; 1NASA Marshall Space Flight Center, Huntsville AL 35812 ([email protected]), 2Jet Propulsion Laboratory, Pasadena CA 91109, 3Applied Physics Laboratory, Johns Hopkins University, Laurel MD 20723, 4UCLA, Los Angeles, CA 90095, 5 Photon Engineering, Tucson AZ 85711. Introduction: Recent reflectance data from LRO lengths in rapid sequence, while a receiver system de- instruments suggest water ice and other volatiles may tects the reflected light. Derived reflectance and water be present on the surface in lunar permanently- ice band depths will be mapped onto the lunar surface shadowed regions, though the detection is not yet de- in order to identify locations where H2O ice is present finitive [1-3]. Understanding the composition, quanti- at or above 0.5 wt% concentration. ty, distribution, and form of water and other volatiles In the past year, we have advanced the design for associated with lunar permanently shadowed regions the Lunar Flashlight payload to meet our measurement (PSRs) is identified as a Strategic Knowledge Gap requirement within the limited mass and power availa- (SKG) for NASA’s human exploration program. These ble for the instrument system. We optimized the laser polar volatile deposits are also scientifically interest- wavelengths for maximum sensitivity to water ice ab- ing, having potential to reveal important information sorption bands. The selected wavelengths are 1.064 (- about the delivery of water to the Earth-Moon system.
    [Show full text]
  • Solar Sail Heliocentric Earth-Following Orbits
    Solar Sail Heliocentric Earth-Following Orbits Jeannette Heiligers1 and Colin R. McInnes2 University of Strathclyde, Glasgow, G1 1XJ I. Introduction Solar sail technology development is rapidly gaining momentum after recent successes such as JAXA’s IKAROS mission [1] and NASA’s NanoSail-D2 mission [2]. Research in the field is flourishing and new solar sail initiatives, such as NASA’s Sunjammer mission, are scheduled for the future [3]. Solar sails exploit the radiation pressure generated by solar photons reflecting off a large, highly reflecting sail to produce a continuous thrust force. They are therefore not constrained by propellant mass [4], which gives them huge potential for long-lifetime and high-energy mission concepts and enables a range of novel applications. One such family of applications are non- Keplerian orbits (NKOs) [5, 6], where the force due to solar radiation pressure on a solar sail is used to displace an orbit away from a natural Keplerian orbit. Different types of NKOs exist, including NKOs in the two-body problem (either Sun-centered or Earth-centered) and NKOs in the well-known circular restricted three-body problem (CR3BP). In the Sun-centered two-body problem, NKOs are determined by considering the solar sail spacecraft dynamics in a rotating frame of reference. By setting the time derivatives of the position vector equal to zero, equilibrium solutions are found in the rotating frame that correspond to displaced circular orbits in an inertial frame. Such Sun-centred NKOs allow a spacecraft to be synchronous with a planet at any heliocentric distance inward from the target planet and/or to displace a solar sail spacecraft out of the ecliptic plane for solar polar observations, 1 Research Associate, Advanced Space Concepts Laboratory, Department of Mechanical and Aerospace Engineering, James Weir Building, 75 Montrose Street, Glasgow, G1 1XJ, UK, [email protected].
    [Show full text]
  • AES-Secondaries-FS-V508b.Pdf
    National Aeronautics and Space Administration Hitchhiking Into the Solar System: Launching NASA’s First Deep-Space CubeSats Introduction NASA is pioneering space through common capability and technology developments, enabling exploration and human STRATEGIC expansion across multiple solar system destinations, including to KNOWLEDGE GAPS an asteroid and Mars. This journey into deep space has begun with exploration systems testing and demonstrations on Earth and in space. Although uncrewed, the first flight of the Orion spacecraft in December 2014 was an initial step in demonstrating its ability to safely ferry astronauts beyond Earth into deep space. Strategic Knowledge Gaps, or SKGs, The next critical demonstration of NASA’s deep space exploration represent gaps in knowledge or capabilities will be on Exploration Mission (EM)-1 in 2018. This information required to reduce risk, first flight of NASA’s Space Launch System (SLS) rocket will increase effectiveness and improve launch an uncrewed Orion spacecraft to a stable orbit beyond the facts the design of robotic and human moon and return it to Earth. In addition to demonstrating NASA’s space exploration missions. NASA new heavy-lift capability, SLS has the capacity to accommodate uses SKGs to help inform research 11 6U-sized CubeSats, which will deploy once Orion spacecraft and investment strategies, and separation is confirmed and on a specified timeline based on their prioritize technology development for mission objectives. human and robotic exploration. NASA’s Advanced Exploration Systems Division has selected three secondary payloads for further development to launch on SLS — hitchhiking into deep space. The major driver for selection of these CubeSats was the risk reduction they enable by addressing key Strategic Knowledge Gaps (SKGs).
    [Show full text]
  • Near Earth Asteroid Scout Mission AIAA Space 2014 7 August 2014
    Near Earth Asteroid Scout Mission AIAA Space 2014 7 August 2014 Andrew Heaton (NASA/MSFC) Julie Castillo-Rogez (JPL/Caltech/NASA) Andreas Frick (JPL/Caltech/NASA) Wayne Hartford (JPL/Caltech/NASA) Les Johnson (NASA/MSFC) Laura Jones (JPL/Caltech/NASA) Leslie McNutt (NASA/MSFC) And the NEA Scout Team SLS EM-1 Secondary Payload Overview • HEOMD’s Advanced Exploration Systems (AES) selected 3 concepts for further refinement toward a combined Mission Concept Review (MCR) and System Requirements Review (SRR) planned for August 2014 • Primary selection criteria: - Relevance to Space Exploration Strategic Knowledge Gaps (SKGs) - Life cycle cost - Synergistic use of previously demonstrated technologies - Optimal use of available civil servant workforce • Project in Pre-formulation • Completed a Non-Advocate Review of the Science Plan Payload Strategic Knowledge Gaps Mission Concept NASA Centers Addressed BioSentinel Human health/performance in high- Study radiation-induced DNA ARC/JSC radiation space environments damage of live organisms in cis- • Fundamental effects on biological systems lunar space; correlate with of ionizing radiation in space environments measurements on ISS and Earth Lunar Flashlight Lunar resource potential Locate ice deposits in the Moon’s JPL/MSFC • Quantity and distribution of water and other permanently shadowed craters volatiles in lunar cold traps Near Earth Asteroid (NEA) Human NEA mission target identification Flyby/rendezvous and Scout • NEA size, rotation state (rate/pole position) characterize one NEA that is
    [Show full text]
  • JPL's Planetary Cubesat Missions in Implementation: Marco, Lunar
    Abstract for 11th Low Cost Planetary Missions Conference June 9-11, 2015, Berlin, Germany JPL’s Planetary CubeSat Missions in Implementation: MarCO, Lunar Flashlight, and NEA Scout Frick, A., JPL; Klesh, A., JPL; Krajewski, J., JPL; Castillo-Rogez, J., JPL; Baker, J., JPL; Hartford, W., JPL; Alibay, F., JPL; Loomis, C., JPL; Imken, T., JPL; Johnson, L., NASA MSFC; Cohen, B., NASA MSFC; McNutt, L., NASA MSFC; Dervan, J.; MSFC JPL is currently developing three planetary CubeSat missions to launch in the near future to Mars, the Moon, and a Near Earth Asteroid. Mars CubeSat One (MarCO) would become the first interplanetary CubeSat, currently slated to launch with the NASA InSight Mars lander in March of 2016. MarCO is designed to provide real-time relay of Insight’s Entry, Descent, and Landing (EDL) telemetry to complement recorded and replayed data from MRO. In addition to MarCO, JPL is designing the flight systems for Lunar Flashlight and NEA Scout, developed jointly with the NASA Marshall Space Flight Center to be launched on the first uncrewed mission of the Space Launch System (SLS) in 2018. Lunar Flashlight would use a solar sail developed at the NASA Marshall Space Flight Center to achieve a lunar orbit and reflect sunlight into permanently shadowed regions of the Moon. Using the reflected photons and a simple spectrometer, Lunar Flashlight would be capable of mapping lunar volatiles, including water ice, at the lunar south pole. Lead by Marshall Space Flight Center, NEA Scout would use the same solar sail and JPL-developed deep space nano-spacecraft bus as Lunar Flashlight.
    [Show full text]