Bog Iron Formation in the Nassawango Creek Watershed, Maryland, USA

Total Page:16

File Type:pdf, Size:1020Kb

Bog Iron Formation in the Nassawango Creek Watershed, Maryland, USA Bog iron formation in the Nassawango Creek watershed, Maryland, USA O. P. Bricker, W. L. Newell & N. S. Simon U.S. Geological Survey, USA Abstract The ground water of the Pocomoke River basin is rich in reduced iron. This is particularly true in the Nassawango Creek sub-basin where bog iron deposits along the flood plain of the Nassawango Creek were stripped in the mid-1800’s to supply an iron smelter near the town of Snow Hill, Maryland. The rate of bog iron formation was so rapid that areas could be re-stripped in a matter of few years. Bog iron is still forming in this area and in other parts of the Pocomoke Basin. Ground water has been measured with ferrous iron concentrations in excess of 20 ppm. When this water emerges at the surface or is discharged into the river system it rapidly oxidizes to an amorphous particulate iron oxyhydroxide which in time crystallizes to goethite. The iron in this system is important for at least two reasons: 1) iron oxyhydroxides strongly sorb phosphorous and many trace metals, 2) the iron oxyhydroxides precipitating in the rivers cause turbidity which reduces light penetration to rooted aquatic vegetation and may impact other organisms, for instance, by coating gills and interfering with oxygen transfer. The first effect will play a role in the behavior and cycling of P in the system, while the second effect will impact biota in the system. In the fall of two very dry years (1999 and 2001) we found the rivers in the central part of the Pocomoke Basin quite turbid although there had been no storms to wash sediment-laden runoff into the rivers. Samples of the particulate matter creating the turbidity were iron-rich and displayed a weak x-ray diffraction pattern of goethite. The materials that cause turbidity are internally generated in the rivers and are not contributed by runoff. Any practice recommended to reduce suspended sediment in these waters must take internally generated sediment into consideration. Best management practices for sediment control in the watershed will have no effect on the turbidity generated by internal processes. Keywords: bog iron, ferrous ion, ferric ion, redox, floodplain, phosphorous, turbidity, ferric oxyhydroxide. Geo-Environment, J. F. Martin-Duque, C. A. Brebbia, A. E. Godfrey & J. R. Diaz de Teran (Editors) © 2004 WIT Press, www.witpress.com, ISBN 1-85312-723-X 14 Geo-Environment 1 Introduction Colonial American iron works were developed at many locations across the middle Atlantic Coastal Plain. One was located in eastern Maryland on Nassawango Creek, a tributary of the Pocomoke River, Figure 1. The furnaces refined iron from rapidly accumulating deposits of bog ore, commonly goethite. Today, the chemistry of the groundwater and surface water discharging into black water streams periodically creates turbidity events that limit light transmissivity in the water, impacting ecological function. These events are particularly effective during drought when clastic sediment input is essentially nil. This natural phenomenon can inhibit the efficacy of various land-use practices intended to limit the impact of sediment loads on aquatic biota. Figure 1: Index map showing location of Pocomoke River watershed on the Delmarva Peninsula of the Atlantic Coastal Plain (derived from an unpublished map of the surficial geology and geomorphology of the Atlantic Coastal Plain by W.L. Newell and others, 2002). 2 Description of study area The Pocomoke River drains 710 sq. km. of the Delmarva Peninsula into the Chesapeake Bay. All elevations in the watershed are less than 25 meters and the mean elevation is about 8 meters; much of the land surfaces are low relief, poorly drained, paleo-estuarine terraces. The Pocomoke is a sluggish, low gradient blackwater river bordered by extensive tidal and forested riparian wetlands. Tidal influence extends nearly half way up the river. In recent decades, agricultural practices have developed more than 1800 linear kilometers of Geo-Environment, J. F. Martin-Duque, C. A. Brebbia, A. E. Godfrey & J. R. Diaz de Teran (Editors) © 2004 WIT Press, www.witpress.com, ISBN 1-85312-723-X Geo-Environment 15 drainage ditches in the Pocomoke watershed. Natural sediment storage and nutrient mitigation in riparian wetland buffer zones is now by-passed and the water quality of the downstream estuary is impacted. Nassawango Creek is a major Pocomoke tributary on the western side of the valley. An abandoned colonial iron furnace is sited in the middle reaches of Nassawango Creek. The entire economy of the furnace was locally derived. Charcoal was made in the surrounding forests, shells for lime flux were barged up the creek and the bog ore was stripped from the flood plain bottoms. As in other Atlantic Coastal Plain bog-iron works, it was widely recognized that groundwater springs, seeps, and shallow wells were charged with dissolved ferrous iron that precipitated in the oxidizing environment at the surface, providing a renewable resource. Today, the Nassawango bog ore continues to accumulate in the forested wetlands on the floodplain of the creek. Ongoing work documenting the flux of sediments and nutrients in the Nassawango valley has revealed a reach of the creek where the provenance, deposition, reworking and concentration of these bog ores, valuable during the colonial period, can be set forth within the context of the hydrogeomorphic system. Figure 2: Geologic map of Pocomoke River watershed (Source: Owens and Denny [1, 2]; Mixon et al. [3]). Geo-Environment, J. F. Martin-Duque, C. A. Brebbia, A. E. Godfrey & J. R. Diaz de Teran (Editors) © 2004 WIT Press, www.witpress.com, ISBN 1-85312-723-X 16 Geo-Environment 3 Geology and geomorphology Figure 2 shows the distribution of Neogene and Holocene surficial deposits that characterize the Pocomoke Valley. The uplands are underlain by deeply weathered arkosic fluvial sand and gravel of the Pensauken Formation, part of an enormous Miocene delta that forms the core of the Delmarva Peninsula. The sand and gravel cap is the recharge area for most of the groundwater of central Delmarva. Much of the upland area, especially in the Nassawango headwaters, is mantled by two to six meters of wind blown sand of the Parsonsburg Formation; it occurs as a continuous blanket and as isolated dunes. The wind blown sand is porous, providing rapid infiltration of meteoric water, and contributes to the groundwater the Nassawango system. The upland core of Delmarva is bordered by coast-wise scraps and terraces, created during Pleistocene sea level high- stands. The Omar and Kent Island Formations are part of this sequence. Locally, bay bottom sand and mud of these formations occurs in restricted, reducing, estuarine environments rich in organic material and sulfides. Apparently, the paleo-estuarine substrate of the Nassawango watershed concentrated dissolved iron from leaching of the Pensauken gravels. Iron may also have been derived and deposited from older Miocene and Pliocene deposits beneath the Pensauken; the subsurface distribution of these materials and the groundwater flow paths is not well defined. 4 Hydrology Baseflow of the Nassawango Creek is fed primarily by water from the unconfined aquifer; other lesser sources include stormflow, shallow soil water, and surface runoff. Dating of groundwater at localities farther north on the Delmarva Peninsula suggest that groundwater contributing the baseflow of rivers in similar areas ranges from less than 10 to more than 50 years in age depending on the flow path of the water. (Dunkle et al. [4]; Ekwurzel et al. [5]; Böhlke and Denver [6]). During August, 1998, the Pocomoke River and its tributaries presented near record low discharges but were quite turbid with light tan particulate matter. The summer had been dry with no storms that would have flushed sediment into the river. Filtrates of suspended sediment were collected from the Pocomoke River and Nassawango Creek and examined using x-ray diffraction for mineral identification. The suspended material from both sites exhibited weak goethite patterns indicating that the source of turbidity was precipitates. Water in the rivers at that time was entirely baseflow fed by iron rich groundwater. The ferrous iron oxidized on exposure to the atmosphere at the river surface, creating ferric oxyhydroxides and the observed turbidity. Upper reaches of the river were clear and the zone of turbidity corresponded to the outcrop pattern of paleo- estuarine terrace sediments in the watershed. The extreme low water stage of the Nassawango also presented an opportunity to observe the sedimentology and stratigraphy of the Holocene flood plain deposits as substrate and habitat for the accumulation of the bog ore (Figure 3). Geo-Environment, J. F. Martin-Duque, C. A. Brebbia, A. E. Godfrey & J. R. Diaz de Teran (Editors) © 2004 WIT Press, www.witpress.com, ISBN 1-85312-723-X Geo-Environment 17 Figure 3: a) Accumulation of “bog ore” in the vadose zone of modern alluvium on the flood plain of Nassawango Creek downstream from gaging station on Highway 12 west of Snow Hill, MD. Note: 1 – pre-colonial alluvium, 1600 AD; 2 – post-colonial alluvium; 3 – surficial alluvium, post-ditching; b) Exposure of Nassawango Creek flood plain stratigraphy during extended period of near record low flow (July- September,1999). 5 Mineralogy Commonly, bog ore consists of a mixture of ferric oxyhydroxide minerals including goethite, lepidochrosite, and ferric hydroxide (commonly called limonite). All of these compounds contain iron in the trivalent state. We found that the deposits in the Nassawango, in addition to the ferric oxyhydroxides, contain magnetite which contains both ferric and ferrous iron. This appears to be the first reported occurrence of low temperature formation of magnetite in bog ore deposits on the Mid-Atlantic Coastal Plain. The photomicrograph (Figure 4a) Geo-Environment, J. F. Martin-Duque, C. A. Brebbia, A. E.
Recommended publications
  • Nick Walker, Ph.D. ([email protected]) Kim De Mutsert, Andy Dolloff, Vivek Prasad, A
    Nick Walker, Ph.D. ([email protected]) Kim De Mutsert, Andy Dolloff, Vivek Prasad, A. Alonso Aguirre Joint Meeting of the American Eel Interest Group and the Sturgeon Interest Group December 12th, 2019 Why eels? Found in more habitats than another fish. Ideal for studies across a wide geographic area. Everyone talks about interconnectedness of ecosystems – eels live it. Connections with humans throughout history, opportunities for citizen science. A fish that can bring people back to nature. Adapted from Tsukamoto (2014). Fig. 1. American Eel sampling events Objectives Objective was to build a model of the subwatersheds of the Chesapeake Bay using a Digital Elevation Model (DEM); then add eel data, dams and land use. Goal was to create color‐coded maps of where eels are doing well and areas that might be prioritized for conservation. This study is follow‐up to our previous work on American Eel demographics in the Chesapeake Bay. Methods –Data collection Eel data from VA DGIF, MD DNR, USFWS et al. Elevation data from ASTER DEM (plus river data from USGS small scale maps). Dam data from The Nature Conservancy. Land use from Université Catholique de Louvain in Belgium. Sources limited by 2019 government shutdown. Methods Delineating streams and watersheds in ArcGIS: Load ASTER tiles (30x30m resolution; 20 tiles for study area). Fill, Flow direction and Flow Accumulation on each tile. Raster calculator: SetNull(“bay_flowac” < 27778,1) This sets minimum threshold to 25 km2 (or 25*106)/(302) Stream Link, Stream Order and Stream to Feature on each tile. Watersheds split along mainstem every 50 km.
    [Show full text]
  • Maryland's Wildland Preservation System “The Best of the Best”
    Maryland’s Wildland Preservation System “The“The Best Best ofof thethe Best” Best” What is a Wildland? Natural Resources Article §5‐1201(d): “Wildlands” means limited areas of [State‐owned] land or water which have •Retained their wilderness character, although not necessarily completely natural and undisturbed, or •Have rare or vanishing species of plant or animal life, or • Similar features of interest worthy of preservation for use of present and future residents of the State. •This may include unique ecological, geological, scenic, and contemplative recreational areas on State lands. Why Protect Wildlands? •They are Maryland’s “Last Great Places” •They represent much of the richness & diversity of Maryland’s Natural Heritage •Once lost, they can not be replaced •In using and conserving our State’s natural resources, the one characteristic more essential than any other is foresight What is Permitted? • Activities which are consistent with the protection of the wildland character of the area, such as hiking, canoeing, kayaking, rafting, hunting, fishing, & trapping • Activities necessary to protect the area from fire, animals, insects, disease, & erosion (evaluated on a case‐by case basis) What is Prohibited? Activities which are inconsistent with the protection of the wildland character of the area: permanent roads structures installations commercial enterprises introduction of non‐native wildlife mineral extraction Candidate Wildlands •23 areas •21,890 acres •9 new •13,128 acres •14 expansions Map can be found online at: http://dnr.maryland.gov/land/stewardship/pdfs/wildland_map.pdf
    [Show full text]
  • Deer and Turkey Tagging & Checking
    DEER AND TURKEY TAGGING & CHECKING Garrett Allegany CWDMA Washington Frederick Carroll Baltimore Harford Lineboro Maryland Line Cardiff Finzel 47 Ellerlise Pen Mar Norrisville 24 Whiteford ysers 669 40 Ringgold Harney Freeland 165 Asher Youghiogheny 40 Ke 40 ALT Piney Groev ALT 68 615 81 11 Emmitsburg 86 ge Grantsville Barrellville 220 Creek Fairview 494 Cearfoss 136 136 Glade River aLke Rid 546 Mt. avSage Flintstone 40 Cascade Sabillasville 624 Prospect 68 ALT 36 itts 231 40 Hancock 57 418 Melrose 439 Harkins Corriganville v Harvey 144 194 Eklo Pylesville 623 E Aleias Bentley Selbysport 40 36 tone Maugansville 550 419410 Silver Run 45 68 Pratt 68 Mills 60 Leitersburg Deep Run Middletown Springs 23 42 68 64 270 496 Millers Shane 646 Zilhman 40 251 Fountain Head Lantz Drybranch 543 230 ALT Exline P 58 62 Prettyboy Friendsville 638 40 o 70 St. aulsP Union Mills Bachman Street t Clear 63 491 Manchester Dublin 40 o Church mithsburg Taneytown Mills Resevoir 1 Aviltn o Eckhart Mines Cumberland Rush m Spring W ilson S Motters 310 165 210 LaVale a Indian 15 97 Rayville 83 440 Frostburg Glarysville 233 c HagerstownChewsville 30 er Springs Cavetown n R 40 70 Huyett Parkton Shawsville Federal r Cre Ady Darlingto iv 219 New Little 250 iv Cedar 76 140 Dee ek R Ridgeley Twiggtown e 68 64 311 Hill Germany 40 Orleans r Pinesburg Keysville Mt. leasP ant Rocks 161 68 Lawn 77 Greenmont 25 Blackhorse 55 White Hall Elder Accident Midlothian Potomac 51 Pumkin Big pringS Thurmont 194 23 Center 56 11 27 Weisburg Jarrettsville 136 495 936 Vale Park Washington
    [Show full text]
  • Pocomoke Floodplain Restoration 1,193 839
    Pocomoke Floodplain Restoration Freeing a Trapped River © Kent Mason 75 Years of Channelization Pocomoke is an Algonquin word meaning “black water.” The heavy vegetation along Key Accomplishments*: the river’s swampy banks decomposes as organic matter into the river, coloring the water an inky black. The river was a key trading route for Native Americans for at least acres of public lands 300 years before English settlers arrived. In the late 1930s and early 1940s, the river 1,193 restored was dredged and channelized, and its banks clear-cut of timber, with the objective of eliminating the flooding of farmland that had been established within the river’s acres of private lands watershed. What wasn’t understood at the time was the important role that the 839 restored river’s natural flooding cycles play in the health of the surrounding cypress swamp, which is home to a biodiverse ecosystem. Recent scientific studies led by The Nature Conservancy and the US Geological Survey revealed that a restored Pocomoke acres of private lands floodplain would have a significant additional benefit — water that flows through the planned for future 552 restoration river’s swampy floodplain is naturally filtered, removing nutrients and sediment from upstream agricultural runoff, before flowing downstream into the Chesapeake Bay. *Results reported as of May 2017 Freeing a Trapped River In 2012, The Nature Conservancy and the Maryland Department of Natural Resources joined the Pocomoke floodplain restoration effort being led by the US Fish and Wildlife Service and Natural Resources Conservation Service. The restoration of the Pocomoke floodplain is one of the largest ecological restoration efforts in Maryland’s history.
    [Show full text]
  • Maryland Stream Waders 10 Year Report
    MARYLAND STREAM WADERS TEN YEAR (2000-2009) REPORT October 2012 Maryland Stream Waders Ten Year (2000-2009) Report Prepared for: Maryland Department of Natural Resources Monitoring and Non-tidal Assessment Division 580 Taylor Avenue; C-2 Annapolis, Maryland 21401 1-877-620-8DNR (x8623) [email protected] Prepared by: Daniel Boward1 Sara Weglein1 Erik W. Leppo2 1 Maryland Department of Natural Resources Monitoring and Non-tidal Assessment Division 580 Taylor Avenue; C-2 Annapolis, Maryland 21401 2 Tetra Tech, Inc. Center for Ecological Studies 400 Red Brook Boulevard, Suite 200 Owings Mills, Maryland 21117 October 2012 This page intentionally blank. Foreword This document reports on the firstt en years (2000-2009) of sampling and results for the Maryland Stream Waders (MSW) statewide volunteer stream monitoring program managed by the Maryland Department of Natural Resources’ (DNR) Monitoring and Non-tidal Assessment Division (MANTA). Stream Waders data are intended to supplementt hose collected for the Maryland Biological Stream Survey (MBSS) by DNR and University of Maryland biologists. This report provides an overview oft he Program and summarizes results from the firstt en years of sampling. Acknowledgments We wish to acknowledge, first and foremost, the dedicated volunteers who collected data for this report (Appendix A): Thanks also to the following individuals for helping to make the Program a success. • The DNR Benthic Macroinvertebrate Lab staffof Neal Dziepak, Ellen Friedman, and Kerry Tebbs, for their countless hours in
    [Show full text]
  • A Brief History of Worcester County (PDF)
    Contents Worcester’s Original Locals ................................................................................................................................................................. 3 Native American Names ...................................................................................................................................................................... 5 From Colony To Free State ................................................................................................................................................................. 6 A Divided Land: Civil War .................................................................................................................................................................... 7 Storm Surges & Modern Times ........................................................................................................................................................... 8 Our Historic Towns .............................................................................................................................................................................. 9 Berlin ............................................................................................................................................................................................ 9 Ocean City .................................................................................................................................................................................. 10 Ocean Pines
    [Show full text]
  • Ore, Iron, Artefacts and Corrosion
    . SERIE C NR 626 AVHANDLINGAR OCH UPPSATSER ARSBOK 61 NR 11 OLOF ARRHENIUS ORE, IRON, ARTEFACTS AND CORROSION WITH 4 PLATES STOCKHOLM 1967 SVERTGES GEOLOGISKA UNDERSOKNING SERIE C NR 626 ARSBOK 6 l NR I I OLOF ARRHENIUS ORE, IRON, ARTEFACTS AND CORROSION WITH 4 PLATES STOCKHOLM 196 7 Contents The conditions of the investigation ....................... Elements on which studies are made. ...................... Methods and sources of material ........................ Conditions of analysis ............................ What ores were first used in the production of iron? ................ The formation, occurrence and chemical composition of limonite ores ........ Synopsis of regions in which lake iron ore has a relatively high frequency of high con- centration of the elements indicated ...................... Rock ores. ................................. Synopsis of regions in which rock ores have a relatively high frequency of high concentra- tions of the elements indicated ........................ Artefacts .................................. Synopsis of regions where artefacts show relatively high frequencitl of the elements indicated ................................. Phosphorus in iron ............................. Coal in iron ............................... Alloying elements. Rust ........................... Summary .................................. Appendix: The microstructure after reduction of phosphorus-rich iron ore with charcoal at different temperatures. By Torsten Hansson and Sten Modin .......... Literature. ................................
    [Show full text]
  • Organic Compounds and Trace Elements in the Pocomoke River and Tributaries, Maryland
    Organic Compounds and Trace Elements in the Pocomoke River and Tributaries, Maryland Open-File Report 99-57 (Revised January 2000) In cooperation with George Mason University and Maryland Department of the Environment U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Organic Compounds and Trace Elements in the Pocomoke River and Tributaries, Maryland By Cherie V. Miller, Gregory D. Foster, Thomas B. Huff, and John R. Garbarino Open-File Report 99-57 (Revised January 2000) In cooperation with George Mason University and Maryland Department of the Environment Baltimore, Maryland 2000 U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY U.S. Department of the Interior BRUCE BABBITT, Secretary U.S. Geological Survey Charles G. Groat, Director The use of trade, product, or firm names in this report is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey. For additional information contact: District Chief U.S. Geological Survey 8987 Yellow Brick Road Baltimore, MD 21237 Copies of this report can be purchased from: U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225-0286 CONTENTS Abstract.........................................................................................................................................1 Introduction...................................................................................................................................1 Background ......................................................................................................................2
    [Show full text]
  • Iron, Steel and Swords Script
    Iron Ores General Remarks This planet consists of iron (32.1%), oxygen (30.1%), silicon (15.1%), magnesium (13.9%), sulfur (2.9%), nickel (1.8%), calcium (1.5%), and aluminium (1.4%); the remaining 1.2% are "trace amounts" of the 80 or so remaining elements. Most of that iron constitutes the core of the planet but we will not run out of iron compounds or iron ore found near to the surface for some time to come. Why is iron so prominent in this (and other) planet ? Because planets were formed from the stuff bred inside the first stars. The reaction chain for generating energy by nuclear fusion starts with hydrogen and stops after iron has been bred. Iron, if you like, is the ash eventually produced by fusing hydrogen to helium, helium and hydrogen to lithium, and so on. When those first stars "burnt out" after a few billon years, some of them coughed up their ashes in a mighty supernova explosion. In time, new stars were formed. Some of these are still burning and visible at night. One (our very own sund) is only visible during the day from a clumped-together iron-rich ash ball called earth. Advanced From the viewpoint of chemistry, iron (like copper) is a tricky element that can form many oxides, sulfides, carbonates, and so on. All these compounds could be used for smelting iron but some are better for that purpose than others. Sulfides are usually bad news. We know that from smelting copper and expect similar problems when smelting iron.
    [Show full text]
  • Watersheds.Pdf
    Watershed Code Watershed Name 02130705 Aberdeen Proving Ground 02140205 Anacostia River 02140502 Antietam Creek 02130102 Assawoman Bay 02130703 Atkisson Reservoir 02130101 Atlantic Ocean 02130604 Back Creek 02130901 Back River 02130903 Baltimore Harbor 02130207 Big Annemessex River 02130606 Big Elk Creek 02130803 Bird River 02130902 Bodkin Creek 02130602 Bohemia River 02140104 Breton Bay 02131108 Brighton Dam 02120205 Broad Creek 02130701 Bush River 02130704 Bynum Run 02140207 Cabin John Creek 05020204 Casselman River 02140305 Catoctin Creek 02130106 Chincoteague Bay 02130607 Christina River 02050301 Conewago Creek 02140504 Conococheague Creek 02120204 Conowingo Dam Susq R 02130507 Corsica River 05020203 Deep Creek Lake 02120202 Deer Creek 02130204 Dividing Creek 02140304 Double Pipe Creek 02130501 Eastern Bay 02141002 Evitts Creek 02140511 Fifteen Mile Creek 02130307 Fishing Bay 02130609 Furnace Bay 02141004 Georges Creek 02140107 Gilbert Swamp 02130801 Gunpowder River 02130905 Gwynns Falls 02130401 Honga River 02130103 Isle of Wight Bay 02130904 Jones Falls 02130511 Kent Island Bay 02130504 Kent Narrows 02120201 L Susquehanna River 02130506 Langford Creek 02130907 Liberty Reservoir 02140506 Licking Creek 02130402 Little Choptank 02140505 Little Conococheague 02130605 Little Elk Creek 02130804 Little Gunpowder Falls 02131105 Little Patuxent River 02140509 Little Tonoloway Creek 05020202 Little Youghiogheny R 02130805 Loch Raven Reservoir 02139998 Lower Chesapeake Bay 02130505 Lower Chester River 02130403 Lower Choptank 02130601 Lower
    [Show full text]
  • Iron Making in Argyll
    HISTORIC ARGYLL 2009 Iron smelting in Argyll, and the chemistry of the process by Julian Overnell, Kilmore. The history of local iron making, particularly the history of the Bonawe Furnace, is well described in the Historic Scotland publication of Tabraham (2008), and references therein. However, the chemistry of the processes used is not well described, and I hope to redress this here. The iron age started near the beginning of the first millennium BC, and by the end of the first millennium BC sufficient iron was being produced to equip thousands of troops in the Roman army with swords, spears, shovels etc. By then, local iron making was widely distributed around the globe; both local wood for making charcoal, and (in contrast to bronze making) local sources of ore were widely available. The most widely distributed ore was “bog iron ore”. This ore was, and still is, being produced in the following way: Vegetation in stagnant water starts to rot and soon uses up all the available oxygen, and so produces a water at the bottom with no oxygen (anaerobic) which also contains dissolved organic compounds. This solution is capable of slowly leaching iron from the soils beneath to produce a weak solution of dissolved iron (iron in the reduced, ferrous form). Under favourable conditions this solution percolates down until it meets some oxygen (or oxygenated water) at which point the iron precipitates (as the oxidized ferric form). This is bog iron ore and comprises a somewhat ill-defined brown compound called limonite (FeOOH.nH2O), often still associated with particles of sand etc.
    [Show full text]
  • The Iron-Ore Resources of Europe
    DEPARTMENT OF THE INTERIOR ALBERT B. FALL, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 706 THE IRON-ORE RESOURCES OF EUROPE BY MAX ROESLER WASHINGTON GOVERNMENT PRINTING OFFICE 1921 CONTENTS. Page. Preface, by J. B. Umpleby................................................. 9 Introduction.............................................................. 11 Object and scope of report............................................. 11 Limitations of the work............................................... 11 Definitions.........................:................................. 12 Geology of iron-ore deposits............................................ 13 The utilization of iron ores............................................ 15 Acknowledgments...................................................... 16 Summary................................................................ 17 Geographic distribution of iron-ore deposits within the countries of new E urope............................................................. 17 Geologic distribution................................................... 22 Production and consumption.......................................... 25 Comparison of continents.............................................. 29 Spain..................................................................... 31 Distribution, character, and extent of the deposits....................... 31 Cantabrian Cordillera............................................. 31 The Pyrenees....................................................
    [Show full text]