Diagrammatic Presentation for the Production of Gravitons and Supersymmetry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond Alessandra Edda Baas University of Massachusetts Amherst
University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2010 Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond Alessandra Edda Baas University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Part of the Physics Commons Baas, Alessandra Edda, "Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond" (2010). Masters Theses 1911 - February 2014. 503. Retrieved from https://scholarworks.umass.edu/theses/503 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THEORETICAL AND EXPERIMENTAL ASPECTS OF THE HIGGS MECHANISM IN THE STANDARD MODEL AND BEYOND A Thesis Presented by ALESSANDRA EDDA BAAS Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE September 2010 Department of Physics © Copyright by Alessandra Edda Baas 2010 All Rights Reserved THEORETICAL AND EXPERIMENTAL ASPECTS OF THE HIGGS MECHANISM IN THE STANDARD MODEL AND BEYOND A Thesis Presented by ALESSANDRA EDDA BAAS Approved as to style and content by: Eugene Golowich, Chair Benjamin Brau, Member Donald Candela, Department Chair Department of Physics To my loving parents. ACKNOWLEDGMENTS Writing a Thesis is never possible without the help of many people. The greatest gratitude goes to my supervisor, Prof. Eugene Golowich who gave my the opportunity of working with him this year. -
Phenomenology of Generalized Higgs Boson Scenarios John F
Phenomenology of Generalized Higgs Boson Scenarios John F. Gunion∗ Department of Physics, University of California, Davis I outline some of the challenging issues that could arise in attempting to fully delineate various possible Higgs sectors, with focus on the minimal supersymmetric model, a general two-Higgs- doublet model, and extensions thereof. In a broad sense the three basic topics of this review will be: (i) extended Standard Model Higgs sectors; (ii) perturbations of ‘Standard’ minimal supersymmetric model (MSSM) Higgs sector phe- nomenology; and (iii) Higgs phenomenology for SUSY models beyond the MSSM. Also interesting are Higgs-like particles and how their phenomenology would differ from or affect that for Higgs bosons. Such particles include: radions; top-condensates; and the pseudo-Nambu-Goldstone bosons of technicolor. However, I will not have space to discuss these latter objects. 1. Extended SM Higgs Sectors Even within the SM context, one should consider extended Higgs sector possibilities. • One can add one or more singlet Higgs fields. This leads to no particular theoretical prob- lems (or benefits) but Higgs discovery can be much more challenging. • One can consider more than one Higgs doublet field, the simplest case being the general two-Higgs-doublet model (2HDM). A negative point is that, in the general case, the charged Higgs mass-squared is not automatically positive (as required to avoid breaking electro- magnetism). A more complete model context might, however, lead to a 2HDM Higgs sector 2 having mH± > 0 as part of an effective low-energy theory. A positive point is that CP viola- tion can arise in a Higgs sector with more than one doublet and possibly be responsible for all CP-violating phenomena. -
Graviscalars from Higher-Dimensional Metrics and Curvature-Higgs Mixing
CERN-TH/2000-051 SNS-PH/2000-03 UCD-2000-7 LBNL-45201 Graviscalars from higher-dimensional metrics and curvature-Higgs mixing Gian F. Giudicea, Riccardo Rattazzib, James D. Wellsc (a)CERN Theory Division, CH-1211 Geneva 23, Switzerland (b)INFN and Scuola Normale Superiore, I-56100 Pisa, Italy (c)Physics Department, University of California, Davis, CA 95616, USA and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Abstract We investigate the properties of scalar fields arising from gravity propagating in ex- tra dimensions. In the scenario of large extra dimensions, proposed by Arkani-Hamed, Dimopoulos and Dvali, graviscalar Kaluza-Klein excitations are less important than the spin-2 counterparts in most processes. However, there are important exceptions. The Higgs boson can mix to these particles by coupling to the Ricci scalar. Because of the large number of states involved, this mixing leads, in practice, to a sizeable invisi- ble width for the Higgs. In the Randall-Sundrum scenario, the only graviscalar is the radion. It can be produced copiously at hadron colliders by virtue of its enhanced cou- pling to two gluons through the trace anomaly of QCD. We study both the production and decay of the radion, and compare it to the Standard Model Higgs boson. Further- more, we find that radion detectability depends crucially on the curvature-Higgs boson mixing parameter. hep-ph/0002178 February 2000 Contents 1 Introduction 2 2 Graviscalars from large extra dimensions 4 2.1Scalar-curvatureterm............................... 5 2.2Higgs-gravitonmixing:discreteversuscontinuum............... 8 2.3InvisibleHiggswidth............................... 11 2.4DirectgraviscalarproductionatLEP2..................... 14 3 Graviscalars from non-factorizable geometries 16 3.1Radioninteractionswithmatter........................ -
International Theoretical Physics
INTERNATIONAL THEORETICAL PHYSICS INTERACTION OF MOVING D-BRANES ON ORBIFOLDS INTERNATIONAL ATOMIC ENERGY Faheem Hussain AGENCY Roberto Iengo Carmen Nunez UNITED NATIONS and EDUCATIONAL, Claudio A. Scrucca SCIENTIFIC AND CULTURAL ORGANIZATION CD MIRAMARE-TRIESTE 2| 2i CO i IC/97/56 ABSTRACT SISSAREF-/97/EP/80 We use the boundary state formalism to study the interaction of two moving identical United Nations Educational Scientific and Cultural Organization D-branes in the Type II superstring theory compactified on orbifolds. By computing the and velocity dependence of the amplitude in the limit of large separation we can identify the International Atomic Energy Agency nature of the different forces between the branes. In particular, in the Z orbifokl case we THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS 3 find a boundary state which is coupled only to the N = 2 graviton multiplet containing just a graviton and a vector like in the extremal Reissner-Nordstrom configuration. We also discuss other cases including T4/Z2. INTERACTION OF MOVING D-BRANES ON ORBIFOLDS Faheem Hussain The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, Roberto Iengo International School for Advanced Studies, Trieste, Italy and INFN, Sezione di Trieste, Trieste, Italy, Carmen Nunez1 Instituto de Astronomi'a y Fisica del Espacio (CONICET), Buenos Aires, Argentina and Claudio A. Scrucca International School for Advanced Studies, Trieste, Italy and INFN, Sezione di Trieste, Trieste, Italy. MIRAMARE - TRIESTE February 1998 1 Regular Associate of the ICTP. The non-relativistic dynamics of Dirichlet branes [1-3], plays an essential role in the coordinate satisfies Neumann boundary conditions, dTX°(T = 0, a) = drX°(r = I, a) = 0. -
HIGGS BOSONS: THEORY and SEARCHES Updated May 2012 by G
– 1– HIGGS BOSONS: THEORY AND SEARCHES Updated May 2012 by G. Bernardi (CNRS/IN2P3, LPNHE/U. of Paris VI & VII), M. Carena (Fermi National Accelerator Laboratory and the University of Chicago), and T. Junk (Fermi National Accelerator Laboratory). I. Introduction II. The Standard Model (SM) Higgs Boson II.1. Indirect Constraints on the SM Higgs Boson II.2. Searches for the SM Higgs Boson at LEP II.3. Searches for the SM Higgs Boson at the Tevatron II.4. SM Higgs Boson Searches at the LHC II.5. Models with a Fourth Generation of SM-Like Fermions III. Higgs Bosons in the Minimal Supersymmetric Standard Model (MSSM) III.1. Radiatively-Corrected MSSM Higgs Masses and Couplings III.2. Decay Properties and Production Mechanisms of MSSM Higgs Bosons III.3. Searches for Neutral Higgs Bosons in the CP-Conserving CP C Scenario III.3.1. Searches for Neutral MSSM Higgs Bosons at LEP III.3.2. Searches for Neutral MSSM Higgs Bosons at Hadron Colliders III.4. Searches for Charged MSSM Higgs Bosons III.5. Effects of CP Violation on the MSSM Higgs Spectrum III.6. Searches for Neutral Higgs Bosons in CP V Scenarios III.7. Indirect Constraints on Supersymmetric Higgs Bosons IV. Other Model Extensions V. Searches for Higgs Bosons Beyond the MSSM VI. Outlook VII. Addendum NOTE: The 4 July 2012 update on the Higgs search from ATLAS and CMS is described in the Addendum at the end of this review. CITATION: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) (URL: http://pdg.lbl.gov) July 25, 2012 15:44 – 2– I. -
Higgs-Like Boson at 750 Gev and Genesis of Baryons
BNL-112543-2016-JA Higgs-like boson at 750 GeV and genesis of baryons Hooman Davoudiasl, Pier Paolo Giardino, Cen Zhang Submitted to Physical Review D July 2016 Physics Department Brookhaven National Laboratory U.S. Department of Energy USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25) Notice: This manuscript has been co-authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. -
Spontaneous Symmetry Breaking in the Higgs Mechanism
Spontaneous symmetry breaking in the Higgs mechanism August 2012 Abstract The Higgs mechanism is very powerful: it furnishes a description of the elec- troweak theory in the Standard Model which has a convincing experimental ver- ification. But although the Higgs mechanism had been applied successfully, the conceptual background is not clear. The Higgs mechanism is often presented as spontaneous breaking of a local gauge symmetry. But a local gauge symmetry is rooted in redundancy of description: gauge transformations connect states that cannot be physically distinguished. A gauge symmetry is therefore not a sym- metry of nature, but of our description of nature. The spontaneous breaking of such a symmetry cannot be expected to have physical e↵ects since asymmetries are not reflected in the physics. If spontaneous gauge symmetry breaking cannot have physical e↵ects, this causes conceptual problems for the Higgs mechanism, if taken to be described as spontaneous gauge symmetry breaking. In a gauge invariant theory, gauge fixing is necessary to retrieve the physics from the theory. This means that also in a theory with spontaneous gauge sym- metry breaking, a gauge should be fixed. But gauge fixing itself breaks the gauge symmetry, and thereby obscures the spontaneous breaking of the symmetry. It suggests that spontaneous gauge symmetry breaking is not part of the physics, but an unphysical artifact of the redundancy in description. However, the Higgs mechanism can be formulated in a gauge independent way, without spontaneous symmetry breaking. The same outcome as in the account with spontaneous symmetry breaking is obtained. It is concluded that even though spontaneous gauge symmetry breaking cannot have physical consequences, the Higgs mechanism is not in conceptual danger. -
INTERNATIONAL CENTRE for THEORETICAL PHYSICS Anomaly of Fg Is Related to Non-Localities of the Effective Action Due to the Propagation of Massless States
IC/93/202 f ^ —p NUB-3071 I "•-: ! ^ "- CPTH-A258.0793 INTERNATIONAL CENTRE FOR f. /£?/ \ THEORETICAL PHYSICS TOPOLOGICAL AMPLITUDES IN STRING THEORY I. Antoniadis E. Gava INTERNATIONAL ATOMIC ENERGY K.S. Narain AGENCY and UNITED NATIONS T.R. Taylor EDUCATIONAL. SCIENTIFIC AND CULTURAL ORGANIZATION MIRAMARE-TR1ESTE IC/93/202 ABSTRACT NUB-3071 CPTH-A258.0793 We show that certain type II string amplitudes at genus g are given by the topo- International Atomic Energy Agency logical partition F, discussed recently by Bershadsky, Cecotti, Ooguri and Vafa. These am- and plitudes give rise to a terra in the four-dimensional effective action of the form £ F W2}, United Nations Educational Scientific and Cultural Organization where W is the chiral superfield of N = 2 supergravitational raultiplet. The holomorphic INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS anomaly of Fg is related to non-localities of the effective action due to the propagation of massless states. This result generalizes the holomorphic anomaly of the one loop case TOPOLOGICAL AMPLITUDES IN STRING THEORY ' which is known to lead to non-harmonic gravitational couplings. I. Aiitunindis Centre dc Physique Theoiique, Ecole Polytechnique, F 0112S Palaiticsm, France, (Labonitoirc Prnpre dn CNRS UPR A.0014) E. Gava International Centre for Theoretical Physics, Trieste, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italy, K.S. Narain International Centre fur Theoretical Physics, Trieste, Italy and T.R. Taylor Deparment of Physios, Northeastern University, Boston, MA 02115, USA. MIRAMARE TRIESTE Julv 1093 Work supported in part by the National Science Foundation under grants PHY-91-U7809 and PHY 93-06906, in part by the EEC contracts SC1-915053 and SC1-CT92-0792 and in part by CNRS-NSF grant INT-92-16140. -
Lectures on Supersymmetry
Lectures on Supersymmetry Matteo Bertolini SISSA June 9, 2021 1 Foreword This is a write-up of a course on Supersymmetry I have been giving for several years to first year PhD students attending the curriculum in Theoretical Particle Physics at SISSA, the International School for Advanced Studies of Trieste. There are several excellent books on supersymmetry and many very good lecture courses are available on the archive. The ambition of this set of notes is not to add anything new in this respect, but to offer a set of hopefully complete and self- consistent lectures, which start from the basics and arrive to some of the more recent and advanced topics. The price to pay is that the material is pretty huge. The advantage is to have all such material in a single, possibly coherent file, and that no prior exposure to supersymmetry is required. There are many topics I do not address and others I only briefly touch. In particular, I discuss only rigid supersymmetry (mostly focusing on four space-time dimensions), while no reference to supergravity is given. Moreover, this is a the- oretical course and phenomenological aspects are only briefly sketched. One only chapter is dedicated to present basic phenomenological ideas, including a bird eyes view on models of gravity and gauge mediation and their properties, but a thorough discussion of phenomenological implications of supersymmetry would require much more. There is no bibliography at the end of the file. However, each chapter contains its own bibliography where the basic references (mainly books and/or reviews available on-line) I used to prepare the material are reported { including explicit reference to corresponding pages and chapters, so to let the reader have access to the original font (and to let me give proper credit to authors). -
Search of a Graviscalar Particle of the Randall
Scuola Normale Superiore Classe di Scienze Search of a graviscalar particle of the Randall-Sundrum model with the CMS experiment at LHC Tesi di perfezionamento CANDIDATO RELATORE Dr. Simone GENNAI Chiar.mo Prof. Lorenzo FOA` CERN-THESIS-2009-091 01/01/2003 a.a. 2003 Alla mia famiglia, a mio nonno e ad Erica. Contents 1 Theoretical introduction 6 1.1 Merits and Failures of the Standard Model . 6 1.1.1 The Hierarchy Problem . 9 1.1.2 The LEP Paradox or Little Hierarchy Problem . 11 1.2 Extra Dimensions . 14 1.2.1 Flat Compactified Extra Dimensions . 15 1.2.2 Warped Extra Dimensions . 19 1.2.3 The scalar sector of Extra Dimensions . 20 1.2.4 Phenomenology for Λ= 5 TeV . 24 2 The Large Hadron Collider and the CMS Experiment 31 2.1 The Large Hadron Collider . 31 2.1.1 Physics and Experimental Requirements . 33 2.2 The CMS Experiment . 35 2.2.1 The Magnet . 36 2.2.2 The Tracker . 36 2.2.3 The Electromagnetic Calorimeter . 38 2.2.4 The Hadron Calorimeter . 39 2.2.5 The Muon System . 41 2.2.6 The Trigger . 43 1 CONTENTS 2 3 The CMS Tracker 45 3.1 Physics and Experimental Requirements . 45 3.2 The Tracker Layout . 47 3.2.1 Radiation Damage . 52 3.2.2 The Pixel Vertex Detector . 53 3.2.3 The Silicon-strip Tracker . 55 3.3 Silicon-Strip Tracker Performance . 61 3.3.1 Performance of Inner Barrel Detectors . 62 3.3.2 Performance of Outer Barrel Detectors . -
From Particle Physics to Cosmology
Advances in High Energy Physics Perspectives on Decay and Time Evolution of Metastable States: From Particle Physics to Cosmology Lead Guest Editor: Krzysztof Urbanowski Guest Editors: Neelima G. Kelkar, Marek Nowakowski, and Marek Szydlowski Perspectives on Decay and Time Evolution of Metastable States: From Particle Physics to Cosmology Advances in High Energy Physics Perspectives on Decay and Time Evolution of Metastable States: From Particle Physics to Cosmology Lead Guest Editor: Krzysztof Urbanowski Guest Editors: Neelima G. Kelkar, Marek Nowakowski, and Marek Szydlowski Copyright © 2018 Hindawi. All rights reserved. This is a special issue published in “Advances in High Energy Physics.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Antonio J. Accioly, Brazil Ricardo G. Felipe, Portugal Anastasios Petkou, Greece Giovanni Amelino-Camelia, Italy Chao-Qiang Geng, Taiwan Alexey A. Petrov, USA Luis A. Anchordoqui, USA Philippe Gras, France Thomas Rössler, Sweden Michele Arzano, Italy Xiaochun He, USA Diego Saez-Chillon Gomez, Spain T. Asselmeyer-Maluga, Germany Luis Herrera, Spain Takao Sakaguchi, USA Alessandro Baldini, Italy Filipe R. Joaquim, Portugal Juan José Sanz-Cillero, Spain Marco Battaglia, Switzerland Aurelio Juste, Spain Edward Sarkisyan-Grinbaum, USA Lorenzo Bianchini, Switzerland Theocharis Kosmas, Greece Sally Seidel, USA Roelof Bijker, Mexico Ming Liu, USA George Siopsis, USA Burak Bilki, USA Enrico Lunghi, USA Luca Stanco, Italy Adrian Buzatu, UK Salvatore Mignemi, Italy Jouni Suhonen, Finland Rong-Gen Cai, China Omar G. Miranda, Mexico Mariam Tórtola, Spain Anna Cimmino, France Grégory Moreau, France Smarajit Triambak, South Africa Osvaldo Civitarese, Argentina Piero Nicolini, Germany Jose M. -
Quantum Dynamics of Supergravity
Quantum Dynamics of Supergravity David Tong Work with Carl Turner Based on arXiv:1408.3418 Crete, September 2014 1 2GM 2GM − distance2 = 1 δt2 + 1 dr2 + r2 δθ2 +sin2 θδφ2 − − rc2 − rc2 x = R sin θ sin φ y = R sin θ cos φ z = R cos θ δx =(R cos θ sin φ)δθ +(R sin θ cos φ)δφ δy =(R cos θ cos φ)δθ (R sin θ sin φ)δφ − δz = (R sin θ)δθ − θ φ Acknowledgement My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal Society. An Old Idea: Euclidean Quantum Gravity References [1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75, 4724 (1995) [arXiv:hep-th/9510017]. = g exp d4x √g Z D − R topology 17 1 2GM 2GM − distance2 = 1 δt2 + 1 dr2 + r2 δθ2 +sin2 θδφ2 − − rc2 − rc2 x = R sin θ sin φ y = R sin θ cos φ z = R cos θ δx =(R cos θ sin φ)δθ +(R sin θ cos φ)δφ δy =(R cos θ cos φ)δθ (R sin θ sin φ)δφ − δz = (R sin θ)δθ − θ A Preview of the Main Results φ 1,d 1 1 Kaluza-Klein Theory: = R − S M × 1 ∂ σ = F νρ µ 2 µνρ Λ M grav pl R Acknowledgement My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal Society.There is a long history of quantum instabilities of these backgrounds • Casimir Forces References • Tunneling to “Nothing” Appelquist and Chodos ‘83 [1] J.