Estimation of Reservoir Fluid Volumes Through 4 D Seismic Analysis On

Total Page:16

File Type:pdf, Size:1020Kb

Estimation of Reservoir Fluid Volumes Through 4 D Seismic Analysis On - 'JsTo'-r - W>v mTRmmN op w-oocuwar is 'u%mm FORBGN SALES PRGHHISO 7180 THE 7th CONFERENCE ON RESERVOIR MANAGEMENT The New Petroleum Age Clarion Admiral Hotel Bergen 18th- 19 th November 1998 RECEIVED JAN 1 1 2008 OSTI ESTIMATION OF RESERVOIR KLVI1) N OLI MES THROl GH 4 D SEISMIC ANALYSIS ON Gl LLFAKS Presented by: Helene H. Veire Schlumberger Geco-Prakla DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Estimation of reservoir fluid volumes through 4D seismic analysis on Gullfaks. H.H. Veire, S B. Reymond, C. Signer, P.O. Tennebp, L. Spnneland, Schlumberger Geco-Prakla. Introduction Reservoir management today is a science of approximation when it comes to the rate anddirection of fluid front movement. Optimal management requires up to date information throughout the entire reservoir volume. Ac­ cess to the latest data on fluid distribution in a reservoir, and knowledge of how the distribution is changing with time, allows engineers to develop cost-effective strategies to get the most out of every field at the lowest possible risk. In addition to static, or one-time measurements, time-dependent measurements from various oilfield disciplines help constrain, refine and improve the accuracy of reservoir models. Time-lapse logging of fluid saturation through casing can show which zones are contributing to production and which are watering out or being by­ passed. Permanent downhole sensors provide continual observations of pressure, temperature and other diag­ nostics of reservoir performance. These measurements supply crucial information about fluid behavior at the well location, but fail in the vast interwell region. The 3D seismic measurements has routinely been relied on to provide interwell data. In the past, seismic surveys were mainly interpreted for structural features and strati­ graphic variations within the reservoir, but they can also be sensitive to contrasts in fluid types. Applied in sur­ veys separated by periods of production, time-lapse, or four-dimensional (4D) - 3D plus time - seismic images can map fluid changes in a producing reservoir. 4D seismic has the potential to monitor hydrocarbon movement in reservoirs during production and could there­ by supplement the predictions of reservoir parameters offered by the reservoir simulator. The changes in the seismic response can be attributed to changes in the reservoir due to production. A procedure where data from the reservoir model are integrated with seismic data will be presented in this article. The potential of such a procedure is demonstrated through a case study from a recent 4D survey over the Gullfaks field in the North Sea. The Gullfaks field In 1995-1996 a time-lapse 3D seismic survey was shot over the northern part of the Gullfaks field in the North Sea. More than 50% of the estimated recoverable reserves in Gullfaks have been produced since the start-up in december 1986. One important objective of the 4D studyperformed onthe Gullfaks field was to identify poten­ tially undrained reservoir compartments after 9 years of production (1986-95). In addition, the changes in fluid saturation as a consequence of the production should be estimated by integrating a set of different data types (4D seismic, well-logs and reservoir models). The Gullfaks field is located in the central part of the East Shetland Basin of the North Sea, onthe western flank of the Viking Graben. The field covers about 50km2 of the north-eastern part of Block 34/10 on the Norwegian sector. The block was awarded in 1978 to Statoil, Norsk Hydro and Saga Petroleum, with Statoil as main oper­ ator. The field consists of the shallowest structural elements of the Tampen Spur, formed during Upper Jurassic to Lower Cretaceous as a sloping high with westerly structural dip gradually decreasing to the east. A set of major faults striking north to south with easterly dipping fault planes divides the field into severalrotated fault blocks. The top reservoir unit in Gullfaks is the Tarbert Formation which consists of 60 to 70 meters of Bathonian trans­ gressive sands deposited in a tide-fluvial dominated delta environment. These clean sands show an average po­ rosity of 34%. The Tarbert sands are subdivided into three sub-members bounded by shales and coal layers that can locally act as permeability barriers and therefore induce non-homogeneous drainage patterns in the vertical plane. The Tarbert formation is bounded on top by two different caprocks: shales of the upper Jurassic Heather Formation and the more carbonated sediments of the Early Cretaceous Shetland group. They will be the source of important lateral differences in acoustic response, that must be considered for classification of fluids in the reservoir below. Page 1 of 5 Seismic classification Attribute maps generated from seismic data enhance different features of the subsurface, but it is often difficult to extract and combine all the available information from a set of attribute maps by manual interpretation. A generalised inversion tool based on geostatistical classification has been used to combine the information con­ tained in such a set of seismic attributes. The classification could be done without prior knowledge of the field using unsupervised classification methods based on natural clustering techniques (nearest neighbour algo­ rithms), or by combining the seismic attributes with prior knowledge (for example well log information) in su­ pervised classification. The basic principle behind the supervised classification is the assignment of anattribute- response to a specific fluid or facies type. The prior information (called training data) is used to “calibrate” the classification, that is, to estimate the classification function that maps the points into the different fluid- or facies-classes. The result of the classification will be maps showing the distribution of facies and/or fluids and the confidence of the classified result. These fluid distribution maps could be used to condition the reservoir model building. The 4D seismic fluid mapping of the Tarbert Formation on Gullfaks was done using this seismic classification system, and the resulting fluid distribution maps are shown in Figure 1. The classification was done using an equivalent set of instantaneous and volume attributes for the 1985 and the 1995 data. The training data used to set up the classification function were guided by a set of wells available in the area. The resulting fluid distri­ bution maps constitute the hydrocarbon hypothesis used in the reservoir volume analysis outlined below. The 4D seismic mapping of the pore fill content has been confirmed by new horizontal wells that verified undrained compartments. Statistical reservoir volume analysis To optimize the reservoir characterization we need to be able to estimate saturation changes in the reservoir and calculate the net-to-gross ratio of each compartment. In the reservoir model domain the volume of oil is calcu­ lated between the top of the reservoir and a base grid generated as an intersection between the base reservoir grid and a set threshold of the saturation volumes generated from flow simulations. In the seismic domain, this could be done by combining the results from the supervised classification with reservoir-volume analysis and seismic inversion. The classification results will be combined with the structural information of the reservoir for reservoir-volume analysis ina statistical manner described below. The results of the analysis will be maps show­ ing how good the fluid distribution maps from the classification fits with the reservoir structure. In addition the volume of the reservoir down to the Oil-Water-Contact (OWC) or the base of the reservoir is also calculated. A hydrocarbon reservoir needs to be sealed bya caprock layer. The draping of this caprock layer influences how the hydrocarbons are trapped. The probability of hydrocarbon presence in a rock unit is calculated by combining the structural interpretation identifying the caprock interface with a hypothesis of hydrocarbon presence based on the seismic signal. Typically such a hypothesis is generated by inversion or classification of seismic hydro­ carbon indicators. The probability of the match between each hydrocarbon hypothesis and the structural closure is computed with a cost function taking into account a set of 4 constrains: depth, area, volume and outline of the hydrocarbon hypothesis. We assume a horizontal OWC in a gravity controlled reservoir for the pre-production stage. Well calibration and saturation To calculate the volume of oil in place we have to relate the measured seismic attribute responses to a saturation value through petrophysical modeling orstatistical analysis in attribute space. Crossplotting seismic saturation indicators and saturation values indicates that classification of fluid fronts based on seismic attribute grids is able to capture anddistinguish low and high hydrocarbon saturation in a homogeneous lithology in the reservoir conditions of the Gullfaks field. We observe also that the relationship between saturations measured in wells and attribute responses is non - linear. It remains to see whether this relationship can be used to build a function that will transform a seismic saturation indicator attribute into a saturation map. A Neural Network estimation method has been tested to find a non-linear relationship between a set of seismic attributes and the saturation values. The method shows promising results, but requires a larger number of wells than what is available in this study. Page 2 of 5 * Seismic inversion A new seismic inversion method has been developed based on a method called Best Feasible Approximation (BFA). The method ensures that the computed acoustic impedance cube is consistent with the amplitude infor­ mation contained in the seismic data, the well log data and interval velocities for the layers in the overburden. An initial model for the inversion of the 1985 seismic was generated through ordinary kriging of acoustic im­ pedance well logs. The kriging error was used together with interval velocities and seismic amplitudes to con­ strain the inversion.
Recommended publications
  • Seismic Reflection Inversion with Basis Pursuit
    Seismic sparse-layer reflectivity inversion using basis pursuit decomposition Rui Zhang and John Castagna 4800 Calhoun Rd, Department of Earth and Atmospheric Sciences, University of Houston Houston, TX, 77204 ABSTRACT Basis pursuit inversion of seismic reflection data for reflection coefficients is introduced as an alternative method of incorporating a priori information in a seismic inversion process. The inversion is accomplished by building a dictionary of functions, representing seismic reflection responses, and constituting the seismic trace as a superposition of these responses. Basis pursuit decomposition finds a sparse number of reflection responses that sum to form the seismic trace. When the dictionary of functions is chosen to be a wedge model of reflection coefficient pairs convolved with the seismic wavelet, the resulting reflectivity inversion is a sparse-layer inversion, rather than a sparse-spike inversion. Synthetic tests show that sparse-layer inversion using basis pursuit can better resolve thin beds than a comparable sparse-spike inversion can. Application to field data indicates that sparse-layer inversion results in potentially improved detectability and resolution of some thin layers and reveals apparent stratigraphic features that are not readily seen on conventional seismic sections. INTRODUCTION In conventional seismic deconvolution, the seismogram is convolved with a wavelet inverse filter to yield band limited reflectivity. The output reflectivity is band- limited to the original frequency band of the data so as to avoid blowing up noise at frequencies with little or no signal. It has long been established (e.g., Riel and Berkhout; 1985) that sparse seismic inversion methods can produce output reflectivity solutions that contain frequencies that are not contained in the original signal without necessarily magnifying noise at those frequencies.
    [Show full text]
  • Best Research Support and Anti-Plagiarism Services and Training
    CleanScript Group – best research support and anti-plagiarism services and training List of oil field acronyms The oil and gas industry uses many jargons, acronyms and abbreviations. Obviously, this list is not anywhere near exhaustive or definitive, but this should be the most comprehensive list anywhere. Mostly coming from user contributions, it is contextual and is meant for indicative purposes only. It should not be relied upon for anything but general information. # 2D - Two dimensional (geophysics) 2P - Proved and Probable Reserves 3C - Three components seismic acquisition (x,y and z) 3D - Three dimensional (geophysics) 3DATW - 3 Dimension All The Way 3P - Proved, Probable and Possible Reserves 4D - Multiple Three dimensional's overlapping each other (geophysics) 7P - Prior Preparation and Precaution Prevents Piss Poor Performance, also Prior Proper Planning Prevents Piss Poor Performance A A&D - Acquisition & Divestment AADE - American Association of Drilling Engineers [1] AAPG - American Association of Petroleum Geologists[2] AAODC - American Association of Oilwell Drilling Contractors (obsolete; superseded by IADC) AAR - After Action Review (What went right/wrong, dif next time) AAV - Annulus Access Valve ABAN - Abandonment, (also as AB) ABCM - Activity Based Costing Model AbEx - Abandonment Expense ACHE - Air Cooled Heat Exchanger ACOU - Acoustic ACQ - Annual Contract Quantity (in reference to gas sales) ACQU - Acquisition Log ACV - Approved/Authorized Contract Value AD - Assistant Driller ADE - Asphaltene
    [Show full text]
  • Evolution of the Stress and Strain Field in the Tyra Field During the Post-Chalk Deposition and Seismic Inversion of Fault Zone Using Informed-Proposal Monte Carlo
    Stress and strain during the Post-Chalk Deposition Evolution of the Stress and Strain field in the Tyra field during the Post-Chalk Deposition and Seismic Inversion of fault zone using Informed-Proposal Monte Carlo Sarouyeh Khoshkholgh, Ivanka Orozova-Bekkevold and Klaus Mosegaard Niels Bohr Institute University of Copenhagen September, 2021 Table of Contents Introduction………………………………………………………………………………………………………………………....2 Well Data………………………………………………………………………………………………………………………………3 Modelling of the Post-Chalk overburden in the Tyra field………………………………………………………5 Numerical representation of the Post-Chalk Deposition in the Tyra field………………………………………..6 Finite elements modelling of the Post-Chalk Deposition in the Tyra field………………………………………..9 Results: Evolution of the Stress and Strain state in the Tyra Field during the Cenozoic Deposition…………………………………………………………………………………………………………………..………12 Seismic Study of the Fault Detection Limit……………………………………………………………………………13 Seimic Inversion…………………………………………………………………………………………………………………..……….14 Results: Seismic Inversion…………………………………………………………………………………………………….17 Conclusions and Discussions……………………………………………………………………………………….…..…..22 Acknowledgements……………………………………………………………………………………………………………..23 References…………………………………………………………………………………………………………………………..24 Abstract When hydrocarbon reservoirs are used as a CO2 storage facility, an accurate uncertainty analysis and risk assessment is essential. An integration of information from geological knowledge, geological modelling, well log data, and geophysical data provides
    [Show full text]
  • CONVENTIONAL OIL and GAS EXPLORATION Improving Cost Control and Efficiencies to Meet Today’S Exploration Challenges Table of Contents
    CONVENTIONAL OIL AND GAS EXPLORATION Improving cost control and efficiencies to meet today’s exploration challenges Table of Contents INTRODUCTION ................................................................................................................ 1 Exploration impact of downturn ................................................................................... 1 Signs of recovery ............................................................................................................. 1 Exploration challenges ahead ...................................................................................... 2 REVISTING MATURE BASINS TO UNLOCK POTENTIAL ..................................................... 3 SOFTWARE TO OPTIMISE MATURE BASIN EXPLORATION ............................................... 4 FRONTIER AND UNDER-EXPLORED BASINS ....................................................................... 5 Reducing uncertainty and increasing chances of success ...................................... 6 SOFTWARE TO ENHANCE FRONTIER AND UNDER-EXPLORED BASIN EXPLORATION ... 7 MEETING DEEPWATER CHALLENGES ............................................................................... 8 Geopressure models for well planning ......................................................................... 8 UNDERSTANDING AND MINIMISING RISK IN HIGH PRESSURE AND HIGH TEMPERATURE ENVIRONMENTS ....................................................................................... 9 Improving prediction accuracy ..................................................................................
    [Show full text]
  • Joint Flow–Seismic Inversion for Characterizing Fractured Reservoirs
    Joint flow–seismic inversion for characterizing fractured reservoirs: theoretical approach and numer- ical modeling Peter K. Kang⇤, Yingcai Zheng, Xinding Fang, Rafal Wojcik, Dennis McLaughlin, Stephen Brown, Michael C. Fehler, Daniel R. Burns and Ruben Juanes, Massachusetts Institute of Technology SUMMARY ments into the seismic interpretation; on the other, improve the predictability of reservoir models by making joint use of seis- Traditionally, seismic interpretation is performed without any mic and flow data. account of the flow behavior. Here, we present a methodol- ogy to characterize fractured geologic media by integrating The basic tenet of our proposed framework is that there is a flow and seismic data. The key element of the proposed ap- strong dependence between fracture permeability (which drives proach is the identification of the intimate relation between the flow response) and fracture compliance (which drives the acoustic and flow responses of a fractured reservoir through seismic response). This connection has long been recognized the fracture compliance. By means of synthetic models, we (Pyrak-Nolte and Morris, 2000; Brown and Fang, 2012), and show that: (1) owing to the strong (but highly uncertain) de- recent works have pointed to the potential of exploiting that pendence of fracture permeability on fracture compliance, the connection (Vlastos et al., 2006; Zhang et al., 2009). Here, modeled flow response in a fractured reservoir is highly sensi- we propose a formal approach to improved characterization of tive to the geophysical interpretation; and (2) by incorporating fractured reservoirs, and improved reservoir flow predictions, flow data (well pressures and production curves) into the inver- by making joint use of the seismic and flow response.
    [Show full text]
  • Qt22q7c2vf Nosplash 4A67ffc49
    UNIVERSITY OF CALIFORNIA Los Angeles Development of Specialized Nonlinear Inversion Algorithms, Basis Functions, Eikonal Solvers, and Their Integration for Use in Joint Seismic and Gravitational Tomographic Inversion A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Geophysics and Space Physics by Zagid Abatchev 2019 c Copyright by Zagid Abatchev 2019 ABSTRACT OF THE DISSERTATION Development of Specialized Nonlinear Inversion Algorithms, Basis Functions, Eikonal Solvers, and Their Integration for Use in Joint Seismic and Gravitational Tomographic Inversion by Zagid Abatchev Doctor of Philosophy in Geophysics and Space Physics University of California, Los Angeles, 2019 Professor Paul M. Davis, Chair 1 Abstract Many approaches and packages have been developed for tomographic inversion of seis- mic data and have consistently remained in high demand in both academic and industrial geophysics for subsurface imaging. However, our survey of published implementations has shown them to suffer from shortcomings. They include: low computational efficiency lead- ing to overreliance on gradient-based inversion methods, non-robust forward models, and overparametrization of invertible fields leading to overconfidence in parameter resolvability and susceptibility to local minima. Additionally, many suffer from poor algorithmic docu- mentation, lacking source code availability, and complicated dependencies of many published packages, resulting in difficulty with their reproducibility, testing, and adaptation. Finally, most available packages do not incorporate different measurement sets, such as gravitational anomaly data, to better constrain seismic inversion. To address these issues, we have developed our own implementation and integration of an improved set of algorithms for seismic and gravitational tomography and applied it to ii a seismic data set from the Peruvian Andes obtained in a joint experiment with Caltech between 2008 and 2013.
    [Show full text]
  • The Cinguvu Field Offshore Angola Example (SEG
    4D analysis, combining shallow hydrophone and multi-component streamer: the Cinguvu Field Offshore Angola example Cyrille Reiser*1, Bruce Webb2, Massimiliano Bertarini2, Didier Lecerf1, Vincenzo Milluzzo3, Catia Rizzetto2 1: PGS, 2: Eni, 3: Eni Angola Summary Square) of the difference and with the constrains of the dominant frequency. Efficiently and accurately estimating fluid-flow movement The dataset used in the present project (offshore Angola) is information from time-lapse data is a prime deliverable of not a true 4D seismic sensu-stricto as various differences any 4D acquisition and analysis. The key to success in this exist between the base and the repeat (‘monitor’) seismic. depends on a few factors including optimum 4D seismic The 2011 “baseline” data is a 3D shallow towed single acquisition, the seismic frequency bandwidth at the reservoir hydrophone streamer seismic, while the 2016 “monitor” data level and being able to deliver the 4D analysis or results in a (part of a larger 3D acquisition) is a deep towed multi- very rapid and efficient manner. Maximum value of 4D is component streamer seismic with almost the same azimuth derived not from the data quality alone but also from the but not the same shot pre-plot. efficiency of delivering a 4D image and analysis. The value A 4D broadband depth processing project was carried out of the 4D decreases significantly with time, as results and with the strategy of calibrating an operator-deghosted single analysis need to be delivered promptly to make an impact on hydrophone (shallow towed) with a re-datumed up-going the in-fill well program as well as on the reservoir wavefield.
    [Show full text]
  • Non-Seismic Geophysical Technologies and Non
    How electromagnetics could have changed the drilling sequence creaming curve in the Barents Fibre optics in wells to record seismic - now competitive with ocean bottom nodes? Improving workflows for non- seismic data - one data set can help you better understand another Non-seismic Geophysical Technologies and Non-Conventional Seismic, London, Oct 11 2017 Special report Non-seismic Geophysical Technologies and Non-Conventional Seismic October 11 2017, London Event sponsored by: Non-seismic Geophysical Technologies and Non-Conventional Seismic Electromagnetics, well fibre optics and combining data Finding Petroleum’s London forum looked at non-seismic geophysical tech- nologies and non-conventional seismic, with a special focus on using elec- tromagnetics to reduce risk, working with well fibre optics, and combining seismic and non-seismic data This is a report from the Finding Petroleum conference “Finding Petroleum: Non-seismic Finding Petroleum’s London forum on Oc- Garth Naldrett, Chief Product Officer of Geophysical Technologies and Non-Conventional Seismic”, held in London tober 11 2017, “Non-seismic Geophysical Silixa presented the company’s technology in October 2017 Technologies and Non-Conventional Seis- to record acoustics in wells using fibre optic Event website mic,” looked at how companies can work cables, which can be used for (active) seis- Many of the videos and slides from the with electromagnetics, in-well fibre optic mic and passive seismic. In particular, it is event can be downloaded from the event seismic, and combining seismic data with useful for repeat surveys, if the fibre optic agenda page. other types of data. cable is permanently installed, and it may www.findingpetroleum.com/event/ef071.
    [Show full text]
  • An Official Publication of the Vietnam National Oil and Gas Group Vol 10 - 2017
    ENRECAP roject Enhanced research capacity to meet VIETNAM future oil and gas challenges in Vietnam PETRO Petro ietnam An Official Publication of the Vietnam National Oil and Gas Group Vol 10 - 2017 ISSN-0866-854X EXPANDING OIL AND GAS EXPLORATION AND PRODUCTION AREAS PETROVIETNAM JOURNAL IS PUBLISHED MONTHLY BY VIETNAM NATIONAL OIL AND GAS GROUP ENRECA Project Enhanced research capacity to meet VIETNAM future oil and gas challenges in Vietnam PETRO Petro ietnam An Official Publication of the Vietnam National Oil and Gas Group Vol 10 - 2017 IISSN-0866-854XSSN-0866-854X EXPANDING OIL AND GAS EXPLORATION AND PRODUCTION AREAS EDITOR-IN-CHIEF Dr. Nguyen Quoc Thap DEPUTY EDITOR-IN-CHIEF Dr. Le Manh Hung Dr. Phan Ngoc Trung EDITORIAL BOARD MEMBERS Dr. Hoang Ngoc Dang Dr. Nguyen Minh Dao BSc. Vu Khanh Dong Dr. Nguyen Anh Duc MSc. Tran Hung Hien MSc. Vu Van Nghiem MSc. Le Ngoc Son Eng. Le Hong Thai MSc. Nguyen Van Tuan Dr. Phan Tien Vien Dr. Tran Quoc Viet Dr. Nguyen Tien Vinh Dr. Nguyen Hoang Yen SECRETARY MSc. Le Van Khoa M.A. Nguyen Thi Viet Ha DESIGNED BY Le Hong Van MANAGEMENT Vietnam Petroleum Institute CONTACT ADDRESS Floor M2, VPI Tower, Trung Kinh street, Yen Hoa ward, Cau Giay district, Ha Noi Tel: (+84-24) 37727108 * Fax: (+84-24) 37727107 * Email: [email protected] Mobile: 0982288671 Cover photo: Cam Lam - Nha Trang. Photo: Le Khoa Publishing Licence No. 100/GP-BTTTT dated 15 April 2013 issued by Ministry of Information and Communications FOCUS FOCUS Prime Minister Nguyen Xuan Phuc: Deputy Prime Minister Trinh Dinh Dung: PETROVIETNAM TO STAND FIRM IN THE DUNG QUAT REFINERY IS THE LEVER MIDST OF DIFFICULTIES OF QUANG NGAI’S ECONOMY On 19 October 2017, eporting to the Deputy capacity (106 - 108% on average).
    [Show full text]
  • Deep Learning for Fast Simulation of Seismic Waves in Complex Media
    Deep learning for fast simulation of seismic waves in complex media Ben Moseley1, Tarje Nissen-Meyer2, and Andrew Markham1 1Department of Computer Science, University of Oxford, UK 2Department of Earth Sciences, University of Oxford, UK Correspondence: Ben Moseley ([email protected]) Abstract. The simulation of seismic waves is a core task in many geophysical applications. Numerical methods such as Finite Difference (FD) modelling and Spectral Element Methods (SEM) are the most popular techniques for simulating seismic waves, but disadvantages such as their computational cost prohibit their use for many tasks. In this work we investigate the potential of deep learning for aiding seismic simulation in the Solid Earth sciences. We present two deep neural networks which 5 are able to simulate the seismic response at multiple locations in horizontally layered and faulted 2D acoustic media an order of magnitude faster than traditional finite difference modelling. The first network is able to simulate the seismic response in horizontally layered media and uses a WaveNet network architecture design. The second network is significantly more general than the first and is able to simulate the seismic response in faulted media with arbitrary layers, fault properties and an arbitrary location of the seismic source on the surface of the media, using a conditional autoencoder design. We test the sensitivity of 10 the accuracy of both networks to different network hyperparameters, and show that the WaveNet network can be retrained to carry out fast seismic inversion in the same media. We find that are there are challenges when extending our methods to more complex, elastic and 3D Earth models; for example the accuracy of both networks reduces when they are tested on models outside of their training distribution.
    [Show full text]
  • The Seismic Reflection Inverse Problem
    Inverse Problems TOPICAL REVIEW Related content - A comparison of seismic velocity inversion The seismic reflection inverse problem methods for layered acoustics - A mathematical framework for inverse To cite this article: W W Symes 2009 Inverse Problems 25 123008 wave problems in heterogeneous media - A method for inverse scattering based on the generalized Bremmer coupling series View the article online for updates and enhancements. Recent citations - On quasi-seismic wave propagation in highly anisotropic triclinic layer between distinct semi-infinite triclinic geomedia Pato Kumari and Neha - Reduced Order Model Approach to Inverse Scattering Liliana Borcea et al - Seismic wavefield redatuming with regularized multi-dimensional deconvolution Nick Luiken and Tristan van Leeuwen This content was downloaded from IP address 189.46.171.20 on 21/10/2020 at 04:11 IOP PUBLISHING INVERSE PROBLEMS Inverse Problems 25 (2009) 123008 (39pp) doi:10.1088/0266-5611/25/12/123008 TOPICAL REVIEW The seismic reflection inverse problem W W Symes Computational and Applied Mathematics, Rice University, MS 134, Rice University, Houston, TX 77005, USA E-mail: [email protected] Received 3 July 2009, in final form 2 September 2009 Published 1 December 2009 Online at stacks.iop.org/IP/25/123008 Abstract The seismic reflection method seeks to extract maps of the Earth’s sedimentary crust from transient near-surface recording of echoes, stimulated by explosions or other controlled sound sources positioned near the surface. Reasonably accurate models of seismic energy propagation take the form of hyperbolic systems of partial differential equations, in which the coefficients represent the spatial distribution of various mechanical characteristics of rock (density, stiffness, etc).
    [Show full text]
  • Quantitative Reservoir Characterization Integrating Seismic Data and Geological Scenario Uncertainty
    QUANTITATIVE RESERVOIR CHARACTERIZATION INTEGRATING SEISMIC DATA AND GEOLOGICAL SCENARIO UNCERTAINTY A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ENERGY RESOURCES ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Cheolkyun Jeong May 2014 Abstract The main objective of this dissertation is to characterize reservoir models quantitatively using seismic data and geological information. Its key contribution is to develop a practical workflow to integrate seismic data and geological scenario uncertainty. First, to address the uncertainty of multiple geological scenarios, we estimate the likelihood of all available scenarios using given seismic data. Starting with the probability given by geologists, we can identify more likely scenarios and less likely ones by comparing the pattern similarity of seismic data. Then, we use these probabilities to sample the posterior PDF constrained in multiple geological scenarios. Identifying each geological scenario in metric space and estimating the probability of each scenario given particular data helps to quantify the geological scenario uncertainty. Secondly, combining multiple-points geostatistics and seismic data in Bayesian inversion, we have studied some geological scenarios and forward simulations for seismic data. Due to various practical issues such as the complexity of seismic data and the computational inefficiency, this is not yet well established, especially for actual 3-D field datasets. To go from generating thousands of prior models to sampling the posterior, a faster and more computationally efficient algorithm is necessary. Thus, this dissertation proposes a fast approximation algorithm for sampling the posterior distribution of the Earth models, while maintaining a range of iv uncertainty and practical applicability.
    [Show full text]