(Trematoda: Paramiphistoma) in the Rumen of Infected Sheep

Total Page:16

File Type:pdf, Size:1020Kb

(Trematoda: Paramiphistoma) in the Rumen of Infected Sheep Veterinary World, EISSN: 2231-0916 RESEARCH ARTICLE Available at www.veterinaryworld.org/Vol.8/January-2015/24.pdf Open Access Morphological and histological identification of Paramphistomum cervi (Trematoda: Paramiphistoma) in the rumen of infected sheep Vijayata Choudhary1, J. J. Hasnani1, Mukesh K. Khyalia2, Sunanda Pandey2, Vandip D. Chauhan1, Suchit S. Pandya1 and P. V. Patel1 1. Department of Veterinary Parasitology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand - 388 001, Gujarat, India; 2. Department of Veterinary Pathology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand - 388 001, Gujarat, India. Corresponding author: Vijayata Choudhary, e-mail: [email protected], JJH: [email protected], MKK: [email protected], SP: [email protected], VDC: [email protected], SSP: [email protected], PVP: [email protected] Received: 03-11-2014, Revised: 19-12-2014, Accepted: 25-12-2014, Published online: 30-01-2015 doi: 10.14202/vetworld.2015.125-129. How to cite this article: Choudhary V, Hasnani JJ, Khyalia MK, Pandey S, Chauhan VD, Pandya SS, Patel PV (2015) Morphological and histological identification of Paramphistomum cervi (Trematoda: Paramiphistoma) in rumen of infected sheep, Veterinary World, 8(1): 125-129. Abstract Aim: This study was undertaken to identify Paramphistomum cervi on the basis of its morphology and histology to be the common cause of paramphistomosis in infected sheep and its differentiation from other similar Paramphistomes in Gujarat. Materials and Methods: Adult rumen flukes were recovered from the rumen of naturally infected sheep slaughtered in various abattoirs in Gujarat. Some adult flukes were flattened and stained in Borax carmine, and some were sectioned in the median sagittal plane and histological slides of the flukes were prepared for detailed morphological and histological studies. Result: Microscopic pictures of the parasite used in identification define the similarity in the morphology and histology of the anterior sucker, pharynx, esophagus, genital atrium, posterior sucker (acetabulum) and testes to the P. cervi. Conclusion: It can be concluded that the most common species found in sheep infected with Paramphistomosis is P. cervi on the basis of its histo-morphological appearance in Gujarat. Keywords: abattoirs, histology, morphology, paramphistomosis, posterior sucker, rumen fluke, sheep. Introduction and Lymnaea bulimoides) as intermediate host and Paramphistomum spp. are Platyhelminth (flat- mammalian as definitive host [11,12]. worm) parasites (Platyhelminthes: Trematoda: P. cervi are plug feeders [9] and cause serious Digenea) responsible for Paramphistomosis i.e. gas- disease by burying themselves into the sub mucosa trointestinal parasitic disease in domesticated ani- of the duodenum and feeding on the epithelial cells mals, which causes heavy economic losses [1] to the of the Brunner’s gland resulting in anorexia, profuse fetid diarrhea, drop in plasma protein concentration livestock industry to the tune of several thousand and anemia, which weaken the host [13]. Mature crores of rupees annually [2]. It has been a neglected Paramphistomes are also responsible for rumenitis, trematode infectious disease in ruminants, but has irregular rumination, un-thriftiness, lower nutrition recently come out as a significant cause of produc- conversion and loss of body condition, resulting in tivity loss [3-7]. Distribution of Paramphistomosis considerable economic loss [9]. is worldwide [8], but the highest prevalence has The species identification is still neglected as the been accounted in tropical and subtropical regions, various species of the family Paramphistomatidae are particularly in Africa, Asia, Australia, and Eastern difficult to be detected through a systematic point of Europe [1,9]. view, and most of the reports do not quote the main It is caused by specific species of the parasite one [14]. depending on the regions [3]. The common rumen The rumen fluke, P. cervi has economic impor- fluke, Paramphistomum cervi is considered to be one tance in ruminants but presently no reliable methods of the most important species of Paramphistomes [2]. are available to identify and differentiate this parasite Adult flukes are located in the rumen of ruminants from other Paramphistomes. The present study rep- and immature flukes in the small intestine mainly in resents the morphological and histological identifi- the duodenum [1,10]. P. cervi has di-heteroxenous life cation of P. cervi using Borax carmine and H and E cycle, which involve snail (Bulinus spp., Glyptanisus staining methods, in order to provide a base for future gilberti, Indoplanorbis exustus, Planorbis planorbis molecular studies. Copyright: The authors. This article is an open access article licensed The present study on morphological and histo- under the terms of the Creative Commons Attributin License (http:// logical identification of P. cervi was designed to fulfill creative commons.org/licenses/by/2.0) which permits unrestricted use, distribution and reproduction in any medium, provided the the need for molecular understanding of this econom- work is properly cited. ically important parasite. Veterinary World, EISSN: 2231-0916 125 Available at www.veterinaryworld.org/Vol.8/January-2015/24.pdf Materials and Methods oral and ventral suckers, testes and ovary. The species Collection of adult parasites were identified according to the criteria outlined by The rumen of 350 sheep between 1 and 2 years Yamaguti [18], Eduardo [19] and Sey [20]. of age was inspected for the presence of rumen Results flukes during slaughter at various local abattoirs of Anand, Ahmedabad and Vadodara District in Gujarat It is very difficult to identify and differentiate state, of which 17 sheep were found positive for the species of amphistomes on the basis of its mor- Paramphistomes. Infected part of the rumen was phology due to significantly less variation in size and brought to the laboratory of Department of Veterinary shape of parasite and its internal organs, which var- Parasitology, where it was washed thoroughly. After ies even in mature and immature worms of same spp. washing, adult flukes were carefully picked up with Morphology cannot be very well appreciated in the the help of forceps from the mucosa of the rumen of stereo microscope, but can be confirmed well by the naturally infected sheep and then washed 3-4 times histological examination of the parasite. with phosphate buffer saline. After that, samples were Morphological identification preserved in 10% buffered formalin until being pro- P. cervi is reported in several studies conducted cessed for morphological and histological studies. The on ruminants [18-20]. Morphological identification samples were carefully labeled with proper details. of P. cervi was carried out on the basis of size and Morphological identification shape of fluke and position of anterior and posterior Rumen flukes were preliminarily identified sucker (acetabulum). In the present study, most of the under microscope using low power magnification and species were of P. cervi, which were found mainly in then slides were prepared for detailed morphologi- the rumen and were light pink in color with a sucker cal studies and identification. The collected flukes at the tip of the cone (Figure-1a) and another sucker were placed on petridish and observed through stereo ventrally at the posterior end. The body of P. cervi microscope to appreciate the morphology. Final iden- was pear-shaped, slightly concave ventrally (coni- tification of Paramphistomum spp. was done based on cal) and convex dorsally. The worm measures about morphology of flukes; its shape, anterior sucker, pos- 3-8 mm in length and 1.5-3.0 mm in width at anterior terior sucker (acetabulum), terminal genitalium and end of posterior third or at its junction with middle tegumental papillae, following the standard guide- third. Mouth was terminal, funnel-shaped, widened lines given by Urquhart et al. [15]. Parasites were posteriorly. Caeca were wide, pursued a serpentine processed for whole mounting and stained by Borax carmine according to the procedure given by Singh and Srivastava [16]. Out of all recovered adult flukes, 10 flukes were randomly picked from each infected sheep and were washed in water. After washing, flukes were flat- tened between two glass slides and fixed in Bouin’s fluid at room temperature for 24 h. After that, these specimens were washed in water and then stained a b for 24 h in 0.5% Borax carmine and subsequently destained in 1% hydrochloric acid until the pink color was observed. The acid was thoroughly washed out from all specimens with water. Thereafter, the spec- imens were washed with tap water and subsequently dehydrated through 50-100% alcohol for 1 h each, and cleared by xylene for 30 min. The cleared specimens were mounted using DPX and covered with a cover- c d slip. The mounted slides were allowed to the air dry and observed under the light microscope. Histological identification The species thus identified was further con- firmed by histological identification of 10 formalin preserved flukes from each sample, which was pro- cessed by paraffin embedding method and stained by e f H and E stain as per Luna [17]. 10 longitudinal and Figure-1: Whole mounted parasite stained with borax median sagittal sections, each 6-10 μ thick were cut carmine showing visceral organs: (a) Anterior sucker by a Leica RM2125 microtome. The prepared
Recommended publications
  • Pseudosuccinea Columella: Age Resistance to Calicophoron Daubneyi Infection in Two Snail Populations
    Parasite 2015, 22,6 Ó Y. Dar et al., published by EDP Sciences, 2015 DOI: 10.1051/parasite/2015003 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Pseudosuccinea columella: age resistance to Calicophoron daubneyi infection in two snail populations Yasser Dar1,2, Daniel Rondelaud2, Philippe Vignoles2, and Gilles Dreyfuss2,* 1 Department of Zoology, Faculty of Science, University of Tanta, Tanta, Egypt 2 INSERM 1094, Faculties of Medicine and Pharmacy, 87025 Limoges, France Received 26 November 2014, Accepted 21 January 2015, Published online 10 February 2015 Abstract – Individual infections of Egyptian and French Pseudosuccinea columella with five miracidia of Calicoph- oron daubneyi were carried out to determine whether this lymnaeid was capable of sustaining larval development of this parasite. On day 42 post-exposure (at 23 °C), infected snails were only noted in groups of individuals measuring 1 or 2 mm in height at miracidial exposure. Snail survival in the 2-mm groups was significantly higher than that noted in the 1-mm snails, whatever the geographic origin of snail population. In contrast, prevalence of C. daubneyi infec- tion was significantly greater in the 1-mm groups (15–20% versus 3.4–4.0% in the 2-mm snails). Low values were noted for the mean shell growth of infected snails at their death (3.1–4.0 mm) and the mean number of cercariae (<9 in the 1-mm groups, <19 in the 2-mm snails). No significant differences between snail populations and snails groups were noted for these last two parameters. Most infected snails died after a single cercarial shedding wave.
    [Show full text]
  • Intestinal Helminths of the White Sucker, Catostomus Commersoni (Lacepede), in SE Wisconsin
    OF WASHINGTON, VOLUME 41, NUMBER 1, JANUARY 1974 81 Intestinal Helminths of the White Sucker, Catostomus commersoni (Lacepede), in SE Wisconsin OMAR M. AMIN Science Division, University of Wisconsin-Parkside, Kenosha 53140 ABSTRACT: Five species of helminths were recovered from the intestine of the white sucker, Catostomus commersoni (Lacepede), in southeastern Wisconsin. Hosts were seined in five sites in both the Root River (Milwaukee and Racine counties; autumn 1971) and the Pike River (Racine and Kenosha counties; autumn 1972). The helminths are Triganodistomum attenuatum Mueller and Van Cleave, 1932 (Trem- atoda: Lissorchiidae), new locality record; Eiacetabulum macrocephalum McCrae, 1962 (Cestoda: Caryophyllaeidae), new state record; Biacetabulum biloculoides Mackiewicz and McCrae, 1965 (Cestoda: Caryophyllaeidae), new state record; Acanthocephahis dims (Van Cleave, 1931) Van Cleave and Townsend, 1936, new host and state record; Dorylaimtis sp. (?) Dujardin, 1845 (Nematoda: Dory- laimidae), a nonparasitie nematode reported for the first time in this fish. Distribution, structural obser- vations, and host-parasite relationships of the above species are discussed. Previous reports of fish parasites in Wis- upon recovery were placed in 70% alcohol. consin were confined to the geographical Hosts were classed in one of three size classes northeast and west (Pearse, 1924a), north according to their total length, 5-9.9, 10-14.9, (Bangham, 1946), northwest (Fischthal, 1947, and 15-37 cm. 1950, 1952), and east (Anthony, 1963). These Trematodes and cestodes were stained in reports dealt only with host records. Literature Semichon's carmine, cleared in xylene, and on the ecology or host-parasite relationship of whole-mounted in Canada balsam. Acantho- fish parasites in Wisconsin is relatively scarce cephalans were fixed in Bouin's fluid, stained (Marshall and Gilbert, 1905; Pearse, 1924b; in Harris' hematoxylin, cleared in beechwood Cross, 1938).
    [Show full text]
  • (Nematoda: Thelazioidea) in the Blue Sucker, Cycleptus Elongatus (Lesueur, 1817), from Illinois
    Transactions of the Illinois State Academy of Science received 12/10/01 (2002), Volume 95, #2, pp. 107 - 109 accepted 2/22/02 First Record of Rhabdochona cascadilla Wigdor, 1918 (Nematoda: Thelazioidea) in the Blue Sucker, Cycleptus elongatus (Lesueur, 1817), from Illinois William G. Dyer and William J. Poly Department of Zoology Southern Illinois University Carbondale, Illinois 62901-6501 ABSTRACT Rhabdochona cascadilla was detected in the intestine of Cycleptus elongatus from the Mississippi River in Randolph County, Illinois. This constitutes the first record of this rhabdochonid nematode in the blue sucker and the only internal helminth for this host. INTRODUCTION Nematodes of the genus Rhabdochona Railliet, 1916 (Thelazioidea, Rhabdochonidae) are cosmopolitan in distribution as intestinal parasites of freshwater fishes (Moravec and Coy Otero, 1987; Moravec, 1994). Approximately 96 nominal species have been recognized of which 19 have been reported from North and South America (see Sanchez-Alvarez et al., 1998). Of rhabdochonid nematodes reported from North America, Rhabdochona cascadilla Wigdor, 1918 has been recorded in 13 families, 30 genera, and 53 species of freshwater fishes across Canada and the United States (Hoffman, 1999). Identification of Rhabdochona species is difficult as many of them have been inadequately or erroneously described, and as pointed out by Sanchez-Alvarez et al. (1998), a detailed taxonomic revision of all putative species in this group warrants initiation. MATERIALS AND METHODS A single adult female blue sucker (557 mm standard length) was collected incidentally by electrofishing on 24 October 1996 from the Mississippi River just below the mouth of the Kaskaskia River, Randolph County, Illinois and was transported alive to the laboratory.
    [Show full text]
  • Digenean Metacercaria (Trematoda, Digenea, Lepocreadiidae) Parasitizing “Coelenterates” (Cnidaria, Scyphozoa and Ctenophora) from Southeastern Brazil
    BRAZILIAN JOURNAL OF OCEANOGRAPHY, 53(1/2):39-45, 2005 DIGENEAN METACERCARIA (TREMATODA, DIGENEA, LEPOCREADIIDAE) PARASITIZING “COELENTERATES” (CNIDARIA, SCYPHOZOA AND CTENOPHORA) FROM SOUTHEASTERN BRAZIL André Carrara Morandini1; Sergio Roberto Martorelli2; Antonio Carlos Marques1 & Fábio Lang da Silveira1 1Instituto de Biociências da Universidade de São Paulo Departamento de Zoologia (Caixa Postal 11461, 05422-970, São Paulo, SP, Brazil) 2Centro de Estudios Parasitologicos y Vectores (CEPAVE) (2 Nro. 584 (1900) La Plata, Argentina) e-mails: [email protected], [email protected], [email protected], [email protected] A B S T R A C T Metacercaria specimens of the genus Opechona (Trematoda: Digenea: Lepocreadiidae) are described parasitizing “coelenterates” (scyphomedusae and ctenophores) from Southeastern Brazil (São Paulo state). The worms are compared to other Opechona species occurring on the Brazilian coast, but no association has been made because only adult forms of these species have been described. Suppositions as to the possible transference of the parasites are made. R E S U M O Exemplares de metacercárias do gênero Opechona (Trematoda: Digenea: Lepocreadiidae) são descritos parasitando “celenterados” (cifomedusas e ctenóforos) no sudeste do Brasil (estado de São Paulo). Os vermes foram comparados a outras espécies de Opechona ocorrentes no litoral brasileiro, porém nenhuma associação foi realizada devido às demais espécies terem sido descritas a partir de exemplares adultos. São apresentadas suposições sobre as possíveis formas
    [Show full text]
  • Shortnose Sucker (Chasmistes Brevirostris) 5-Year Review Summary and Evaluation
    Shortnose Sucker (Chasmistes brevirostris) 5-Year Review Summary and Evaluation U.S. Fish and Wildlife Service Klamath Falls Fish and Wildlife Office Klamath Falls, Oregon July 2007 5-YEAR REVIEW Shortnose Sucker (Chasmistes brevirostris) TABLE OF CONTENTS 1.0 GENERAL INFORMATION.......................................................................................... 3 1.1. Reviewers............................................................................................................................ 3 1.2. Methodology used to complete the review....................................................................... 3 1.3. Background ........................................................................................................................ 3 2.0 REVIEW ANALYSIS....................................................................................................... 4 2.1. Application of the 1996 Distinct Populations Segment (DPS) policy ............................ 4 2.2. Biology and Habitat ........................................................................................................... 5 2.3. Recovery Criteria............................................................................................................. 13 2.4. Five-Factor Analysis ........................................................................................................ 16 2.5. Synthesis............................................................................................................................ 30 3.0 RESULTS .......................................................................................................................
    [Show full text]
  • Symbiosis (Symbiotic Relationship)
    Symbiosis (Symbiotic Relationship) 1 In the wonderful world of nature, some animals love forming partnerships with other animal species, with plants, and with microorganisms. We have a special name for such interesting arrangements. We call it "symbiosis" that literally means "living together". 2 Do both species involved in a symbiotic relationship benefit from their partnership? Well, the question itself is open for debate. While some scientists restrict the meaning of symbiosis to a "win-win" situation for both participants, others disagree. Using a broader definition, we are going to explore the three types of symbiotic partnerships. 3 When two species engage in a mutually beneficial symbiotic relationship, they are in the so- called "mutualism" type of symbiosis. To understand mutualism better, let's examine the interaction between clown fish and an anemone. While most fish stay away from an anemone for fear of touching its poisonous tentacles, clown fish have a special coat on their skin that protects them from getting stung. (This trick does not work for all anemones though. Clown fish can only have symbiotic relationships with 10 of the 1,000 different anemone species in the world.) Swimming carefree and unharmed among their host's deadly tentacles, clown fish know very well that their predators do not dare to come near them. Plus, clown fish get to pick up and eat the leftover bits discarded by their landlord. What does the anemone get in return for offering clown fish a safe haven? Well, first and foremost, it kills and feeds on fish that are eyeing its tenant! Aside from that, clown fish pay their rent by cleaning up food scraps and dead anemone tentacles.
    [Show full text]
  • Digenea: Paramphistomidae) a Parasite of Bubalus Bubalis on Marajó Island, Pará, Brazilian Amazon
    Original Article ISSN 1984-2961 (Electronic) www.cbpv.org.br/rbpv Cotylophoron marajoensis n. sp. (Digenea: Paramphistomidae) a parasite of Bubalus bubalis on Marajó Island, Pará, Brazilian Amazon Cotylophoron marajoensis n. sp. (Digenea: Paramphistomidae) parasito de Bubalus bubalis na Ilha de Marajó, Pará, Amazônia Brasileira Vanessa Silva do Amaral1,2 ; Diego Ferreira de Sousa1 ; Raimundo Nonato Moraes Benigno3 ; Raul Henrique da Silva Pinheiro4 ; Evonnildo Costa Gonçalves5 ; Elane Guerreiro Giese1,2* 1 Programa de Pós-graduação em Saúde e Produção Animal na Amazônia, Instituto da Saúde e Produção Animal, Universidade Federal Rural da Amazônia – UFRA, Belém, PA, Brasil 2 Laboratório de Histologia e Embriologia Animal, Instituto da Saúde e Produção Animal, Universidade Federal Rural da Amazônia – UFRA, Belém, PA, Brasil 3 Laboratório de Parasitologia Animal, Instituto da Saúde e Produção Animal, Universidade Federal Rural da Amazônia – UFRA, Belém, PA, Brasil 4 Programa de Pós-graduação em Sociedade, Natureza e Desenvolvimento, Instituto de Biodiversidade e Florestas, Universidade Federal do Oeste do Pará – UFOPA, Santarém, PA, Brasil 5 Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará – UFPA, Belém, PA, Brasil How to cite: Amaral VS, Sousa DF, Benigno RNM, Pinheiro RHS, Gonçalves EC, Giese EG. Cotylophoron marajoensis n. sp. (Digenea: Paramphistomidae) a parasite of Bubalus bubalis on Marajó Island, Pará, Brazilian Amazon. Braz J Vet Parasitol 2020; 29(4): e018320. https://doi.org/10.1590/S1984-29612020101 Abstract The genus Cotylophoron belongs to the Paramphistomidae family and its definitive hosts are ruminants in general. This work describes the presence of a new species of the gender, a parasite in the rumen and reticulum of Bubalus bubalis, on Marajó Island in the Eastern Brazilian Amazon, using of light microscopy, scanning electronic microscopy and molecular biology techniques.
    [Show full text]
  • Distribution of Fasciola Spp, Dicrocoelium
    SUSTAINABLE DEVELOPMENT, CULTURE, TRADITIONS Journal Special Volume in Honor of Professor George I. Theodoropoulos DISTRIBUTION OF FASCIOLA SPP, DICROCOELIUM DENDRITICUM AND CALICOPHORON DAUBNEYI IN SMALL RUMINANTS IN THE MEDITERRANEAN BASIN: A SYSTEMATIC REVIEW DOI: 10.26341/issn.2241-4002-2019-sv-5 Vaia Kantzoura Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, Greece. Veterinary Research Institute, HAO-Demeter, NAGREF Campus, Thessaloniki, Greece. [email protected] Marc K. Kouam Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, Cameroon Center for Research on Filariases and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon Abstract The most common flukes found in sheep in Europe, Asia and Africa are the liver flukes Fasciola spp., Dicrocoelium dentriticum and the rumen fluke Calicophoron daubneyi. The prevalence of F. hepatica in Europe varies among countries (from 47.3 % in Greece, 57.4 % in Spain, and 95% in Italy). Several studies have been conducted in Africa and Asia as concern the prevalence of Fasciola in sheep but limited studies have been done in goats. The prevalence of D. dentriticum in sheep has been reported to be 6.7-86.2% in Italy and to range from 0.2%- to 70% in Greece. The prevalence of D. dentriticum in sheep was found to be 5% in Egypt and 3,85 to 23,55% in Turkey. Only three surveys have been conducted to measure the prevalence of D. dentriticum in goats in the Mediterranean basin indicating a variation from 0.9% to 42.42 %. C. daubneyi is the dominant rumen fluke species in Europe with significant clinical importance in ruminants.
    [Show full text]
  • Classificação E Morfologia De Platelmintos Em Medicina Veterinária
    UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE VETERINÁRIA CLASSIFICAÇÃO E MORFOLOGIA DE PLATELMINTOS EM MEDICINA VETERINÁRIA: TREMATÓDEOS SEROPÉDICA 2016 PREFÁCIO Este material didático foi produzido como parte do projeto intitulado “Desenvolvimento e produção de material didático para o ensino de Parasitologia Animal na Universidade Federal Rural do Rio de Janeiro: atualização e modernização”. Este projeto foi financiado pela Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) Processo 2010.6030/2014-28 e coordenado pela professora Maria de Lurdes Azevedo Rodrigues (IV/DPA). SUMÁRIO Caracterização morfológica de endoparasitos de filos do reino Animalia 03 A. Filo Nemathelminthes 03 B. Filo Acanthocephala 03 C. Filo Platyhelminthes 03 Caracterização morfológica de endoparasitos do filo Platyhelminthes 03 C.1. Superclasse Cercomeridea 03 1. Classe Trematoda 03 1.1. Subclasse Digenea 03 1.1.1. Ordem Paramphistomida 03 A.1.Família Paramphistomidae 04 A. 1.1. Gênero Paramphistomum 04 Espécie Paramphistomum cervi 04 A.1.2. Gênero Cotylophoron 04 Espécie Cotylophoron cotylophorum 04 1.1.2. Ordem Echinostomatida 05 A. Superfamília Cyclocoeloidea 05 A.1. Família Cyclocoelidae 05 A.1.1.Gênero Typhlocoelum 05 Espécie Typhlocoelum cucumerinum 05 A.2. Família Fasciolidaea 06 A.2.1. Gênero Fasciola 06 Espécie Fasciola hepatica 06 A.3. Família Echinostomatidae 07 A.3.1. Gênero Echinostoma 07 Espécie Echinostoma revolutum 07 A.4. Família Eucotylidae 08 A.4.1. Gênero Tanaisia 08 Espécie Tanaisia bragai 08 1.1.3. Ordem Diplostomida 09 A. Superfamília Schistosomatoidea 09 A.1. Família Schistosomatidae 09 A.1.1. Gênero Schistosoma 09 Espécie Schistosoma mansoni 09 B.
    [Show full text]
  • Nigella Sativaseed Extract Affected Tegument and Internal Organs of Trematode Paramphistomum Cervi
    Advances in Animal and Veterinary Sciences Research Article Nigella sativa Seed Extract Affected Tegument and Internal Organs of Trematode Paramphistomum cervi 1* 2 3 MUHAMMAD HAMBAL , HENNI VANDA , SITI RANI AYUTI 1Veterinary Parasitology Department, Faculty of Veterinary Medicine, Universitas Syiah Kuala 23111, Indonesia; 2Veterinary Pharmacology Department, Faculty of Veterinary Medicine, Universitas Syiah Kuala 23111, Indonesia; 3Veterinary Biochemistry Department, Faculty of Veterinary Medicine, Universitas Syiah Kuala 23111, Indonesia. Abstract | Paramphistomum cervi infects ruminants and wildlife with significant economic losses. Anthelmintic resis- tance and high cost of treatment could be resolved by using traditional herbs to replace synthetic drugs. Nigella sativa is one of the alternative plants to treat paramphistomiasis. This study aimed to investigate the efficacy of N. sativa seed extract towards adult Paramphistomum flukes in vitro. The flukes were divided into six groups, consisted of ten flukes each, and soaked in 5% (T1), 10% (T2), 25% (T3), 40% (T4) N. sativa extract, in PBS (C0) as the negative control, and also in albendazole (C1) as the positive control. The motility and mortality time of flukes were recorded, and the dead flukes were further prepared for histopathology observation. The results revealed that treatment and control groups were significantly different (p<0.05). The most effective concentration was 40% N. sativa (T4), followed by T3, T2, and T1. N. sativa extract had stronger effect than albendazole towards P. cervi in vitro. In term of histological findings, the flukes in T3 and T4 showed disintegration and breaking of tegument, and necrose of parenchyma cells, while in T1 and T2, the tegument was still intact.
    [Show full text]
  • Paramphistomum Spp in Irish Livestock
    HERD HEALTH < FOCUS Paramphistomum spp in Irish livestock A previously unidentified Paramphistomum spp, has now been identified in sheep flocks and deer herds; Sharon Magnier, ruminant technical adviser, MSD Animal Health, looks at the impact this will have in Irish livestock In the past, paramphistomosis (infection with rumen fluke) species of rumen fluke that has been identified in cattle is was not considered to be a significant parasitic disease Calicophoron daubneyi. in cattle in Europe. However, over the past few years the prevalence of rumen fluke has increased sharply and clinically CLINICAL SIGNS significant outbreaks have been reported in several European The immature stages of the fluke in the duodenum cause countries, including countries with a temperate climate, such clinical disease including enteritis with diarrhoea anorexia as Ireland.1 Since 2012 cases of clinical paramphistomosis, dehydration and increased thirst.3 Youngstock are more severe enough to cause mortalities have been reported in vulnerable than older cattle and infection has been both cattle and sheep.1 associated with high mortality in this group. LIFE CYCLE RUMEN FLUKE IN SHEEP The life cycle of rumen fluke has similarities to liver fluke in A recent study in Irish sheep flocks into the prevalence and that it is indirect, involving the mud snail (Galba truncatula) risk factors associated with rumen fluke demonstrated an as the intermediate host. Encysted fluke (metacercariae) on exceptionally high true flock prevalence of 85.7%.1 This is pasture are ingested by grazing ruminants. The cyst wall is considerably higher than the prevalence reported in other digested releasing immature fluke larvae into the duodenum.
    [Show full text]
  • The Mitochondrial Genome of Paramphistomum Cervi (Digenea), the First Representative for the Family Paramphistomidae
    The Mitochondrial Genome of Paramphistomum cervi (Digenea), the First Representative for the Family Paramphistomidae Hong-Bin Yan1., Xing-Ye Wang1,4., Zhong-Zi Lou1,LiLi1, David Blair2, Hong Yin1, Jin-Zhong Cai3, Xue-Ling Dai1, Meng-Tong Lei3, Xing-Quan Zhu1, Xue-Peng Cai1*, Wan-Zhong Jia1* 1 State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China, 2 School of Marine and Tropical Biology, James Cook University, Queensland, Australia, 3 Laboratory of Plateau Veterinary Parasitology, Veterinary Research Institute, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, Qinghai Province, PR China, 4 College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi Province, PR China Abstract We determined the complete mitochondrial DNA (mtDNA) sequence of a fluke, Paramphistomum cervi (Digenea: Paramphistomidae). This genome (14,014 bp) is slightly larger than that of Clonorchis sinensis (13,875 bp), but smaller than those of other digenean species. The mt genome of P. cervi contains 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 2 non-coding regions (NCRs), a complement consistent with those of other digeneans. The arrangement of protein-coding and ribosomal RNA genes in the P. cervi mitochondrial genome is identical to that of other digeneans except for a group of Schistosoma species that exhibit a derived arrangement. The positions of some transfer RNA genes differ. Bayesian phylogenetic analyses, based on concatenated nucleotide sequences and amino-acid sequences of the 12 protein-coding genes, placed P.
    [Show full text]