Quantum Dynamics of Supergravity

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Dynamics of Supergravity Quantum Dynamics of Supergravity David Tong Work with Carl Turner Based on arXiv:1408.3418 Crete, September 2014 1 2GM 2GM − distance2 = 1 δt2 + 1 dr2 + r2 δθ2 +sin2 θδφ2 − − rc2 − rc2 x = R sin θ sin φ y = R sin θ cos φ z = R cos θ δx =(R cos θ sin φ)δθ +(R sin θ cos φ)δφ δy =(R cos θ cos φ)δθ (R sin θ sin φ)δφ − δz = (R sin θ)δθ − θ φ Acknowledgement My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal Society. An Old Idea: Euclidean Quantum Gravity References [1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75, 4724 (1995) [arXiv:hep-th/9510017]. = g exp d4x √g Z D − R topology 17 1 2GM 2GM − distance2 = 1 δt2 + 1 dr2 + r2 δθ2 +sin2 θδφ2 − − rc2 − rc2 x = R sin θ sin φ y = R sin θ cos φ z = R cos θ δx =(R cos θ sin φ)δθ +(R sin θ cos φ)δφ δy =(R cos θ cos φ)δθ (R sin θ sin φ)δφ − δz = (R sin θ)δθ − θ A Preview of the Main Results φ 1,d 1 1 Kaluza-Klein Theory: = R − S M × 1 ∂ σ = F νρ µ 2 µνρ Λ M grav pl R Acknowledgement My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal Society.There is a long history of quantum instabilities of these backgrounds • Casimir Forces References • Tunneling to “Nothing” Appelquist and Chodos ‘83 [1] J. Polchinski, “Dirichlet-Branes and Ramond-RamondWitten Charges ‘82 ,” Phys. Rev. Lett. 75, 4724 (1995) [arXiv:hep-th/9510017]. = g exp d4x √g Z D − R topology 17 1. Introduction and Summary 1 2GM 2GM − The purpose of thisdistance paper2 is= to study1 four-dimensionalδt2 + 1 =1supergravitycompact-dr2 + r2 δθ2 +sin2 θδφ2 − − rc2 − rc2 N ified on a spatial circle. We will show that this background is quantum mechanically unstable: the circle dynamically expands and the ground state is Minkowski space with all three spatial dimensions non-compact. x = R sin θ sin φ y = R sin θ cos φ Quantum mechanical instabilities of Kaluza-Kleinz = R cos compactificationsθ have a long his- tory. In the absence of supersymmetry, a Casimir force is generated perturbatively with acompetitionbetweenbosonicfields,whichcausethecircletocontract,andfermionic fields which cause the circle to expandδx =(R [1cos].θ Moresin φ)δθ scary+(R instabilitiessin θ cos φ)δφ lurk at the non- perturbative level, with space teeteringδy =(R oncos θ thecos φ brink)δθ ( ofR sin tunnellingθ sin φ)δφ into a bubble of − nothing [2]. Theδz =Main(R sinResultθ)δθ − The existence of supersymmetry removes both instabilities described above. But another remains. As we show in some detail, a Casimir force is now generated by Kaluza-Klein compactification of N=1 Supergravityθ is unstable. gravitational instantons. This results in a superpotential which schematically takes the form φ πR2 exp iσ (1.1) W ∼ −4GN −1,d 1 1 = R − S M × where R is the radius of the spatial circle and σ is dual to the Kaluza-Klein photon, dσ F . The existence of the superpotential (1.1)wasfirstproposedin[3] on the basis ∼ 1 νρ of fermi zero mode counting.Kaluza-Klein It isdual also photon: closely ∂µσ relatedµνρF to the superpotentials arising ∼ 2 from D6-brane instantons wrapping G2-holonomy manifolds described in [4]. Our goal in this paper is to develop the full quantum supergravityΛ M computation which results in grav pl (1.1). Grimm and Savelli 2011 2 1 2 One motivation for1 performing5 theL instanton calculation1 L ∂ inR some detail is11 thatL − L=12 ∂σ = M + M M + N supergravity offLerseff a testing2 3 ground16π R2 inR which(3) − some3 − of6π theR2 oldR ideas− of Euclidean3 24π R2 quantumR4 2π gravity can be explored, but where many of the accompanying difficulties do not arise. It thus providesAcknowledgement an opportunity for precision Euclidean quantum gravity. Indeed, as we will see, we willMy thanks be able to to Nick compute Dorey for the many numerical useful discussions. prefactor in I’m (1.1 supported). In doing by the these Royal calculations, weSociety. met a number of issues that were (at least to us) surprising and we think worth highlighting. The Scale of Gravitational Instantons 17 The natural energy scale associated to any quantum gravity effect is usually thought to lie far in the ultra-violet, whether Planck scale, string scale or something else. How- ever, in situations where gravitational instantons play a role, this is not the only scale 2 1 2GM 2GM − distance2 = 1 δt2 + 1 dr2 + r2 δθ2 +sin2 θδφ2 − − rc2 − rc2 x = R sin θ sin φ y = R sin θ cos φ z = R cos θ δx =(R cos θ sin φ)δθ +(R sin θ cos φ)δφ δy =(R cos θ cos φ)δθ (R sin θ sin φ)δφ − δz = (R sin θ)δθ − θ φ And Something Interesting Along the Way… = R1,2 S1 M × 1 Quantum∂ Gravityσ = has a hiddenF νρ infra-red scale! µ 2 µνρ Λ M grav pl AcknowledgementThis is the scale at which gravitational instantons contribute My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal Society. References [1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75, 4724 (1995) [arXiv:hep-th/9510017]. = g exp d4x √g Z D − R topology 17 2. Classical Aspects The Theory: N=1 Supergravity We work with =1supergravityind =3+1dimensions.Throughoutthepaper, N we focus on the minimal theory containing only a graviton and gravitino. The bulk four-dimensional action is given by M 2 S = pl d4x √ g + ψ¯ γµνρ ψ (2.1) 2 − R(4) µ Dν ρ 2 We use the notation of the (reduced) Planck mass Mpl =1/8πGN instead of the Newton constant G . Here is the 4d Ricci scalar, with the subscript to distinguish it from N R(4) its 3d counterpart that we will introduce shortly. There is also the standard Gibbons- Hawking boundary term which we have not written explicitly. The action is to be thought of as a functional of the Majorana gravitino ψµ and the a vierbein eµ where µ, ν =0, 1, 2, 3 are spacetime indices and a, b =0, 1, 2, 3aretangent space indices. Here we follow the standard notation of suppressing the spinor indices on the gravitino, whose covariant derivative is given by 1 ψ = ∂ ψ + ωˆ γabψ Dν ρ ν ρ 4 abν ρ In this formalism, the spin connection ωabµ that appears in the covariant derivative differs from the purely geometric spin connection by the addition of a gravitino torsion term:ω ˆabµ = ωabµ(e)+Habµ with 1 H = eνeρ ψ¯ γ ψ ψ¯ γ ψ ψ¯ γ ψ abµ −4 a b µ ρ ν − ν µ ρ − ρ ν µ The action is, of course, invariant under diffeomorphisms and local supersymmetry transformations. The latter act as δea = 1 γ¯ aψ u and δψ = . µ 2 m µ Dµ The classical theory also enjoys a U(1)R symmetry which acts by axial rotations on ψ. As we describe in more detail in Sections 3 and 4,thisU(1)R symmetry is anomalous in the quantum theory. (Although, as we will see, it mixes with a U(1)J bosonic symmetry that will be described shortly and a combination of the two survives.) 2.1 Reduction on a Circle Our interest in this paper is in the dynamics of =1supergravitywhencompactified N on a manifold = R1,2 S1. We denote the physical radius of the circle as R. M ∼ × We choose the spin structure such that the fermions are periodic around the compact direction and supersymmetry is preserved. 5 1 2GM 2GM − distance2 = 1 δt2 + 1 dr2 + r2 δθ2 +sin2 θδφ2 − − rc2 − rc2 x = R sin θ sin φ y = R sin θ cos φ z = R cos θ δx =(R cos θ sin φ)δθ +(R sin θ cos φ)δφ δy =(R cos θ cos φ)δθ (R sin θ sin φ)δφ At distances larger than the compactification scale R, the dynamics is effectively At distances− larger thanCompactify the compactification on a scaleCircleR, the dynamicsthree dimensional. is effectively The metric degrees of freedom are parameterised by the familiar δz = (threeR sin dimensional.θ)δθ The metric degrees of freedom are parameterisedKaluza-Klein by the ansatz, familiar − 2 2 Kaluza-Klein ansatz, L R 2 ds2 = ds2 + dz2 + A dxi (2.2) (4) R2 (3) L2 i 2 2 2 L 2 R 2 i 2 (3) ds = ds + dz + Aidx where z [0, 2πL) is the(2.2) periodic coordinate. Here R, A and the 3d metric g are (4) R2 (3) L2 ∈ i ij θ dynamical degrees of freedom, while L is a fixed, fiducial scale. It is natural to pick coordinates such that(3)R(x) L asymptotically and we will eventually do so but, for where z [0, 2πL) is the periodic coordinate. Here R, A and the 3d metric g are→ ∈ i now, we leave L arbitrary.ij dynamical degreesφ of freedom, while L is a fixed, fiducial scale. It is natural to pick coordinates such that R(x) L asymptotically and we will eventuallyEvaluated do on so this but, background, for the Einstein-Hilbert action becomes → M 2 now, we leave L arbitrary. pl 4 Seff = d x √ g (4) 1,2 1 2 − R = S R 2 4 EvaluatedM on× this background, the Einstein-Hilbert actionR becomes M3 ∂R 1 R = d3x g 2 F F ij 2 − (3) R(3) − R − 4 L4 ij 2 Mpl 4 Acknowledgement Seff = d x √ g (4) with M =2πLM 2 the 3d Planck scale and F = ∂ A ∂ A the graviphoton field 2 − R 3 pl ij i j − j i strength.
Recommended publications
  • Report of the Supersymmetry Theory Subgroup
    Report of the Supersymmetry Theory Subgroup J. Amundson (Wisconsin), G. Anderson (FNAL), H. Baer (FSU), J. Bagger (Johns Hopkins), R.M. Barnett (LBNL), C.H. Chen (UC Davis), G. Cleaver (OSU), B. Dobrescu (BU), M. Drees (Wisconsin), J.F. Gunion (UC Davis), G.L. Kane (Michigan), B. Kayser (NSF), C. Kolda (IAS), J. Lykken (FNAL), S.P. Martin (Michigan), T. Moroi (LBNL), S. Mrenna (Argonne), M. Nojiri (KEK), D. Pierce (SLAC), X. Tata (Hawaii), S. Thomas (SLAC), J.D. Wells (SLAC), B. Wright (North Carolina), Y. Yamada (Wisconsin) ABSTRACT Spacetime supersymmetry appears to be a fundamental in- gredient of superstring theory. We provide a mini-guide to some of the possible manifesta- tions of weak-scale supersymmetry. For each of six scenarios These motivations say nothing about the scale at which nature we provide might be supersymmetric. Indeed, there are additional motiva- tions for weak-scale supersymmetry. a brief description of the theoretical underpinnings, Incorporation of supersymmetry into the SM leads to a so- the adjustable parameters, lution of the gauge hierarchy problem. Namely, quadratic divergences in loop corrections to the Higgs boson mass a qualitative description of the associated phenomenology at future colliders, will cancel between fermionic and bosonic loops. This mechanism works only if the superpartner particle masses comments on how to simulate each scenario with existing are roughly of order or less than the weak scale. event generators. There exists an experimental hint: the three gauge cou- plings can unify at the Grand Uni®cation scale if there ex- I. INTRODUCTION ist weak-scale supersymmetric particles, with a desert be- The Standard Model (SM) is a theory of spin- 1 matter tween the weak scale and the GUT scale.
    [Show full text]
  • On Supergravity Domain Walls Derivable from Fake and True Superpotentials
    On supergravity domain walls derivable from fake and true superpotentials Rommel Guerrero •, R. Omar Rodriguez •• Unidad de lnvestigaci6n en Ciencias Matemtiticas, Universidad Centroccidental Lisandro Alvarado, 400 Barquisimeto, Venezuela ABSTRACT: We show the constraints that must satisfy the N = 1 V = 4 SUGRA and the Einstein-scalar field system in order to obtain a correspondence between the equations of motion of both theories. As a consequence, we present two asymmetric BPS domain walls in SUGRA theory a.ssociated to holomorphic fake superpotentials with features that have not been reported. PACS numbers: 04.20.-q, 11.27.+d, 04.50.+h RESUMEN: Mostramos las restricciones que debe satisfacer SUGRA N = 1 V = 4 y el sistema acoplado Einstein-campo esca.lar para obtener una correspondencia entre las ecuaciones de movimiento de ambas teorias. Como consecuencia, presentamos dos paredes dominic BPS asimetricas asociadas a falsos superpotenciales holomorfos con intersantes cualidades. I. INTRODUCTION It is well known in the brane world [1) context that the domain wa.lls play an important role bece.UIIe they allow the confinement of the zero mode of the spectra of gravitons and other matter fields (2], which is phenomenologically very attractive. The domain walls are solutions to the coupled Einstein-BCa.lar field equations (3-7), where the scalar field smoothly interpolatesbetween the minima of the potential with spontaneously broken of discrete symmetry. Recently, it has been reported several domain wall solutions, employing a first order formulation of the equations of motion of coupled Einstein-scalar field system in terms of an auxiliaryfunction or fake superpotential (8-10], which resembles to the true superpotentials that appear in the supersymmetry global theories (SUSY).
    [Show full text]
  • Kaluza-Klein Gravity, Concentrating on the General Rel- Ativity, Rather Than Particle Physics Side of the Subject
    Kaluza-Klein Gravity J. M. Overduin Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada, V8W 3P6 and P. S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 and Gravity Probe-B, Hansen Physics Laboratories, Stanford University, Stanford, California, U.S.A. 94305 Abstract We review higher-dimensional unified theories from the general relativity, rather than the particle physics side. Three distinct approaches to the subject are identi- fied and contrasted: compactified, projective and noncompactified. We discuss the cosmological and astrophysical implications of extra dimensions, and conclude that none of the three approaches can be ruled out on observational grounds at the present time. arXiv:gr-qc/9805018v1 7 May 1998 Preprint submitted to Elsevier Preprint 3 February 2008 1 Introduction Kaluza’s [1] achievement was to show that five-dimensional general relativity contains both Einstein’s four-dimensional theory of gravity and Maxwell’s the- ory of electromagnetism. He however imposed a somewhat artificial restriction (the cylinder condition) on the coordinates, essentially barring the fifth one a priori from making a direct appearance in the laws of physics. Klein’s [2] con- tribution was to make this restriction less artificial by suggesting a plausible physical basis for it in compactification of the fifth dimension. This idea was enthusiastically received by unified-field theorists, and when the time came to include the strong and weak forces by extending Kaluza’s mechanism to higher dimensions, it was assumed that these too would be compact. This line of thinking has led through eleven-dimensional supergravity theories in the 1980s to the current favorite contenders for a possible “theory of everything,” ten-dimensional superstrings.
    [Show full text]
  • Conformal Symmetry in Field Theory and in Quantum Gravity
    universe Review Conformal Symmetry in Field Theory and in Quantum Gravity Lesław Rachwał Instituto de Física, Universidade de Brasília, Brasília DF 70910-900, Brazil; [email protected] Received: 29 August 2018; Accepted: 9 November 2018; Published: 15 November 2018 Abstract: Conformal symmetry always played an important role in field theory (both quantum and classical) and in gravity. We present construction of quantum conformal gravity and discuss its features regarding scattering amplitudes and quantum effective action. First, the long and complicated story of UV-divergences is recalled. With the development of UV-finite higher derivative (or non-local) gravitational theory, all problems with infinities and spacetime singularities might be completely solved. Moreover, the non-local quantum conformal theory reveals itself to be ghost-free, so the unitarity of the theory should be safe. After the construction of UV-finite theory, we focused on making it manifestly conformally invariant using the dilaton trick. We also argue that in this class of theories conformal anomaly can be taken to vanish by fine-tuning the couplings. As applications of this theory, the constraints of the conformal symmetry on the form of the effective action and on the scattering amplitudes are shown. We also remark about the preservation of the unitarity bound for scattering. Finally, the old model of conformal supergravity by Fradkin and Tseytlin is briefly presented. Keywords: quantum gravity; conformal gravity; quantum field theory; non-local gravity; super- renormalizable gravity; UV-finite gravity; conformal anomaly; scattering amplitudes; conformal symmetry; conformal supergravity 1. Introduction From the beginning of research on theories enjoying invariance under local spacetime-dependent transformations, conformal symmetry played a pivotal role—first introduced by Weyl related changes of meters to measure distances (and also due to relativity changes of periods of clocks to measure time intervals).
    [Show full text]
  • Off-Shell Interactions for Closed-String Tachyons
    Preprint typeset in JHEP style - PAPER VERSION hep-th/0403238 KIAS-P04017 SLAC-PUB-10384 SU-ITP-04-11 TIFR-04-04 Off-Shell Interactions for Closed-String Tachyons Atish Dabholkarb,c,d, Ashik Iqubald and Joris Raeymaekersa aSchool of Physics, Korea Institute for Advanced Study, 207-43, Cheongryangri-Dong, Dongdaemun-Gu, Seoul 130-722, Korea bStanford Linear Accelerator Center, Stanford University, Stanford, CA 94025, USA cInstitute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305, USA dDepartment of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India E-mail:[email protected], [email protected], [email protected] Abstract: Off-shell interactions for localized closed-string tachyons in C/ZN super- string backgrounds are analyzed and a conjecture for the effective height of the tachyon potential is elaborated. At large N, some of the relevant tachyons are nearly massless and their interactions can be deduced from the S-matrix. The cubic interactions be- tween these tachyons and the massless fields are computed in a closed form using orbifold CFT techniques. The cubic interaction between nearly-massless tachyons with different charges is shown to vanish and thus condensation of one tachyon does not source the others. It is shown that to leading order in N, the quartic contact in- teraction vanishes and the massless exchanges completely account for the four point scattering amplitude. This indicates that it is necessary to go beyond quartic inter- actions or to include other fields to test the conjecture for the height of the tachyon potential. Keywords: closed-string tachyons, orbifolds.
    [Show full text]
  • Bosonization and Mirror Symmetry Arxiv:1608.05077V1 [Hep-Th]
    Bosonization and Mirror Symmetry Shamit Kachru1, Michael Mulligan2,1, Gonzalo Torroba3, and Huajia Wang4 1Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA 2Department of Physics and Astronomy, University of California, Riverside, CA 92511, USA 3Centro At´omico Bariloche and CONICET, R8402AGP Bariloche, ARG 4Department of Physics, University of Illinois, Urbana-Champaign, IL 61801, USA Abstract We study bosonization in 2+1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an O(2)-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a \chiral" mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities. arXiv:1608.05077v1 [hep-th] 17 Aug 2016 Contents 1 Introduction 1 2 Mirror symmetry and its deformations 4 2.1 Superfields and lagrangians . .5 2.2 = 4 mirror symmetry . .7 N 2.3 Deformations by U(1)A and U(1)R backgrounds . 10 2.4 General mirror duality . 11 3 Chiral mirror symmetry 12 3.1 Chiral theory A .
    [Show full text]
  • UV Behavior of Half-Maximal Supergravity Theories
    UV behavior of half-maximal supergravity theories. Piotr Tourkine, Quantum Gravity in Paris 2013, LPT Orsay In collaboration with Pierre Vanhove, based on 1202.3692, 1208.1255 Understand the pertubative structure of supergravity theories. ● Supergravities are theories of gravity with local supersymmetry. ● Those theories naturally arise in the low energy limit of superstring theory. ● String theory is then a UV completion for those and thus provides a good framework to study their UV behavior. → Maximal and half-maximal supergravities. Maximal supergravity ● Maximally extended supergravity: – Low energy limit of type IIA/B theory, – 32 real supercharges, unique (ungauged) – N=8 in d=4 ● Long standing problem to determine if maximal supergravity can be a consistent theory of quantum gravity in d=4. ● Current consensus on the subject : it is not UV finite, the first divergence could occur at the 7-loop order. ● Impressive progresses made during last 5 years in the field of scattering amplitudes computations. [Bern, Carrasco, Dixon, Dunbar, Johansson, Kosower, Perelstein, Rozowsky etc.] Half-maximal supergravity ● Half-maximal supergravity: – Heterotic string, but also type II strings on orbifolds – 16 real supercharges, – N=4 in d=4 ● Richer structure, and still a lot of SUSY so explicit computations are still possible. ● There are UV divergences in d=4, [Fischler 1979] at one loop for external matter states ● UV divergence in gravity amplitudes ? As we will see the divergence is expected to arise at the four loop order. String models that give half-maximal supergravity “(4,0)” susy “(0,4)” susy ● Type IIA/B string = Superstring ⊗ Superstring Torus compactification : preserves full (4,4) supersymmetry.
    [Show full text]
  • Gravity, Inertia, and Quantum Vacuum Zero Point Fields
    Foundations of Physics, Vol.31,No. 5, 2001 Gravity, Inertia, and Quantum Vacuum Zero Point Fields James F. Woodward1 Received July 27, 2000 Over the past several years Haisch, Rueda, and others have made the claim that the origin of inertial reaction forces can be explained as the interaction of electri- cally charged elementary particles with the vacuum electromagnetic zero-point field expected on the basis of quantum field theory. After pointing out that this claim, in light of the fact that the inertial masses of the hadrons reside in the electrically chargeless, photon-like gluons that bind their constituent quarks, is untenable, the question of the role of quantum zero-point fields generally in the origin of inertia is explored. It is shown that, although non-gravitational zero-point fields might be the cause of the gravitational properties of normal matter, the action of non-gravitational zero-point fields cannot be the cause of inertial reac- tion forces. The gravitational origin of inertial reaction forces is then briefly revisited. Recent claims critical of the gravitational origin of inertial reaction forces by Haisch and his collaborators are then shown to be without merit. 1. INTRODUCTION Several years ago Haisch, Rueda, and Puthoff (1) (hereafter, HRP) pub- lished a lengthy paper in which they claimed that a substantial part, indeed perhaps all of normal inertial reaction forces could be understood as the action of the electromagnetic zero-point field (EZPF), expected on the basis of quantum field theory, on electric charges of normal matter. In several subsequent papers Haisch and Rueda particularly have pressed this claim, making various modifications to the fundamental argument to try to deflect several criticisms.
    [Show full text]
  • Loop Quantum Cosmology, Modified Gravity and Extra Dimensions
    universe Review Loop Quantum Cosmology, Modified Gravity and Extra Dimensions Xiangdong Zhang Department of Physics, South China University of Technology, Guangzhou 510641, China; [email protected] Academic Editor: Jaume Haro Received: 24 May 2016; Accepted: 2 August 2016; Published: 10 August 2016 Abstract: Loop quantum cosmology (LQC) is a framework of quantum cosmology based on the quantization of symmetry reduced models following the quantization techniques of loop quantum gravity (LQG). This paper is devoted to reviewing LQC as well as its various extensions including modified gravity and higher dimensions. For simplicity considerations, we mainly focus on the effective theory, which captures main quantum corrections at the cosmological level. We set up the basic structure of Brans–Dicke (BD) and higher dimensional LQC. The effective dynamical equations of these theories are also obtained, which lay a foundation for the future phenomenological investigations to probe possible quantum gravity effects in cosmology. Some outlooks and future extensions are also discussed. Keywords: loop quantum cosmology; singularity resolution; effective equation 1. Introduction Loop quantum gravity (LQG) is a quantum gravity scheme that tries to quantize general relativity (GR) with the nonperturbative techniques consistently [1–4]. Many issues of LQG have been carried out in the past thirty years. In particular, among these issues, loop quantum cosmology (LQC), which is the cosmological sector of LQG has received increasing interest and has become one of the most thriving and fruitful directions of LQG [5–9]. It is well known that GR suffers singularity problems and this, in turn, implies that our universe also has an infinitely dense singularity point that is highly unphysical.
    [Show full text]
  • An Introduction to Supersymmetry
    An Introduction to Supersymmetry Ulrich Theis Institute for Theoretical Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D–07743 Jena, Germany [email protected] This is a write-up of a series of five introductory lectures on global supersymmetry in four dimensions given at the 13th “Saalburg” Summer School 2007 in Wolfersdorf, Germany. Contents 1 Why supersymmetry? 1 2 Weyl spinors in D=4 4 3 The supersymmetry algebra 6 4 Supersymmetry multiplets 6 5 Superspace and superfields 9 6 Superspace integration 11 7 Chiral superfields 13 8 Supersymmetric gauge theories 17 9 Supersymmetry breaking 22 10 Perturbative non-renormalization theorems 26 A Sigma matrices 29 1 Why supersymmetry? When the Large Hadron Collider at CERN takes up operations soon, its main objective, besides confirming the existence of the Higgs boson, will be to discover new physics beyond the standard model of the strong and electroweak interactions. It is widely believed that what will be found is a (at energies accessible to the LHC softly broken) supersymmetric extension of the standard model. What makes supersymmetry such an attractive feature that the majority of the theoretical physics community is convinced of its existence? 1 First of all, under plausible assumptions on the properties of relativistic quantum field theories, supersymmetry is the unique extension of the algebra of Poincar´eand internal symmtries of the S-matrix. If new physics is based on such an extension, it must be supersymmetric. Furthermore, the quantum properties of supersymmetric theories are much better under control than in non-supersymmetric ones, thanks to powerful non- renormalization theorems.
    [Show full text]
  • One-Loop and D-Instanton Corrections to the Effective Action of Open String
    One-loop and D-instanton corrections to the effective action of open string models Maximilian Schmidt-Sommerfeld M¨unchen 2009 One-loop and D-instanton corrections to the effective action of open string models Maximilian Schmidt-Sommerfeld Dissertation der Fakult¨at f¨ur Physik der Ludwig–Maximilians–Universit¨at M¨unchen vorgelegt von Maximilian Schmidt-Sommerfeld aus M¨unchen M¨unchen, den 18. M¨arz 2009 Erstgutachter: Priv.-Doz. Dr. Ralph Blumenhagen Zweitgutachter: Prof. Dr. Dieter L¨ust M¨undliche Pr¨ufung: 2. Juli 2009 Zusammenfassung Methoden zur Berechnung bestimmter Korrekturen zu effektiven Wirkungen, die die Niederenergie-Physik von Stringkompaktifizierungen mit offenen Strings er- fassen, werden erklaert. Zunaechst wird die Form solcher Wirkungen beschrieben und es werden einige Beispiele fuer Kompaktifizierungen vorgestellt, insbeson- dere ein Typ I-Stringmodell zu dem ein duales Modell auf Basis des heterotischen Strings bekannt ist. Dann werden Korrekturen zur Eichkopplungskonstante und zur eichkinetischen Funktion diskutiert. Allgemeingueltige Verfahren zu ihrer Berechnung werden skizziert und auf einige Modelle angewandt. Die explizit bestimmten Korrek- turen haengen nicht-holomorph von den Moduli der Kompaktifizierungsmannig- faltigkeit ab. Es wird erklaert, dass dies nicht im Widerspruch zur Holomorphie der eichkinetischen Funktion steht und wie man letztere aus den errechneten Re- sultaten extrahieren kann. Als naechstes werden D-Instantonen und ihr Einfluss auf die Niederenergie- Wirkung detailliert analysiert, wobei die Nullmoden der Instantonen und globale abelsche Symmetrien eine zentrale Rolle spielen. Eine Formel zur Berechnung von Streumatrixelementen in Instanton-Sektoren wird angegeben. Es ist zu erwarten, dass die betrachteten Instantonen zum Superpotential der Niederenergie-Wirkung beitragen. Jedoch wird aus der Formel nicht sofort klar, inwiefern dies moeglich ist.
    [Show full text]
  • Non-Critical String Theory Formulation of Microtubule Dynamics And
    ACT-09/95 CERN-TH.127/95 CTP-TAMU-24/95 ENSLAPP-A|-/95 hep-ph/9505401 Non-Critical String Theory Formulation of Microtubule Dynamics and Quantum Asp ects of Brain Function a; b;c N.E. Mavromatos and D.V. Nanop oulos a Lab oratoire de Physique Theorique ENSLAPP (URA 14-36 du CNRS, asso ciee a l' E.N.S de Lyon, et au LAPP (IN2P3-CNRS) d'Annecy-le-Vieux), Chemin de Bellevue, BP 110, F-74941 Annecy-le-Vieux Cedex, France. b Texas A & M University, College Station, TX 77843-424 2, USA and Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Mitchell Campus, Wo o dlands, TX 77381, USA. c CERN, Theory Division, Geneva 23 Switzerland Abstract Microtubule (MT) networks, subneural paracrystalline cytosceletal structures, seem to play a fundamental role in the neurons. We cast here the complicated MT dynamics in processed by the SLAC/DESY Libraries on 30 May 1995. 〉 the form of a 1 + 1-dimensional non-critical string theory,thus enabling us to provide a consistent quantum treatment of MTs, including enviromental friction e ects. We suggest, thus, that the MTs are the microsites, in the brain, for the emergence of stable, macroscopic PostScript quantum coherent states, identi able with the preconscious states. Quantum space-time e ects, as describ ed by non-critical string theory, trigger then an organizedcol lapse of the coherent states down to a sp eci c or conscious state. The whole pro cess we estimate to take O (1 sec), in excellent agreement with a plethora of exp erimental/observational ndings.
    [Show full text]