View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Spiral - Imperial College Digital Repository The fidelity of synaptonemal complex assembly is regulated by a signaling mechanism that controls early meiotic progression Nicola Silva1, Nuria Ferrandiz1, Consuelo Barroso1, Silvia Tognetti2, James Lightfoot1,3, Oana Telecan1, Vesela Encheva4, 5, Peter Faull4, Simon Hanni6, Andre 6 4, 5 2 1,* Furger , Ambrosius P. Snidjers , Christian Speck , Enrique Martinez-Perez 1Meiosis group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK 2DNA replication group, Institute Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK 3Current address: Max Planck Institute for Developmental Biology, 72076 Tubingen, Germany 4Proteomics facility, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK 5Current address: Protein analysis and proteomics, London Research Institute, South Mimms EN6 3LD, UK 6Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK * Corresponding author: Enrique Martinez-Perez phone: 44 (0)208 383 4314
[email protected] Key words: Meiosis, homologue pairing, synapsis, HORMA domain, checkpoint Running title: Quality control of SC assembly 1 Summary Proper chromosome segregation during meiosis requires the assembly of the synaptonemal complex (SC) between homologous chromosomes. However, the SC structure itself is indifferent to homology and poorly understood mechanisms that depend on conserved HORMA-domain proteins prevent ectopic SC assembly. Although HORMA-domain proteins are thought to regulate SC assembly as intrinsic components of meiotic chromosomes, here we uncover a key role for nuclear soluble HORMA-domain protein HTP-1 in the quality control of SC assembly.