Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications M

Total Page:16

File Type:pdf, Size:1020Kb

Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications M Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications M. Sengupta,1 A. Habte,1 S. Kurtz,1 A. Dobos,1 S. Wilbert,2 E. Lorenz,3 T. Stoffel,4 D. Renné,5 C. Gueymard,6 D. Myers,7 S. Wilcox,4 P. Blanc,8 and R. Perez9 1 National Renewable Energy Laboratory 2 German Aerospace Center 3 University of Oldenburg 4 Solar Resource Solutions, LLC 5 International Energy Agency Solar Heating and Cooling Programme 6 Solar Consulting Services 7 National Renewable Energy Laboratory—Retired 8 Mines ParisTech 9 State University of New York at Albany This update was prepared in collaboration with International Energy Agency Solar Heating and Cooling Programme Task 36 and Task 46 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-5D00-63112 February 2015 Contract No. DE-AC36-08GO28308 Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications M. Sengupta,1 A. Habte,1 S. Kurtz,1 A. Dobos,1 S. Wilbert,2 E. Lorenz,3 T. Stoffel,4 D. Renné,5 C. Gueymard,6 D. Myers,7 S. Wilcox,4 P. Blanc,8 and R. Perez9 1 National Renewable Energy Laboratory 2 German Aerospace Center 3 University of Oldenburg 4 Solar Resource Solutions, LLC 5 International Energy Agency Solar Heating and Cooling Programme 6 Solar Consulting Services 7 National Renewable Energy Laboratory—Retired 8 Mines ParisTech 9 State University of New York at Albany This update was prepared in collaboration with International Energy Agency Solar Heating and Cooling Programme Task 36 and Task 46 Prepared under Task No. SS13.3532 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5D00-63112 Golden, CO 80401 February 2015 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Available electronically at http://www.osti.gov/scitech Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: [email protected] online ordering: http://www.ntis.gov/help/ordermethods.aspx Cover Photos: (left to right) photo by Pat Corkery, NREL 16416, photo from SunEdison, NREL 17423, photo by Pat Corkery, NREL 16560, photo by Dennis Schroeder, NREL 17613, photo by Dean Armstrong, NREL 17436, photo by Pat Corkery, NREL 17721. NREL prints on paper that contains recycled content. Foreword The first version of this handbook was developed in response to a growing need by the solar energy industry for a single document addressing the key aspects of solar resource characterization. The solar energy industry has developed rapidly throughout the last few years, and there have been significant enhancements in the body of knowledge in the areas of solar resource assessment and forecasting. Thus, this second version of the handbook was developed from the need to update and enhance the initial version and present the state of the art in a condensed form for all of its users. Although the first version of this handbook was developed by only researchers from the National Renewable Energy Laboratory, this version has additional contributions from an international group of experts primarily from the knowledge that has been gained through participation in the International Energy Agency’s Solar Heating and Cooling Programme Task 36 and Task 46. As in the first version, this material was assembled by scientists and engineers who have many decades of combined experience in atmospheric science, radiometry, meteorological data processing, and renewable energy technology development. Readers are encouraged to provide feedback to the authors for future revisions and an expansion of the handbook’s scope and content. iii This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Preface As the world looks for low-carbon sources of energy, solar power stands out as the single most abundant energy resource on Earth. Harnessing this energy is the challenge for this century. Photovoltaics, solar heating and cooling, and concentrating solar power (CSP) are primary forms of energy applications using sunlight. These solar energy systems use different technologies, collect different fractions of the solar resource, and have different siting requirements and production capabilities. Reliable information about the solar resource is required for every solar energy application. This holds true for small installations on a rooftop as well as for large solar power plants. However, solar resource information is of particular interest for large installations, because they require a substantial investment, sometimes exceeding $1 billion in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need to have reliable data about the solar resource available at specific locations, including historic trends with seasonal, daily, hourly, and (preferably) subhourly variability to predict the daily and annual performance of a proposed power plant. Without this data, an accurate financial analysis is not possible. In September 2008, the U.S. Department of Energy (DOE) hosted a meeting of prominent CSP developers and stakeholders. One purpose was to identify areas in which the DOE’s CSP program should focus its efforts to help the industry develop and deploy projects. At the top of the priority list was the need to provide high-quality solar resource data and recommend to industry the best way to use these data for site selection and estimating power plant performance. The direct result was the National Renewable Energy Laboratory’s (NREL’s) first edition of Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data. The content was based on the experiences of scientists and engineers from industry, academia, and DOE for identifying the sources, quality, and methods for applying solar and meteorological data to CSP projects. The International Energy Agency’s (IEA’s) Solar Heating and Cooling Programme (SHC) Task 36 on solar resource knowledge management and Task 46 on solar resource assessment and forecasting brought together the world’s foremost experts in solar energy meteorology. This group of experts felt the need to create a collective document to disseminate the knowledge that was being developed through these tasks. It was decided that combining the efforts of the experts involved in the IEA task to build on the information in NREL’s first version of this handbook would provide the best use of resources and deliver a handbook of outstanding quality to users. It was also decided that additional solar technologies, such as photovoltaics, would be incorporated along with additional aspects of energy meteorology that have become extremely important, such as solar forecasting. This expanded version of the handbook presents detailed information about solar resource data and the resulting data products needed for each stage of a solar energy project, from initial site selection to systems operations. It also contains a summary of solar forecasting and its development throughout the last few years. This handbook is not meant to be read from cover to cover, but to be used as a reference during each project stage. The figure below lists these stages and shows which chapters contain information about the corresponding available data and resulting products. iv This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. DOE’s Solar Energy Technology Office, project developers, engineering procurement construction firms, utility companies, system operators, energy suppliers, financial investors, and others involved in solar energy systems planning and development will find this handbook to be a valuable resource for the collection and interpretation of solar resource data. Further, this report serves as the final deliverable for the IEA SHC Task 36 on solar resource knowledge management, which ended in June 2011, and as an interim deliverable for the ongoing Task 46 on solar resource assessment and forecasting. As stated above, this report contains research findings from a number of experts from around the world who participated in Task 36 and are currently participating in Task 46.
Recommended publications
  • I LOW COST SOLAR TRACKER MARLIYANI BINTI OMAR This
    i LOW COST SOLAR TRACKER MARLIYANI BINTI OMAR This thesis is submitted as partial fulfillment of the requirements for the award of the Bachelor of Electrical Engineering (Hons.) (Electronics) Faculty of Electrical & Electronics Engineering Universiti Malaysia Pahang MAY, 2009 iv ACKNOWLEDGEMENT I would like to thank first and most my supervisor, Mr.Mohd Shawal bin Jadin for his support and guidance in my final year project. He has provided me with great approaching and feedback every step of the way as a result of that I have learned and grown well. Sincerely thank for the greatly involved in the progress of this work with no tired. Also thank to my faculty of electrical and electronic to afford this project to student, through this I believe it well and really helped to gain the skill and knowledge. I also would like to thank other member especially my friends which supported me during the hard time. Thank you to all my friends for helping me and assisting me during the project development. This thesis would also not be possible without an assist from my supervisor. He has been great and supportive to keep me motivated to finish this thesis early. I would like to extend mine appreciate to my parent for always there for me. v ABSTRACT Photovoltaic, or PV for short, is a technology in which light is converted into electrical power. One of the applications of PV is in solar tracker. A solar tracker is a device for operating a solar photovoltaic panel or concentrating solar reflector or lens forward sun-concentrates, especially in solar cell application, require high degree of accuracy to ensure that the concentrated sunlight is dedicated precisely to the power device.
    [Show full text]
  • Solar Photovoltaic Tracking Systems for Electricity Generation: a Review
    energies Review Solar Photovoltaic Tracking Systems for Electricity Generation: A Review Sebastijan Seme 1,2 , Bojan Štumberger 1,2, Miralem Hadžiselimovi´c 1,2 and Klemen Sredenšek 1,* 1 Faculty of Energy Technology, University of Maribor, Hoˇcevarjevtrg 1, 8270 Krško, Slovenia; [email protected] (S.S.); [email protected] (B.Š.); [email protected] (M.H.) 2 Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46, 2000 Maribor, Slovenia * Correspondence: [email protected] Received: 10 July 2020; Accepted: 12 August 2020; Published: 15 August 2020 Abstract: This paper presents a thorough review of state-of-the-art research and literature in the field of photovoltaic tracking systems for the production of electrical energy. A review of the literature is performed mainly for the field of solar photovoltaic tracking systems, which gives this paper the necessary foundation. Solar systems can be roughly divided into three fields: the generation of thermal energy (solar collectors), the generation of electrical energy (photovoltaic systems), and the generation of electrical energy/thermal energy (hybrid systems). The development of photovoltaic systems began in the mid-19th century, followed shortly by research in the field of tracking systems. With the development of tracking systems, different types of tracking systems, drives, designs, and tracking strategies were also defined. This paper presents a comprehensive overview of photovoltaic tracking systems, as well as the latest studies that have been done in recent years. The review will be supplemented with a factual presentation of the tracking systems used at the Institute of Energy Technology of the University of Maribor.
    [Show full text]
  • Solar Panel Tracker
    Solar Panel Tracker By Andrew Hsing Project Advisor: Dale Dolan Senior Project ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University San Luis Obispo 2010 Table of Contents Section Page List of Figures ............................................................................................................................. iv List of Tables .............................................................................................................................. v Acknowledgements .................................................................................................................... vi Abstract ...................................................................................................................................... 1 I. Introduction ....................................................................................................................... 2 II. Background ........................................................................................................................ 3 IV. Requirements / Project Specifications ............................................................................. 4 V. Design ................................................................................................................................ 5 A. Front Light Detector.................................................................................................... 8 B. Main Tracking Sensor................................................................................................
    [Show full text]
  • Dual-Axis Solar Tracker
    Dual-Axis Solar Tracker: Functional Model Realization and Full-Scale Simulations Picture of the Functional Model Picture of a Simulation Picture of a Simulation Authors Keywords Dante Johnson-Hoyte Solar Tracker Melanie Li Sing How Dual-Axis Myo Thaw Dante Rossi i Dual-Axis Solar Tracker: Functional Model Realization and Full-Scale Simulations A Major Qualifying Project Report submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by Dante Johnson-Hoyte Melanie Li Sing How Dante Rossi Myo Thaw Date: March 10 2013 Sponsored by French Development Enterprises Submitted to: Professor Alexander Emanuel, Advisor, WPI Professor Stephen S. Nestinger, Advisor, WPI This report represents the work of four WPI undergraduate students submitted to the faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports on its website without editorial or peer review. ii ABSTRACT The use of a highly portable, efficient solar tracker can be very useful to applications of the military, industrial, or residential variety. To produce an efficient solar generation system, a scaled down dual-axis solar tracker was designed, built and tested. At most, the solar tracker was perpendicular to the light source within 3 degrees. iii ACKNOWLEDGEMENTS iv LIST OF FIGURES Author Introduction Melanie Research background: part 1 Johnson Research background: part 2 Jennifer Research background: part 3 Rossi Research background: part 4 Myo Research background: part 5 Melanie Goal statement ??? Design specifications Melanie, Myo Design Description Melanie Electrical system Rossi/Johnson Sensor Testing Myo Figure 1: Stationary PV panel orientation Error! Bookmark not defined.
    [Show full text]
  • An Intelligent Sun Positioning and Intensity Tracker System for Solar Panels with LCD Display
    International Journal of Electrical Electronics & Computer Science Engineering Volume 2, Issue 6 (December, 2015) | E-ISSN : 2348-2273 | P-ISSN : 2454-1222 Available Online at www.ijeecse.com An Intelligent Sun Positioning and Intensity Tracker System for Solar Panels with LCD Display Somtoochukwu Ilo, Tochukwu Chiagunye, Aguodoh Patrick and Egbosi Kelechi Computer Engineering Department Michael Okpara University of Agriculture, Umudike Abstract: Energy crisis is one of the most prevalent issues such as acid rain and global warming. Therefore, striking Nigeria’s human and capital development sector. conversion to clean energy sources such as solar energy Solar energy is rapidly gaining the focus as an important would enable the world to improve the quality of life means of expanding renewable energy uses. To ensure the use throughout the planet Earth. The sun is the prime source of the sun’s energy at the maximum level a tracking system should be developed. Solar tracking system is the most of energy, directly or indirectly which is also the fuel for appropriate technology to enhance the efficiency of the solar most renewable systems. Among all renewable systems, cells by tracking the sun. In this paper a microcontroller based photovoltaic system is the one which has a great chance to sun tracking system is designed and developed to ensure that replace the conventional energy the solar panel is always parallel to the sun for maximum energy output. Light intensity detecting sensors were used to Photovoltaic cells directly convert solar radiation into receive light rays and the signal processed through a electrical energy. However, the conversion efficiency is microcontroller to rotate the solar panel towards the side with not satisfactory.
    [Show full text]
  • Solar Tracker: B-Term Report
    SOLAR TRACKER: B-TERM REPORT 23 October, 2012 – 15 December, 2012 Dante Johnson-Hoyte WORCESTER POLYTECHNIC INSTITUTE TABLE OF CONTENTS ABSTRACT ........................................................................................................................................ 2 1. INTRODUCTION ........................................................................................................................ 2 2. CIRCUIT DESIGN ....................................................................................................................... 4 2.1. SOLAR CELLS ..................................................................................................................... 4 2.2. ANALOG SOLAR TRACKER CONTROLLER CIRCUIT ............................................................. 9 2.3. H-Bridge .......................................................................................................................... 10 2.4. WIND SENSOR ................................................................................................................. 11 2.5. DC POWER SUPPLY ......................................................................................................... 15 2.6. WOODEN MODEL TESTING ............................................................................................. 17 3. RESULTS ................................................................................................................................. 19 3.1 SOLAR CELLS TEST RESULTS ............................................................................................
    [Show full text]
  • Design, Installation, and Solar Energy Efficiency Assessment of A
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2008 Design, Installation, and Solar Energy Efficiency Assessment Using a Dual#Axis Tracker by Kaifan Kyle Wang Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY FAMU‐FSU COLLEGE OF ENGINEERING DESIGN, INSTALLATION, AND SOLAR ENERGY EFFICIENCY ASSESSMENT USING A DUAL‐AXIS TRACKER By KAIFAN KYLE WANG A Thesis submitted to the Department of Industrial Engineering in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Fall Semester, 2008 Copyright©2008 Kyle Wang All Rights Reserved The members of the Committee approve the Thesis of KaiFan Kyle Wang defended on November 07, 2008. _____________________________ Yaw A. Owusu Professor Directing Thesis _____________________________ Samuel A. Awoniyi Committee Member _____________________________ Egwu E. Kalu Committee Member Approved: _____________________________________________ Chuck Zhang, Chair, Department of Industrial Engineering _____________________________________________ ChinJen Chen, College Engineering The Office of Graduate Studies has verified and approved the above named committee members. ii ACKNOWLEDGEMENTS Acknowledgement to the sponsor: Research Center for Cutting Edge Technologies (RECCET) the laboratory where the research took place. Special thanks to the United States Department of Education in Washington, D.C through the Title III Program for the financial support. Thanks to my major professor, Dr. Yaw A. Owusu, whose guidance and encouragement helped me with the thesis. Thanks to the other committee members: Dr. Samuel A. Awoniyi and Dr. Egwu E. Kalu whose technical advice and support for making this accomplishment possible. My appreciation also goes to the Dr.
    [Show full text]
  • Performance of a Solar PV Tracking System on Tropic Regions
    Energy and Sustainability VI 197 Performance of a solar PV tracking system on tropic regions Y. Garcia, O. Diaz & C. Agudelo Faculty of Engineering, University of Cundinamarca, Colombia Abstract Climate change is currently a large concern for human society, particularly our high dependence on fossil fuels. A considerable amount of research effort is focused on renewable energies, especially solar photovoltaic (PV) generation systems. For solar PV systems, energy conversion efficiency is an active research topic, with many approaches being developed to solve this problem. One of these approaches is solar tracking systems, where the solar PV moves with the sun in order to capture the maximum direct solar radiation. This paper proposes a solar PV single-axis tracking system and compares the energy conversion efficiency with respect to a fixed solar PV installation. The proposed mechanical system is based on a servomotor moving a PV on a shaft, covering 180 degrees. A seven- element sensor is used to measure and estimate the angle of maximum solar radiation. Also, a control system was used to obtain the optimal power output from the solar PV. The system was tested in Fusagasugá, Colombia, which is located in the tropics region. Keywords: solar PV, renewable energy, solar tracker, single-axis tracker, tropic region. 1 Introduction Photovoltaic (PV) systems are used to convert sunlight into electricity. They are safe, reliable and can replace energy from non-renewable sources that pollute the environment. Ideally the photovoltaic modules are designed to provide the largest amount of power at minimal cost; however, in order to have the highest power output, the PV array needs to capture the maximum possible amount of radiation, thus the PV array needs to be pointing as close as possible towards the sun.
    [Show full text]
  • Portable Solar Tracker
    GROUP 1 Portable Solar Tracker Senior Design II Tri Bui, Tuyen Bui, Christopher Davis, Stephen Holman Summer 2010 Table of Contents 1 Introduction 1.1 Executive Summary 1 1.2 Motivation 2 1.3 Goals 2 1.4 Specifications 3 1.5 Budget Projection 3 1.6 Milestone Chart 4 1.6.1 May Milestones 4 1.6.2 June Milestones 5 1.6.3 July Milestones 6 2 Background and Research 8 2.1 Previous Works 8 2.2 Solar Panels 11 2.2.1 Solar Radiation 11 2.2.1.a Effects of Sun Light on Exposed Surfaces 12 2.2.2 Photovoltaic Cells 12 2.2.2.a Crystalline Silicon 15 2.2.2.b Monocrystalline Silicon 15 2.2.2.c Polycrystalline Silicon 16 2.2.2.d Thin Film Silicon 16 2.2.2.e CZTS 17 2.2.2.f Organic Solar Cells 17 2.2.2.g Solar Panel Summary 17 2.2.2.h Temperature 18 2.3 Batteries 19 2.3.1 Nickel-Cadmium 20 2.3.2 Sealed Lead 23 2.3.3 Lithium-ion 26 2.3.4 Nickel-Metal Hydride 27 2.3.5 Battery Monitoring and Management 28 2.4 Outputs 34 2.4.1 DC/AC Inverter 34 2.4.2 12V Car Charger Outlet 36 2.4.3 USB Charger 36 2.5 Microcontrollers 38 2.6 Motors 42 2.6.1 Servo Motors 42 2.6.1.a Continuous Rotation 43 2.6.1.b Fixed Rotation 44 2.6.2 DC Motors 45 2.6.2.a Brushed and Brushless Motors 46 2.6.3 DC Motor Controllers 47 2.7 Gyroscopes 48 2.8 Compass 51 ii 2.9 Photoresistors 53 2.10 LCD Module 55 2.11 Optics 58 2.11.1 Mirrors 58 2.11.2 Lenses 64 2.11.2.a Fresnel Lenses 66 2.11.3 Mirrors and Lenses 67 2.12 Mechanical Systems 68 2.12.1 Solar Panel Structure 68 2.12.2 Cooling System 68 2.12.3 Frame 70 2.12.3.a Pole Axis 70 2.12.3.b Horizontal Axis 71 2.12.3.c Mirror Frame 71 2.12.3.d
    [Show full text]
  • Energía Solar Térmica De Concentración
    Departamento de Patentes e Información Tecnológica Unidad de Información Tecnológica ENERGÍA SOLAR TÉRMICA DE CONCENTRACIÓN 72 Resultados Datos actualizados a 23/09/2021 [12:52:489] Solicitudes publicadas en los últimos 60 días / Applications published in the last 60 days 一种建筑用太阳能热暖通系统 Nº publicación CN113418222A 21/09/2021 Solicitantes 南通万维新能源科技有限公司 Resumen 本发明公开了一种建筑用太阳能热暖通系统,属于太阳能热领域,一种建筑用太阳能热暖 通系统,包括太阳能集热器,暖通控制器内设置有与太阳能集热器相配合的集热器自聚光 子系统,太阳能集热器内固定连接有聚光吸热板,聚光吸热板上端连接有多个呈矩形阵列 分布的聚光仿生花组件,可以通过聚光仿生花组件能够有效对太阳光线进行收集,由多次 反射聚焦而增加太阳线的光照强度,进而有效提高聚光吸热板的吸热效果,增加太阳能集 热器的适用性,使得太阳能热暖通系统能够在太阳光线较弱的季节正常使用,进而有效提 高太阳能热暖通系统的普及率,有效提高对可再生资源的利用,降低了不可再生资源的持 续损耗。 一种基于太阳能分频利用的综合供能系统 Nº publicación CN113411036A 17/09/2021 Solicitantes 华北电力大学 Resumen 本发明涉及一种基于太阳能分频利用的综合供能系统,包括:太阳能分频利用‑聚光光伏 光热模块,被配置为接收太阳能并将太阳能分频利用产生电能和热能;有机朗肯循环模块 ,被配置为接收太阳能分频利用‑聚光光伏光热模块产生的热能并将其转换为电能;燃料 电池‑电解池一体化模块,被配置在太阳光辐射强的情况下,通过电解池将多余的电能转 化为化学能储存,在太阳光辐射弱的情况下,通过燃料电池将化学能转化为电能;电流调 制模块,被配置将产生的电能进行调制,完成交流电和直流电之间的转换,实现电能配送 电网。本发明提高太阳能综合利用率并具有储能功能,平抑太阳能波动,削峰填谷,同时 可得到高附加值产品,形成电氢双供的综合供能系统。 一种大型定日镜拼接和转运系统 Nº publicación CN113399997A 17/09/2021 Solicitantes 东方电气集团科学技术研究院有限公司东方电气集团东方锅炉股份有限公司 Resumen 本申请涉及光热发电领域,尤其涉及一种大型定日镜拼接和转运系统,其包括拼接转台、 定位柱、锁紧机构、吸附转运机构和镜面输送机构;拼接转台在轨道上沿其中心轴线旋转 ,至少两个定位柱沿着拼接转台的中心轴线对称布置,镜面输送机构对准拼接转台,锁紧 机构将拼接转台锁紧,吸附转运机构由行车吊运实行水平方向和升降运动,吸附转运机构 上有与定位柱配合的定位套。本申请可以实现各种镜面的快速拼接、定位和转运。其中镜 面拼接转台,可以实现各种镜面的快速拼接、准确角度对位与自动锁紧,定位柱快速对位 。 一种大型定日镜拼接和转运方法 Nº publicación CN113399998A 17/09/2021 Solicitantes 东方电气集团科学技术研究院有限公司东方电气集团东方锅炉股份有限公司 Resumen 本申请涉及光热发电领域,尤其涉及一种大型定日镜拼接和转运方法,其包括如下步骤: 镜面分类线将不同镜面进行分类,并将镜面推至拼接转台上对应位置处;人工将拼接转台
    [Show full text]
  • Päikeseenergia Kasutamine Väikeelamu Näitel Solar
    EESTI MAAÜLIKOOL Tehnikainstituut Regina Feldman PÄIKESEENERGIA KASUTAMINE VÄIKEELAMU NÄITEL SOLAR ENERGY APPLICATIONS FOR SMALL DWELLING Bakalaureusetöö Tehnika ja tehnoloogia õppekava Juhendajad: Erkki Jõgi, MSc Veli Palge, DrSc Tartu 2017 Eesti Maaülikool Bakalaureusetöö lühikokkuvõte Fr. R. Kreutzwaldi 1, Tartu 51014 Autor: Regina Feldman Õppekava: Tehnika ja tehnoloogia Pealkiri: Päikeseenergia kasutamine väikeelamu näitel Lehekülgi: 48 Jooniseid: 24 Tabeleid: 12 Lisasid: 0 Osakond: Energeetika osakond Uurimisvaldkond: 4. Loodusteadused ja tehnika 4.17 Energeetikaalased uuringud CERCS: T140 Energeetika Juhendajad: Erkki Jõgi ja Veli Palge Kaitsmiskoht ja -aasta: Tartu 2017 Antud töös on uuritavaks objektiks Pärnumaal Suurejõe külas asuv 94-aastane hoone, kus soovitakse kasutata päikeseenergiat. Hoone ja selle asukoha suhtes kaalutakse mitmeid päikeseenergial toimivaid lahendusi ja tulemuste põhjal leitakse kõige sobivam lahendus. Aastane elektrienergia tarbimine oli 2766 kW h. Uuritavateks päikesejaama lahendusteks on päikesepaneelide ja -kollektorite paigaldamine hoone katusele, juurdeehitise katusele või hoone lähedal olevale maa-alale. Tulemuste välja töötamiseks on kasutatud elektrienergia tarbimist kuude lõikes ja päikesepaiste tingimusi hoone asukohast tingituna ajavahemikul märts 2016 kuni veebruar 2017. Kiirgusvoo andmed on võetud Tartu Ülikooli füüsikainstituudi ilmajaama arhiivist. Päikesepaneelide tootlikkuse arvutamiseks on kasutatud PVGIS programmi ja kollektorite efektiivsuse leidmiseks päikese kiirgusvoo väärtusi.
    [Show full text]
  • A Prototype Design and Development of the Smart Photovoltaic System Blind Considering the Photovoltaic Panel, Tracking System, and Monitoring System
    applied sciences Article A Prototype Design and Development of the Smart Photovoltaic System Blind Considering the Photovoltaic Panel, Tracking System, and Monitoring System Kwangbok Jeong 1, Taehoon Hong 1,* ID , Choongwan Koo 2, Jeongyoon Oh 1, Minhyun Lee 1 and Jimin Kim 3,4 1 Department of Architecture & Architectural Engineering, Yonsei University, Seoul 03722, Korea; [email protected] (K.J.); [email protected] (J.O.); [email protected] (M.L.) 2 Department of Building Services Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong, China; [email protected] 3 Division of Construction Engineering and Management, Purdue University, West Lafayette, IN 47907, USA; [email protected] 4 Department of Architecture & Architectural Engineering, Yonsei University, Seoul 03722, Korea * Correspondence: [email protected]; Tel.: +82-2-2123-5788 Received: 31 July 2017; Accepted: 13 October 2017; Published: 18 October 2017 Abstract: This study aims to design and develop the prototype models of the smart photovoltaic system blind (SPSB). To achieve this objective, the study defined the properties in three ways: (i) the photovoltaic (PV) panel; (ii) the tracking system; and (iii) the monitoring system. First, the amorphous silicon PV panel was determined as a PV panel, and the width and length of the PV panel were determined to be 50 mm and 250 mm, respectively. Second, the four tracker types (i.e., fixed type, vertical single-axis tracker, horizontal single-axis tracker, and azimuth-altitude dual-axis tracker) was applied, as well as the direct tracking method based on the amount of electricity generated as a tracking system.
    [Show full text]