Organic Geochemistry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Δ13c of Aromatic Compounds in Sediments, Oils And
1 δ13C of aromatic compounds in sediments, oils and 2 atmospheric emissions: a review 3 Alex I. Holman a, Kliti Grice a* 4 5 a Western Australia Organic and Isotope Geochemistry Centre, The Institute for 6 Geoscience Research, School of Earth and Planetary Sciences, Curtin University, 7 GPO Box U1987, Perth, WA 6845, Australia 8 9 * Corresponding author 10 Alex Holman: Tel.: +61(0) 8 9266 9723. E-mail address: [email protected] 11 Kliti Grice: Tel.: +61(0) 8 9266 2474. E-mail address: [email protected] 12 13 14 15 16 17 18 19 Abstract 20 This review discusses major applications of stable carbon isotopic 21 measurements of aromatic compounds, along with some specific technical aspects 22 including purification of aromatic fractions for baseline separation. δ13C 23 measurements of organic matter (OM) in sediments and oils are routine in all 24 fields of organic geochemistry, but they are predominantly done on saturated 25 compounds. Aromatic compounds are important contributors to sedimentary 26 organic matter, and provide indication of diagenetic processes, OM source, and 27 thermal maturity. Studies have found evidence for a small 13C-enrichment during 28 diagenetic aromatisation of approximately 1 to 2 ‰, but the formation of polycyclic 29 aromatic hydrocarbons (PAHs) from combustion and hydrothermal processes 30 seems to produce no effect. Likewise, maturation and biodegradation also produce 31 only small isotopic effects. An early application of δ13C of aromatic compounds was 32 in the classification of oil families by source. Bulk measurements have had some 33 success in differentiating marine and terrigenous oils, but were not accurate in all 34 settings. -
Featured: Simon Brassell 9/18/2020 PRE-SCRIPT in the Fourth Episode
Featured: Simon Brassell 9/18/2020 PRE-SCRIPT In the fourth episode of BIOmarkers, the audio series that archives the oral history of organic geochemistry, we speak with Dr. Simon Brassell, Professor of Geological Sciences, Biogeochemistry, and Molecular Organic Geochemistry at the Department of Earth and Atmospheric Sciences at Indiana University Bloomington. In his interview, Simon discusses his time at the University of Bristol, proxies, and what piques his interest today. SCRIPT Fatima Husain: Welcome to BIOmarkers, an audio series that archives the oral history of organic geochemistry. I’m your host, Fatima Husain, and I’m here today with my series co-creators and fellow organic geochemists Angel Mojarro and Juliana Drozd. Angel Mojarro: For today’s episode, we spoke with Dr. Simon Brassell. Simon Brassell: I'm Simon Brassell, I'm a professor of Earth and Planetary Sciences at Indiana University. When anyone asked me what I am, I would say I'm a molecular organic geochemistry and molecular bio bio geochemist, because my area of expertise started in looking at biomarkers, and I have pretty much stayed in that area all along. Juliana Drozd: We spoke with Simon briefly in between sessions at the 2019 International Meeting on Organic Geochemistry about his career pathway and insights into the field. Fatima Husain: It turns out, this isn’t too hard to do: Simon Brassell: This is about something like the 14th, 15th time I've come to IMOG and every year there are two, two. There's one meeting each year that I always try and get to and it's the IMOG and then even years, it's the Gordon research conference on organic chemistry because I learn more at those meetings about the specifics of the subject than I do at any other bigger or meetings that aren't a less focused on organic geochemistry, and it's always great to come back and see people who I've known some for 10 years, some for 20 years, some 30 years, some 40 years. -
This Article Was Published in an Elsevier Journal. the Attached Copy
This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author’s institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 72 (2008) 1396–1414 www.elsevier.com/locate/gca Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation Jochen J. Brocks a,*, Philippe Schaeffer b a Research School of Earth Sciences and Centre for Macroevolution and Macroecology, The Australian National University, Canberra, ACT 0200, Australia b Laboratoire de Ge´ochimie Bio-organique, CNRS UMR 7177, Ecole Europe´enne de Chimie, Polyme`res et Mate´riaux, 25 rue Becquerel, 67200 Strasbourg, France Received 20 June 2007; accepted in revised form 12 December 2007; available online 23 December 2007 Abstract Carbonates of the 1640 million years (Ma) old Barney Creek Formation (BCF), McArthur Basin, Australia, contain more than 22 different C40 carotenoid derivatives including lycopane, c-carotane, b-carotane, chlorobactane, isorenieratane, b-iso- renieratane, renieratane, b-renierapurpurane, renierapurpurane and the monoaromatic carotenoid okenane. -
Lead Isotope Analysis of Geological Native Copper: Implications for Archaeological Provenance Research in the North American Arctic and Subarctic
minerals Article Lead Isotope Analysis of Geological Native Copper: Implications for Archaeological Provenance Research in the North American Arctic and Subarctic H. Kory Cooper 1,* and Antonio Simonetti 2 1 Department of Anthropology, Purdue University, West Lafayette, IN 47907, USA 2 Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; [email protected] * Correspondence: [email protected] Abstract: The Indigenous inhabitants of Arctic and Subarctic North America had been using native copper for several centuries prior to sustained interaction with Europeans beginning in the 18th century. The connection, if any, between the use of copper in these two adjacent regions is, at present, unclear. The ability to determine the source of native copper artifacts found in greater northwestern North America would inform on the movement of copper via trade and exchange between, and aid in understanding the innovation and diffusion of native copper metallurgy among, ancestral Dene and Inuit People. This paper provides the results of a Lead Isotope Analysis (LIA) pilot study examining Pb isotope ratios of native copper samples from multiple locations in the northern regions of North America. The results from this preliminary study indicate some overlap in Pb isotope ratios between Arctic and Subarctic sources of native copper, and these nonetheless record distinct isotope signatures relative to those associated with other North American native Cu deposits. Citation: Cooper, H.K.; Simonetti, A. Keywords: native copper; lead isotope analysis; provenance; arctic; subarctic; archaeometallurgy Lead Isotope Analysis of Geological Native Copper: Implications for Archaeological Provenance Research in the North American Arctic and 1. -
THE GEOCHEMICAL NEWS Newsletter of the Geochemical Society in Cooperation with the European Association of Geochemistry
January 2005 1 THE GEOCHEMICAL NEWS Newsletter of The Geochemical Society in cooperation with The European Association of Geochemistry In This Issue... An Interview with David Des Marais Geochemistry at Oak Ridge National Laboratory January 2005 Number 122 Newsletter of the Geochemical Society ISSN 0016-7010 2 The Geochemical News EAG OFFICERS - 2005 PRESIDENT Terry Seward, ETH, Zurich PRESIDENT ELECT Bruce Yardley, Leeds, UK OUTGOING PRESIDENT Francis Albarede, Lyon, France TREASURER Catherine Chauvel, Grenoble, France SECRETARY Mark Hodson, Reading, UK EAG COMMITTEE THE GEOCHEMICAL SOCIETY MIRA BAR-MATTHEWS, ISREAL Larryn Diamond, Switzerland Jérôme GAILLARDET, FRANCE Alex Halliday, Switzerland SUSAN STIPP, DENMARK Riccardo Vannucci, Italy The Geochemical Society is a nonprofit scientific society founded to en- GERHARD WORNER, GERMANY Bruce Yardley, UK courage the application of chemistry to the solution of geological and cosmologi- cal problems. Membership is international and diverse in background, encom- passing such fields as organic geochemistry, high- and low-temperature geochem- THE GEOCHEMICAL NEWS istry, petrology, meteoritics, fluid-rock interaction, and isotope geochemistry. The Society produces a Special Publications Series, The Geochemical News (this January 2005 quarterly newsletter), the Reviews in Mineralogy and Geochemistry Series (jointly with the Mineralogical Society of America), the journal Geochimica et Editors Cosmochimica Acta (jointly with the Meteoritical Society), and co-publishes the Johnson R. Haas and Carla M. Koretsky electronic journal G3 (jointly with the American Geophysical Union: AGU); grants Department of Geosciences the V.M. Goldschmidt, F.W. Clarke and Clair C. Patterson Awards, and, jointly Western Michigan University with the European Association of Geochemistry (EAG), the Geochemistry Fel- Kalamazoo, MI 49008 lows title; sponsors the V.M. -
Vascular Plant Biomarker Distributions and Stable Carbon Isotopic
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NERC Open Research Archive 1 Palaeogeography, Palaeoclimatology, Palaeoecology 2 3 Vascular plant biomarker distributions and stable carbon isotopic 4 signatures from the Middle and Upper Jurassic (Callovian–Kimmeridgian) 5 strata of Staffin Bay, Isle of Skye, northwest Scotland 6 7 Kliti Grice 1,*, Clinton B. Foster 2, James B. Riding 3, Sebastian Naeher 1, Paul F. 8 Greenwood 1,4 9 10 1 WA Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, 11 Department of Chemistry, Curtin University, GPO Box U1987 Perth, WA 6845, Australia 12 2 Geoscience Australia, GPO Box 378, Canberra, ACT, 2601, Australia 13 3 British Geological Survey, Environmental Science Centre, Keyworth, Nottingham NG12 14 5GG, United Kingdom 15 4 Centre for Exploration Targeting and WA Biogeochemistry Centre (M090), The University 16 of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia 17 18 19 20 21 22 23 * Corresponding author. Tel.: +61 8 9266 2474; Fax: +61 8 9266 2300 24 E-mail address: [email protected] (K. Grice) 1 25 Abstract 26 The molecular and stable carbon isotopic composition of higher plant biomarkers was 27 investigated in Middle to Upper Jurassic strata of the Isle of Skye, northwest Scotland. 28 Aromatic hydrocarbons diagnostic of vascular plants were detected in each of nineteen 29 sedimentary rock samples from the Early Callovian to Early Kimmeridgian interval, a 30 succession rich in fossil fauna including ammonites that define its constituent chronozones. 31 The higher plant parameter (HPP) and higher plant fingerprint (HPF) calculated from the 32 relative abundance of retene, cadalene and 6-isopropyl-1-isohexyl-2-methylnaphthalene (ip- 33 iHMN) exhibit several large fluctuations throughout the Skye succession studied. -
2018 Journal Citation Reports Journals in the 2018 Release of JCR 2 Journals in the 2018 Release of JCR
2018 Journal Citation Reports Journals in the 2018 release of JCR 2 Journals in the 2018 release of JCR Abbreviated Title Full Title Country/Region SCIE SSCI 2D MATER 2D MATERIALS England ✓ 3 BIOTECH 3 BIOTECH Germany ✓ 3D PRINT ADDIT MANUF 3D PRINTING AND ADDITIVE MANUFACTURING United States ✓ 4OR-A QUARTERLY JOURNAL OF 4OR-Q J OPER RES OPERATIONS RESEARCH Germany ✓ AAPG BULL AAPG BULLETIN United States ✓ AAPS J AAPS JOURNAL United States ✓ AAPS PHARMSCITECH AAPS PHARMSCITECH United States ✓ AATCC J RES AATCC JOURNAL OF RESEARCH United States ✓ AATCC REV AATCC REVIEW United States ✓ ABACUS-A JOURNAL OF ACCOUNTING ABACUS FINANCE AND BUSINESS STUDIES Australia ✓ ABDOM IMAGING ABDOMINAL IMAGING United States ✓ ABDOM RADIOL ABDOMINAL RADIOLOGY United States ✓ ABHANDLUNGEN AUS DEM MATHEMATISCHEN ABH MATH SEM HAMBURG SEMINAR DER UNIVERSITAT HAMBURG Germany ✓ ACADEMIA-REVISTA LATINOAMERICANA ACAD-REV LATINOAM AD DE ADMINISTRACION Colombia ✓ ACAD EMERG MED ACADEMIC EMERGENCY MEDICINE United States ✓ ACAD MED ACADEMIC MEDICINE United States ✓ ACAD PEDIATR ACADEMIC PEDIATRICS United States ✓ ACAD PSYCHIATR ACADEMIC PSYCHIATRY United States ✓ ACAD RADIOL ACADEMIC RADIOLOGY United States ✓ ACAD MANAG ANN ACADEMY OF MANAGEMENT ANNALS United States ✓ ACAD MANAGE J ACADEMY OF MANAGEMENT JOURNAL United States ✓ ACAD MANAG LEARN EDU ACADEMY OF MANAGEMENT LEARNING & EDUCATION United States ✓ ACAD MANAGE PERSPECT ACADEMY OF MANAGEMENT PERSPECTIVES United States ✓ ACAD MANAGE REV ACADEMY OF MANAGEMENT REVIEW United States ✓ ACAROLOGIA ACAROLOGIA France ✓ -
GEOCHEMISTRY Chemie Der Erde - Interdisciplinary Journal for Chemical Topics of the Geosciences
GEOCHEMISTRY Chemie der Erde - Interdisciplinary Journal for Chemical Topics of the Geosciences AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.1 • Impact Factor p.1 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.4 ISSN: 0009-2819 DESCRIPTION . GEOCHEMISTRY was founded as Chemie der Erde 1914 in Jena, and, hence, is one of the oldest journals for geochemistry-related topics. GEOCHEMISTRY (formerly Chemie der Erde / Geochemistry) publishes original research papers, short communications, reviews of selected topics, and high-class invited review articles addressed at broad geosciences audience. Publications dealing with interdisciplinary questions are particularly welcome. Young scientists are especially encouraged to submit their work. Contributions will be published exclusively in English. The journal, through very personalized consultation and its worldwide distribution, offers entry into the world of international scientific communication, and promotes interdisciplinary discussion on chemical problems in a broad spectrum of geosciences. The following topics are covered by the expertise of the members of the editorial board (see below): cosmochemistry, meteoritics igneous, metamorphic, and sedimentary petrology volcanology low & high temperature geochemistry experimental - theoretical - field related studies mineralogy - crystallography environmental geosciences archaeometry AUDIENCE . Mineralogists, petrologists, pedologists, geochemists, meteoritic studies experts, mineraldeposit -
Source Publication List for Web of Science
SOURCE PUBLICATION LIST FOR WEB OF SCIENCE SCIENCE CITATION INDEX EXPANDED Updated July 2017 Journal Title Publisher ISSN E-ISSN Country Language 2D Materials IOP PUBLISHING LTD 2053-1583 2053-1583 ENGLAND English 3 Biotech SPRINGER HEIDELBERG 2190-572X 2190-5738 GERMANY English 3D Printing and Additive Manufacturing MARY ANN LIEBERT, INC 2329-7662 2329-7670 UNITED STATES English 4OR-A Quarterly Journal of Operations Research SPRINGER HEIDELBERG 1619-4500 1614-2411 GERMANY English AAPG BULLETIN AMER ASSOC PETROLEUM GEOLOGIST 0149-1423 1558-9153 UNITED STATES English AAPS Journal SPRINGER 1550-7416 1550-7416 UNITED STATES English AAPS PHARMSCITECH SPRINGER 1530-9932 1530-9932 UNITED STATES English AATCC Journal of Research AMER ASSOC TEXTILE CHEMISTS COLORISTS-AATCC 2330-5517 2330-5517 UNITED STATES English AATCC REVIEW AMER ASSOC TEXTILE CHEMISTS COLORISTS-AATCC 1532-8813 1532-8813 UNITED STATES English Abdominal Radiology SPRINGER 2366-004X 2366-0058 UNITED STATES English ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG SPRINGER HEIDELBERG 0025-5858 1865-8784 GERMANY German ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY AMER CHEMICAL SOC 0065-7727 UNITED STATES English Academic Pediatrics ELSEVIER SCIENCE INC 1876-2859 1876-2867 UNITED STATES English Accountability in Research-Policies and Quality Assurance TAYLOR & FRANCIS LTD 0898-9621 1545-5815 UNITED STATES English Acoustics Australia SPRINGER 1839-2571 1839-2571 AUSTRALIA English Acta Bioethica UNIV CHILE, CENTRO INTERDISCIPLINARIO ESTUDIOS BIOETICA 1726-569X -
Metal Bonds. MD JOHNSON Et S. DERENNE
1 - A non-chain free radical mechanism for the insertion of sulphur dioxide into carbon- metal bonds. M.D. JOHNSON et S. DERENNE. J. Organomet. Chem. 286, C47 - C49 (1985). 2 - The stereochemistry of forward and reverse reactions in the addition of hydridocobaloximes to E-1- phenylpropene and indene. S. DERENNE, A. GAUDEMER et M.D. JOHNSON. J. Organomet. Chem. 322, 229-238 (1987). 3 - Kinetics and mechanism of decomposition of phenylpropyl bis(dimethylglyoximato)-pyridine cobalt (III) in aqueous sulfuric acid. S. DERENNE, A. GAUDEMER et M.D. JOHNSON. J. Organomet. Chem. 322, 239-246 (1987). 4 - Pyrolysis of immature Torbanite and of the resistant biopolymer (PRB A) isolated from extant alga Botryococcus braunii. Mechanism of formation and structure of Torbanite. C. LARGEAU, S. DERENNE, E. CASADEVALL, A. KADOURI et N. SELLIER. Org. Geochem. 10, 1023-1032 (1986). 5 - Structural analysis of two Torbanites at different evolutionary stages. Investigation of the quantitative reliability of fa determination by 13C CP/MAS n.m.r. S. DERENNE, C. LARGEAU, E. CASADEVALL et F. LAUPRETRE. Fuel 66, 1084-1090 (1987). 6 - Mise au point - The quantitative analysis of coals and kerogens by 13C CP/MAS n.m.r. S. DERENNE, C. LARGEAU, E. CASADEVALL et F. LAUPRETRE. Journal de Chimie Physique 10, 1231-1238 (1987). 7 - Resistant biopolymer in the outer walls of Botryococcus braunii, B Race. A. KADOURI, S. DERENNE, C. LARGEAU, E. CASADEVALL et C. BERKALOFF. Phytochemistry 27, 551-557 (1988). 8 - Comparison of Torbanites of various origins and evolutionary stages. Bacterial contribution to their formation. Cause of the lack of botryococcane in bitumens. -
Kliti Grice 10/02/2020 PRE-SCRIPT in the Fifth Episode of Biomarkers, The
Featured: Kliti Grice 10/02/2020 PRE-SCRIPT In the fifth episode of BIOmarkers, the audio series that archives the oral history of organic geochemistry, we speak with Dr. Kliti Grice, who leads the Western Australian Organic and Isotope Geochemistry Centre as the John Curtin Distinguished Professor at Curtin University in Perth, Australia. In her interview, Kliti discusses her pathway to research, her colleagues in the field, and the qualities she thinks all good geochemists have. SCRIPT Fatima Husain: Welcome to BIOmarkers, an audio series that archives the oral history of organic geochemistry. I’m your host, Fatima Husain, and I’m here today with my series co-creators and fellow organic geochemists Angel Mojarro and Juliana Drozd. Juliana Drozd: For today’s episode, we spoke with Dr. Kliti Grice, who is the John Curtin Distinguished Professor at Curtin University in Perth, Australia. Angel: At Curtin, Kliti leads the Western Australia Organic & Isotope Geochemistry Centre. Juliana: We spoke with Kliti at the 2019 International Meeting on Organic Geochemistry. Kliti: I'm Kliti Grice. I actually work at Curtin University in Perth in Western Australia. I'll describe myself as a organic geochemist who studies deep time, particularly molecules preserved in sediments from the greatest mass extinction events, the big five. The other aspects of what I study are also alpha projects are looking at molecules in exceptional soft tissue preservation in concretions. And actually, I'm pulling out information about evolution from organisms which are still present today, but also extinct organisms and looking at their environments under which they lived. -
The Late Triassic Extinction at the Norian/Rhaetian Boundary Biotic
Earth-Science Reviews 204 (2020) 103180 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev The Late Triassic Extinction at the Norian/Rhaetian boundary: Biotic evidence and geochemical signature T ⁎ Manuel Rigoa,b, , Tetsuji Onouec, Lawrence H. Tannerd, Spencer G. Lucase, Linda Godfreyf, Miriam E. Katzg, Mariachiara Zaffania, Kliti Griceh, Jaime Cesarh, Daisuke Yamashitac, Matteo Marona,i, Lydia S. Tackettj, Hamish Campbellk, Fabio Tateob, Giuseppe Concheril, Claudia Agninia, Marco Chiarib, Angela Bertinellim a Department of Geosciences, University of Padova, Via G. Gradenigo 6, 35131 Padova, Italy b IGG-CNR (Istituto di Geoscienze e Georisorse), Padova, Firenze, Italy c Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 819-0355, Japan d Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA e New Mexico Museum of Natural History and Science, 1801 Mountain Road NW, Albuquerque, NM 87104, USA f Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ 08854, USA g Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, USA h Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Science, Curtin University, GPO BOX U1987, Perth, WA 6845, Australia i Department of Earth Sciences, University of Milan, Via L. Mangiagalli 34, 20133 Milan, Italy j Department of Geosciences, North Dakota State University, Dept. 2745, Fargo, ND 58108-6050, USA k GNS Science, 1 Fairway Drive, Avalon, Lower Hutt, Wellington 5010, New Zealand l Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro, Italy m Department of Physics and Geology, University of Perugia, Via A.