Wiener sausage and sensor networks

Evgeny Spodarev

Joint research with R. Cerˇ ny, D. Meschenmoser, S. Funken, J. Rataj and V. Schmidt

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.1 Overview Sensor networks Wiener sausage Mean volume and surface area Almost sure approximation and convergence of curvature measures Boolean model of Wiener sausages Capacity functional and volume fraction Contact distribution function and covariance function Specific surface area Outlook

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.2 Motivation: sensor networks Finding an object in a medium using a totally random strategy (G. Kesidis et al. (2003), S. Shakkottai (2004)): a set of sensors with reach r > 0 move randomly in the medium.

Target detection area of a sensor = Wiener sausage Sr

Paths of two sensors with reach r = 20 and their target detection areas

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.3 Motivation: sensor networks Sensor network: Sensors are located “at random” in space moving according to the . Target detection area of such network: the Boolean model of Wiener sausages E Target detection : p = 1 e−λ |Sr|, where λ is the − intensity of the Poisson process of initial positions of sensors and E S is the mean volume of the Wiener sausage | r| Other specific intrinsic volumes? = find other mean intrinsic ⇒ volumes of Sr E.g., the mean surface area E d−1(∂S ) H r

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.4 Polyconvex sets and sets of positive reach

Polyconvex sets: K = n K , where K are convex bodies. ∪i=1 i i Sets of positive reach: For a closed subset A Rd, define ⊆ reach A = sup r 0 : x Rd, ∆ (x) < r = card Σ (x) = 1 , { ≥ ∀ ∈ A ⇒ A } where ∆ (x) is the distance from x Rd to A and A ∈ Σ (x) = a A : x a = ∆ (x) A { ∈ | − | A } is the set of all metric projections of x on A. A is said to be of positive reach if reach A > 0.

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.5 Polyconvex sets and sets of positive reach

K (x) A r A

x r

(x) K reach A x A

A polyconvex set A set of positive reach The parallel set of A, r > 0:

A = A B (o) = x Rd : ∆ (x) 6 r r ⊕ r { ∈ A }

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.6 Intrinsic volumes Steiner’s formula (H. Federer (1959)): If A is a set of positive reach then

d A = ω riV (A), 0 r < reach A, | r| i d−i ≤ i=0 X where V ( ) = is the Lebesgue measure in Rd (volume), d · | · | ωi is the volume of the unit i-ball

Vi is the i-th intrinsic volume of A, i = 0, . . . , d. In particular,

V0 is the Euler-Poincaré characteristic and Vd−1 is one half of the surface area.

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.7 Curvature measures

Local version of Steiner’s formula: For any Borel subset F Rd ⊂ d (A A) ξ−1(F ) = ω riC (A; F ), 0 r < reach A, | r \ ∩ A | i d−i ≤ i=1 X where

ξA(x) is the nearest point of A to x the signed Radon measure C (A; ) concentrated on ∂A is i · the ith curvature measure of A, 0 i d 1 ≤ ≤ − If ∂A is compact then C (A; Rd) = V (A), i = 0, . . . , d 1. i i −

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.8 Brownian motion

Wiener process W (t) : t 0 : a random process with { ≥ } continuous paths defined on (Ω, F, P ) such that W (0) = x R a.s., ∈ W has independent increments, W (t) W (s) N(0, σ2(t s)), 0 s < t. − ∼ − ≤ d Brownian motion in R initiated at x = (x1, . . . , xd):

X(t) = (W (t), . . . , W (t)) , t 0, 1 d ≥ where W1, . . . , Wd are independent Wiener processes starting at x , . . . , x R. 1 d ∈

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.9 Wiener sausage

Let S(T ) = X(t) : t [0, T ] be the path of X up to time T > 0. { ∈ } Wiener sausage Sr of radius r > 0:

S = S(T ) B (o) = x Rd : ∆ (x) 6 r . r ⊕ r { ∈ S(T ) }

r = 10 r = 40 A realization of Sr

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.10 Intrinsic volumes of the Wiener sausage

Intrinsic volumes V0(Sr), . . . , Vd(Sr) are well–defined a.s. for d 6 3, r > 0;

Vd(Sr) = VS(r) 2V (S ) = d−1(∂S ) d−1 r H r V (S ) = ( 1)d−i−1V Rd S , i = 0, . . . , d 2, where ∂S is i r − i \ r − r a Lipschitz manifold with reach Rd S > 0 a.s. \ r Compute E Vi(Sr), i = 0, . . . , d.  It is proved that E V (S ) < , i = d, d 1 for all d > 2 and i r ∞ − E V (S ) < for d = 2 (RSS 09, RSM 09). 0 r ∞

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.11 Mean volume of the Wiener sausage Explicit formulae d = 2: A. Kolmogoroff and M. Leontowitsch (1933) d = 3: F. Spitzer (1964) d > 4: A. Berezhkovskii et al. (1989) Asymptotics of the volume R. Getoor (1965) M. Donsker und S. Varadhan (1975) J.-F. Le Gall (1988): CLT for shrinking Wiener sausage (T or r 0) → ∞ → M. van den Berg and E. Bolthausen (1994) . . .

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.12 Other mean curvature measures

Mean surface area: RSS (2009) Support measures and mean curvature functions: G. Last (2006) Other mean intrinsic volumes E V (S ), i = 0, . . . , d 2 : an i r − open problem. Approximations can be obtained numerically (RSM (2009))

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.13 Mean volume of the Wiener sausage

A. Berezhkovskii, Yu. Makhnovskii, R. Suris (1989) : for d > 2

d(d 2) E S = ω rd + − ω σ2rd−2T | r| d 2 d ∞ σ2y2T d − 2 4d ωd r 1 e 2r + 2 3 2− 2 dy , π y (Jν (y) + Yν (y)) Z0 where Jν(y) and Yν(y) are Bessel functions of the first and second kind of order ν = (d 2)/2 and ω = πd/2/Γ(1 + d/2) is the volume − d of the unit d-ball.

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.14 Mean volume of the Wiener sausage

Bessel functions Jν(y) and Yν(y) are linearly independent solutions of the Bessel diff. equation y2f 00(y) + yf 0(y) + (y2 ν2)f(y) = 0, and − ∞ ( 1)k(y/2)2k+ν J (y) = − , ν k!Γ(ν + k + 1) Xk=0 J (y) cos(νπ) J (y) Y (y) = ν − −ν . ν sin(νπ)

In three dimensions, the above formula for the mean volume of Sr simplifies to 4 E S = πr3 + 4σr2√2πT + 2πσ2rT . | r| 3

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.15 Mean surface area of the Wiener sausage

d Theorem 1. Let Sr be the Wiener sausage in R , d > 2. Then, it holds

2 2 ∞ − σ y T 2 d−1 2 E d−1 d−1 4d ωd r 1−e 2r (∂Sr) = dωdr + 2 3 2 2 dy π y (Jν (y)+Yν (y)) H 0 2 2 ∞ R − σ y T 2 d−3 (d−2)2 4 e 2r2 + dωdσ r T 2 2 2 dy 2 π y(Jν (y)+Yν (y)) − 0 ! R for almost all radii r > 0. For d = 2, 3, this formula holds for all r > 0. In the case d = 3, it simplifies to

E 2(∂S ) = 4πr2 + 8rσ√2πT + 2πσ2T . H r

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.16 Mean surface area of the Wiener sausage

Asymptotic behaviour (RSS 09)

πσ2T r−1 log−2 r if d = 2, d−1 2 E (∂Sr)  2πσ T if d = 3, as r 0. H ∼  2 →  2 (d−2) d−3 > dωdσ T 2 r if d 4  

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.17 Idea of the proof of Theorem 1

Theorem 2. For d 3 and any r > 0, it holds ≤ d E V (r) E d−1(∂S ) = S , H r d r where V (r) = S . For dimensions d > 4, this relation holds for almost all S | r| r > 0. follows from the dominated convergence theorem and Lemma 1. It holds d−1(∂S ) a.s.= V 0 (r) H r S for all r > 0 if d = 2, 3 and almost all r > 0 if d > 4.

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.18 Idea of the proof of Theorem 1

A r

A

critical points

r - C(A)

The point x Rd is called critical for A if ∈ x conv a A : x a = d(A, x) . ∈ { ∈ | − | } The radius r > 0 is critical for A if a critical point x for A with ∃ d(A, x) = r. Let C(A) be the set of critical dilation radii r for A.

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.19 Idea of the proof of Theorem 1

Lemma 1 follows from Theorem 3. Let A Rd be any compact set. If r (0, ) C(A) then ⊂ ∈ ∞ \ V 0 (r) exists and equals d−1(∂A ). Here A = x Rd : d(A, x) 6 r is A H r r { ∈ } the parallel neighborhood of A of radius r > 0 and C(A) is the set of critical dilation radii for A. and Theorem 4. Let d 3. Then for any r > 0, r C S(T ) a. s. For d > 4, ≤ 6∈ r C S(T ) a.s. for almost all radii r > 0. Here S(T ) is the path of the 6∈  Brownian motion up to time instant T > 0.

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.20 Other mean intrinsic volumes

Compute E V (S ), i = 0, . . . , d 2 i r − Idea: Approximate the Wiener sausage Sr a.s. by random polyconvex sets Sn with E V (Sn) E V (S ) as n , r i r → i r → ∞ i = 0, . . . , d Method: Use any a.s. piecewise linear approximation Sn of the Brownian path S w.r.t. the Hausdorff metric to approximate the Wiener sausage S = S B (o) by Sn = Sn B (o) , e.g. the r ⊕ r r ⊕ r Haar-Schauder approximation E E n Goal: Obtain Vi(Sr) by computing Vi(Sr ) and using E V (Sn) E V (S ), n , i = 0, . . . , d 2 i r → i r → ∞ −

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.21 Approximation of the Wiener sausage

Bb A B b

a

A a

r

Hausdorff metric: For two nonempty compacts A, B Rd ⊂ d (A, B) = min a > 0 : A B B (o), B A B (o) . H { ⊆ ⊕ a ⊆ ⊕ a }

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.22 Convergence of curvature measures

Theorem 5. If d (Sn, S) 0 as n almost surely, then it holds H → → ∞ (i) V n (r) V (r) as n almost surely for any r > 0; S → S → ∞ (ii) d−1 (∂Sn) d−1 (∂S ) as n almost surely for any r > 0 if H r → H r → ∞ d 6 3 and for almost all r > 0 if d > 4;

(iii) C (Sn; ) C (S ; ) weakly as n almost surely for any r > 0 and i r · → i r → ∞ i = 0, . . . , d 1 if d 6 3. −

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.23 Convergence of curvature measures

Corollary 1. It holds

(i) E V n (r) E V (r) as n for any r > 0; S → S → ∞ (ii) E d−1 (∂Sn) E d−1 (∂S ) as n for any r > 0 if d 6 3 and H r → H r → ∞ for almost all r > 0 if d > 4. Conjecture: E V (Sn) E V (S ) as n for i = 0, . . . , d 2 if i r → i r → ∞ − d 6 3. n Open problem: Find a uniform integrable upper bound for Vi(Sr ), V (S ), n N, i = 0, . . . , d 2 i r ∈ −

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.24 Approximation of the Wiener sausage

Example

For simplicity, consider T = 1. Set time instants t = i/k , i = 1, . . . , k for k , n . i n n n → ∞ → ∞ n Vertices: X (ti) = X(ti) , i = 1, . . . , kn The path Sn = Xn(t) : 0 t 1 is a piecewise linear curve { ≤ ≤ } with 2n + 1 nodes lying on S = X(t) : 0 t 1 . { ≤ ≤ } Set Sn = Sn B (o), n N. r ⊕ r ∈

Theorem 6. It holds d (Sn, S) 6 max Xn(t) X(t) 0 as H t∈[0,1] | − | → n a.s. → ∞

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.25 Approximation of the Wiener sausage Special case: Haar-Schauder approximation For the standard Brownian motion W (σ2 = T = 1) holds

∞ W (t) = Y L (t), t [0, 1] , k k ∈ Xk=1 where

Y N is the sequence of i.i.d. N(0, 1)–distributed random { n}n∈ variables; t Lk(t) = 0 Hk(s) ds are the Schauder functions and Hk are the N Haar functionsR , k . This series converges∈(a.s.) absolutely and uniformly on [0, 1].

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.26 Approximation of the Wiener sausage

Haar functions: H (s) = 1, s [0, 1], 1 ∈

m k 1 2k 1 2 2 , s − , − , ∈ 2m 2m+1 k = 1, 2, . . . , 2m, m 2k 1 k H m (s) = 2 h  2 +k  2 , s m−+1 , m ,  − ∈ 2 2 m = 0, 1, 2, . . .  0, otherwiseh    Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.27 Approximation of the Wiener sausage

Approximate the Brownian motion X(t) by Xn(t) = (W n(t), . . . , W n(t)), t [0, 1], where 1 d ∈ 2n W n(t) = Y L (t), t [0, 1], i ik k ∈ Xk=1 and Yik are i.i.d. N(0, 1) random variables. The path Sn = Xn(t) : 0 t 1 is a piecewise linear curve { ≤ ≤ } with 2n + 1 nodes lying on S = X(t) : 0 t 1 . { ≤ ≤ }

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.28 Approximation formula for E V0(Sr) in 2D

0.0423017 1 Φ r−224.899 EV (S ) 1 + − 50.2096 , 0 r ≈ log (3.88182 10−6 r1.88978 + 1.0) r0.153452 ·  where Φ is the c.d.f of N(0,1) – distribution.

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.29 Boolean model of Wiener sausages Ξ = (x + (S ) ) where x is a stationary Poisson point i∈N i r i { i} process of germs with intensity λ > 0 and grains (S ) are iid copies S r i of Sr.

Three realizations with volume fractions 0.25, 0.5 and 0.75 (T = 10, r = 1)

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.30 Capacity functional

Definition and formula

E ˇ T (C) = P (Ξ C = ) = 1 e−λ |Sr⊕C| Ξ ∩ 6 ∅ − for all compact C, where

E S Cˇ = P (x S Cˇ)dx = P τ x T dx . | r ⊕ | ∈ r ⊕ C⊕Br(o) ≤ RZd RZd  τ x = inf s 0 : Xx(s) A is the first hitting time of a Borel A { ≥ ∈ } set A for the Brownian motion starting at x Rd. ∈ Notation: u(t, x) = P τ x t , x Rd, t > 0 C⊕Br(o) ≤ ∈  

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.31 Capacity functional

Kolmogoroff and Leontowitsch (1933), Doob (1955), Hunt (1956) u(t, x) is the unique bounded solution to the following heat conduction problem:

2 ∂u = σ u, t > 0, x Rd (C B (o)), ∂t 2 4 ∈ \ ⊕ r u(0, x) = 0, x Rd (C B (o)), ∈ \ ⊕ r u(t, x) = 1, t > 0, for all regular x ∂(C B (o)), ∈ ⊕ r

x i.e. points x such that P τC⊕Br(o) = 0 = 1. In general, this problem has to be solved numerically . 

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.32 Volume fraction

Explicit solution: C = o . { } For p = P (o Ξ) = E Ξ [0, 1]d = T ( o ) Ξ ∈ | ∩ | Ξ { } we get

σ2y2T d ∞ − d d(d−2) 2 d−2 4d ωd r 1−e 2r2 −λ ωdr + ωd σ r T + dy  2 π2 y3 J2(y)+Y 2(y)  0 ( ν ν ) pΞ = 1 e  R  . −  

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.33 Covariance function Numerical solution: C = o, h u , where u d−1 and h 0. { · } ∈ S ≥

C (h) = P (o, h u Ξ) = 2p T ( o, h u ) Ξ · ∈ Ξ − Ξ { · }

Finite element method: mesh (left) and computed solution u (right) for d = 2, σ2 = 1, r = 1, h = 2.2 and t = 100.

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.34 Covariance function Approximation formula (CFS 08). Let r = 1, σ2 = 1.

C (h) 2p 1 + (1 p )κ(h,t) , Ξ ≈ Ξ − − Ξ 2 π arccos( h ) + h 1 h , h 2r, t = 0, d = 2, π − 2r 2r − 2r ≤ 3 2  1 h 2 h + 5 h q+ 1, h 2r, t = 0, d = 3,  2 2r 2r 2 2r κ(h, t) =  3 − 2 ≤  h  3 h + 3 h + 1, h ν(t), t > 0, d = 2, 3,  ν(t) − ν(t) ν(t) ≤ 2, otherwise ,      3.124 t0.3925 + 2.794, d = 2 , ν(t) =  3.744 t0.2182 + 1.454, d = 3 .   Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.35 Covariance function

κ(h, t) in 2D (left) resp. 3D (right) for r = 1, 0 h 20 and 0 t 100 ≤ ≤ ≤ ≤

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.36 Covariance function

Relative approximation errors in 2D (left) resp. 3D (right) for pΞ = 0.75, r = 1, 0 h 20 and 0 t 100. ≤ ≤ ≤ ≤

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.37 Covariance function

2D, T = 1 3D, T = 1 1 1 Volume fraction 0.75 Volume fraction 0.75 Volume fraction 0.5 Volume fraction 0.5 0.8 Volume fraction 0.25 0.8 Volume fraction 0.25

0.6 0.6 (h) (h) Ξ Ξ C C 0.4 0.4

0.2 0.2

0 0 0 1 2 3 4 0 1 2 3 4 h h

2D, T = 50 3D, T = 50 1 1 Volume fraction 0.75 Volume fraction 0.75 Volume fraction 0.5 Volume fraction 0.5 0.8 Volume fraction 0.25 0.8 Volume fraction 0.25

0.6 0.6 (h) (h) Ξ Ξ C C 0.4 0.4

0.2 0.2

0 0 0 5 10 15 20 0 5 10 15 20 h h

2 CΞ(h) with r = 1, σ = 1 and T = 1, T = 50.

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.38 Spherical contact distribution function

T (B (o)) T ( o ) H (ρ) = P (Ξ B (o) = o Ξ) = Ξ ρ − Ξ { } . B1(o) ∩ ρ 6 ∅ | 6∈ 1 T ( o ) − Ξ { } It holds 2 H (ρ) = 1 e−λM(d,σ ,r,ρ,T ) , B1(o) − where

2 d d d(d 2) 2 d−2 d−2 M(d, σ , r, ρ, T ) = ωd (r + ρ) r + − ωd σ (r + ρ) r T − 2 − ∞ 2 2 ∞ − σ y T σ2y2T 2 −  4d ωd d 1 e 2(r+ρ) d 1 e 2r2 + 2 (r + ρ) 3 −2 2 dy r 3 −2 2 dy . π  y (Jν (y) + Yν (y)) − y (Jν (y) + Yν (y))  Z0 Z0  

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.39 Specific surface area Specific surface area of Ξ Constant S (0, ) defined by Ξ ∈ ∞ S (B) = E d−1(∂Ξ B) = S B Ξ H ∩ Ξ · | | for all Borel sets B Rd, d = 2, 3. ⊂ For d = 2, 3 it holds

E S = λE d−1(∂S ) e−λ |Sr|, r > 0. Ξ H r Example: d = 3

2 2 −2πλr 2/3r2+2σr√2T/π+σ2T SΞ = 2πλ 2r + 4rσ 2T/π + σ T e .    p 

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.40 Outlook Formula for E d−1(∂S ) for all r > 0 (d > 4) H r Formulae for E V (S ), j 6 d 2 and specific intrinsic volumes j r − V (Ξ), j 6 d 2 of the Boolean model of Wiener sausages j − Limit theorems for the surface area d−1(∂S ) and other H r intrinsic volumes Vj(Sr) of the shrinking Wiener sausage LT for the volume (J.-F. Le Gall (1988)): for d = 2, it holds

(log r)2( S + π/ log r)) w c π2γ, r 0, | r| → − → where σ2 = T = 1 and γ is the (renormalized) Brownian of self–intersections. For d > 3: CLT.

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.41 References A. M. Berezhkovskii, Yu. A. Makhnovskii, R. A. Suris. Wiener sausage volume moments. J. Stat. Phys., 57(1-2):333–346, 1989. R. Cerˇ ny, S. Funken, E. Spodarev. On the Boolean model of Wiener sausages. Method. Comput. Appl. Prob., 10 (1):23–37, 2008. A. Kolmogoroff, M. Leontowitsch. Zur Berechnung der mittleren Brownschen Fläche. Physik. Z. Sowjetunion, 4:1–13, 1933. G. Last. On mean curvature functions of Brownian paths. Stoch. Proc. Appl. 116 (2006), 1876-1891. J. Rataj, V. Schmidt, E. Spodarev. On the expected surface area of the Wiener sausage. Math. Nachr. 282 (4):591–603, 2009. J. Rataj, E. Spodarev, D. Meschenmoser. Approximations of the Wiener sausage and its curvature measures. Ann. Appl. Prob. 19(5):1840–1859, 2009. F. Spitzer. Electrostatic capacity, heat flow, and Brownian motion. Z. Wahrscheinlichkeitstheorie verw. Geb., 3:110–121, 1964.

Evgeny Spodarev, St. Petersburg, 2.04.2010 – p.42