UC San Diego UC San Diego Electronic Theses and Dissertations
Total Page:16
File Type:pdf, Size:1020Kb
UC San Diego UC San Diego Electronic Theses and Dissertations Title Colitis, hypothyroidism, and immunological alterations in mice deficient in glycan branching enzymes Permalink https://escholarship.org/uc/item/4hk1z8b3 Author Stone, Erica Lyn Publication Date 2009 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Colitis, Hypothyroidism, and Immunological Alterations in Mice Deficient in Glycan Branching Enzymes. A Dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biology by Erica Lyn Stone Committee in charge: Professor Jamey D. Marth, Chair Professor Stephen M. Hedrick, Co-Chair Professor Steven F. Dowdy Professor Ananda W. Goldrath Professor Maho Niwa Copyright Erica Lyn Stone, 2009 All rights reserved. The Dissertation of Erica Lyn Stone is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California, San Diego 2009 iii To my brother, David Charles Stone. In recognition of all you taught me about life. iv EPIGRAPH Change will not come if we wait for some other person of some other time. We are the ones we’ve been waiting for. We are the change that we seek. Barack Obama v TABLE OF CONTENTS Signature Page……………………………………………………………………. iii Dedication Page…..………………………………………………………………. iv Epigraph…………………………………………………………………………… v Table of Contents…………………………………………………………………. vi List of Figures and Tables.………………………………………………………. ix List of Abbreviations……………………………………………………………… xii Acknowledgments...……………………………………………………………… xiv Curriculum Vita…….……………………………………………………………... xvii Abstract of the Dissertation……………………………………………………… xix General Introduction….…………………………………………………………… 1 I. Figures and Legends…………………………………………………... 11 II. References……….…………………………………………………….. 13 Chapter 1: Biological Functions of Glycosyltransferase Enzymes Critical in Core O-Glycan Biosynthesis………………………………………... 17 I. Abstract………………………………………………………………..... 17 II. Introduction…………..………………………………………………… 18 III. Materials and Methods……………………………………………….. 20 IV. Results…..…………..………………………………………………… 32 V. Discussion…………....………………………………………………... 42 VI. Tables and legends…………………………………………………. 49 vi VII. Figures and legends………………………………………………… 51 VIII. Acknowledgements…………..…………………………………..... 59 IX. References….……………………………………………………....... 60 Chapter 2: Loss of the glycosyltransferase C2GnT2 impairs the immune response to a mucosal but not a parenteral antigen…………………………. 68 I. Abstract…..……………………………………………………………... 68 II. Introduction…………...……………………………………………….. 68 III. Results……………………………………………………………….... 73 IV. Discussion……………………………………………………………. 77 V. Materials and Methods……………………………………...……….. 83 VI. Table and legends……………………………….………………….. 87 VII. Figures and legends…………..…………….…………………….... 88 VIII. Acknowledgements…………………………………………….…... 90 IX. References……………………………………………………………. 91 Chapter 3: Mammalian N-Glycan Branching Protects against Innate Immune Self-Recognition and Inflammation in Autoimmune Disease Pathogenesis………………………………………………………….. 95 I. Summary………………………………………………………………. 95 II. Introduction……………………………………………………………. 95 III. Results………………………………………………………………... 96 IV. Discussion………………………………………………………….... 101 V. Experimental Procedures…...………………………………………. 104 vii VI. References……………………………………….………………..... 106 VII. Supplemental Data………………………………………………… 108 VIII. Acknowledgements………………………………………………... 114 Future Directions……..…………………………………………………………. 115 I. Abstract………………………………………………………………… 115 II. Specific Aims.………………..……………………………………….. 116 III. Research Design and Methods…...……….………………………. 119 IV. Other Studies……………………………………………………….. 136 V. Acknowledgements…………………………………………………. 138 VI. References………………………………………………………….. 139 viii LIST OF FIGURES AND TABLES General Introduction: Figure I.1: Biosynthesis of Mucin-type O-glycans..…...………………………. 11 Figure I.2: I-Branching Activity of C2GnT2 and IGnT…..……..……………… 12 Chapter 1: Biological Functions of Glycosyltransferase Enzymes Critical in Core O-Glycan Biosynthesis: Table 1.I: Hematology in the absence of C2GnT2 and C2GnT3……………. 49 Table 1.II: O-Glycan structures in the presence and absence of C2GnTs…. 50 Figure 1.1: Activity and expression of C2GnTs……………………………...... 51 Figure 1.2: Generation of mice singly deficient for C2GnT2 or C2GnT3……………………….……………………………………… 52 Figure 1.3a-c: Selectin ligand expression on neutrophils and T-cells from C2GnT-deficient mice…………........…………………... 53 Figure 1.3d-e: Selectin ligand expression on neutrophils and T-cells from C2GnT-deficient mice…….…………………………….... 54 Figure 1.4: Barrier function and colitis in C2GnT2-deficient mice...…..…….. 55 Figure 1.5: Circulating and mucosal immunoglobulins in wild-type and C2GnT2-deficient mice………………………...…………….. 56 Figure 1.6: Behavior and thyroid function in C2GnT3-deficient mice........... 57 Figure 1.7: Enzyme activity in tissue lysates from mice deficient for C2GnTs......……………………………………………….………… 58 Chapter 2: Loss of the glycosyltransferase C2GnT2 impairs the immune response to a mucosal but not a parenteral antigen: Table 2.1: Glycan structures in C2GnT2-deficient mice that are potential ligands for lectins and glycan binding proteins………... 87 ix Figure 2.1: The humoral response to KLH following i.p. immunization in C2GnT2-deficient mice…..……………..………. 88 Figure 2.2: C2GnT2-deficient mice have a reduced antigen-specific humoral response to KLH as a mucosal antigen………….......... 88 Figure 2.3: Expression of Galectin-1 ligands in the mucosa of C2GnT2- deficient mice……………………………………………………....... 89 Figure 2.4: Preliminary analysis of frequency of various cell types in the GALT from C2GnT2-deficient mice..…………………………….... 89 Chapter 3: Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis Figure 3.1: Nonhematopoietic origin of autoimmune disease in αM-II deficiency……………………………………………….…... 97 Figure 3.2: Disease in the absence of the adaptive immune system and after intravenous administration of immunoglobulin-G…..…..... 98 Figure 3.3: Pathogenesis in the absence of complement C3.……………... 99 Figure 3.4: Innate immune activation and kidney inflammation..…..……… 100 Figure 3.5: Mesangial cell activation and apoptosis………………………... 101 Figure 3.6: Mannose-binding lectin expression and endogenous ligand formation………………………………….…………….….. 103 Supplemental Figure S3.1: Kidney development among αM-II null mice... 109 Supplemental Figure S3.2: Physical appearance and kidney mass among mice of indicated genotypes…………………………….. 110 Supplemental Figure S3.3: Macrophage activation and innate immune responses………………………………………………………….. 111 Supplemental Figure S3.4: Autoimmune disease pathogenesis in the absence of MBL-A and αM-II……………………...…………….. 112 x Supplemental Figure S3.5: A phylogenic basis of N-glycan branching and innate immune recognition………………………………………. 113 xi LIST OF ABBREVIATIONS αDG: α-dystroglycan; ALT: alanine transaminase; AP: alkaline phosphatase; APRIL: A Proliferation-Inducing ligand; BSA: bovine serum albumin; C2GnT: Core 2 β1,6-N-acetylglucosaminyltransferase; C3GnT: Core 3 β-1,3-N- acetylglucosaminyltransferase; CCR7: C-C Chemokine Receptor 7; CD40L: CD40 ligand; CFA: Complete Freund’s Adjuvant; conA: concanavalin A; Core1-β3GnT: Core 1 Extension-β1,3-N-acetylglucosaminyltransferase; Core 1 GalT: Core 1 β-1,3-galactosyltransferase; CSFE: Carboxyfluorescein succinimidyl ester; CT: cholera toxin; DAI: disease activity index; DC: dendritic cell; DHB: 2,5-dihydroxybenzoic acid; DNP: 2,4-dinitrophenyl hapten; DSS: dextran sodium sulfate; ES: embryonic stem; FucT: α(1,3)fucosyltransferase; GalNAc: N-acetylgalactosamine; GlcNAc: N-acetylglucosamine; GALT: gut- associated lymphoid tissues; HEV: high endothelial venules; HRP: horseradish peroxidase; H&E: hematoxylin and eosin; IBD: Inflammatory Bowel Disease; IFA: Incomplete Freund’s Adjuvant; IFNγ: Interferon-gamma; IGnT: I β-1,6-N- acetylglucosaminyltransferase; IL: Interleukin; i.p.: intraperitoneal; KLH: keyhole limpet hemocyanin; MALDI: Matrix-assisted laser desorption/ionization; MS: mass spectrometry; MS/MS: tandem mass spectrometric; Muc2: Mucin 2; MHC Class II: major histocompatibility complex class II; NHS: N-hydroxysuccinimide; UC: ulcerative colitis; OVA: ovalbumin; PBS: phosphate buffered saline; PBST: PBS plus 0.05% Tween 20; ppGalNAcT: polypeptide N-α-acetylgalactosaminyltransferases; PNA: peanut xii agglutinin; POMGnT1: protein-O-mannose-β1,2-N- acetylglucosaminyltransferase 1; ST3Gal: α-2,3-sialyltransferase; T4: Thyroxine; tk: thymidine kinase; TMB: Tetramethylbenzidine; TNBS: 2,4,6- trinitrobenzene sulfonic acid; TRH: thyrotropin-releasing hormone; TSH: Thyroid Stimulating Hormone xiii ACKNOWLEDGEMENTS I acknowledge Jamey Marth for taking me into his laboratory and funding my research. Very special thanks to Steve Dowdy, Ananda Goldrath, Steve Hedrick, and Maho Niwa for their expertise, advice, and patience that have contributed significantly to my success. Sincere thanks to Kazuaki Ohtsubo for working with me during my rotation in the Marth laboratory and being a constant source of guidance for all matters related to research. A special thanks to Pam Grewal for sharing her expertise, especially in regards to paper writing and figure making, and also for our morning chats. Steve Van Dyken deserves thanks for helping me get settled in the Marth laboratory. A very special thanks to Mallory Beed,