Optical Amplifier for Space Applications
Optical Amplifier for Space Applications Richard L. Fork, Spencer T. Cole, Lisa J. Gamble, William M. Diffey, Department of Electrical and Computer Engineering Univers#y of Alabama in Huntsville, Huntsville, Alabama 35899 fork_@,ece.uah.¢du, Andrew S. Keys NASA-Marshall Space Flight Center, Huntsville, Alabama 35812 Abstract: We describe an optical amplifier designed to amplify a spatially sampled component of an optical wavefront to kilowatt average power. The goal is means for implementing a strategy of spatially segmenting a large aperture wavefront, amplifying the individual segments, maintaining the phase coherence of the segments by active means, and imaging the resultant amplified coherent field. Applications of interest are the transmission of space solar power over multi-megameter distances, as to distant spacecraft, or to remote sites with no preexisting power grid. ©!999 Optical Society of America OCIS codes: (140.3280) Laser amplifiers; (140.3290) Laser arrays References and Links I. J. Mankins, "A Fresh Look at Space Solar Power: New Architectures, Concepts and Technologies", h.ttp:/twww.tler.neqsunsat/freshlook2.htm, October 6 (1997). 2. J. Mankins and J. Howell, "An Executive Summary of Recent Space Solar Power Studies and Findings", NASA Space Solar Power Exploratory Research & Technology (SERT), April 23 (! 999). 3. R.L, Fork, C.V. Shank, and R.T. Yen, "Amplification of 70-fs optical pulses to gigawatt powers," Appl. Phys. Lett. 41,223-225, (1982). 4. A. Giesen, H. Hi, gel, A. Voss, K. Wittig, U. Brauch, H. Opower, "Scalable Concept for Diode-Pumped High- Power Solid-State Lasers", Applied Physics B58, 365-72 (1994). 5.
[Show full text]