Eosinophilia in Returning Travellers and Migrants from the Tropics: UK Recommendations for Investigation and Initial Management

Total Page:16

File Type:pdf, Size:1020Kb

Eosinophilia in Returning Travellers and Migrants from the Tropics: UK Recommendations for Investigation and Initial Management Journal of Infection (2010) 60,1e20 www.elsevierhealth.com/journals/jinf CLINICAL GUIDELINES OF THE BRITISH INFECTION SOCIETY Eosinophilia in returning travellers and migrants from the tropics: UK recommendations for investigation and initial management Anna M. Checkley a,*, Peter L. Chiodini a, David H. Dockrell b, Imelda Bates c, Guy E. Thwaites a, Helen L. Booth d, Michael Brown a, Stephen G. Wright a, Alison D. Grant a, David C. Mabey a, Christopher J.M. Whitty a, Frances Sanderson e, On behalf of the British Infection Society and The Hospital for Tropical Diseases a Hospital for Tropical Diseases, Capper Street, London WC1E 6JB, UK b Section of Infection, Inflammation and Immunity, University of Sheffield, School of Medicine and Biomedical Sciences, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, UK c Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK d University College London Hospitals NHS Trust, 235 Euston Road, London NW1 2BU, UK e Imperial College Healthcare NHS Trust, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK Accepted 13 November 2009 KEYWORDS Summary Eosinophilia is a common finding in returning travellers and migrants, and in this Eosinophilia; group it often indicates an underlying helminth infection. Infections are frequently either Helminth; asymptomatic or associated with non-specific symptoms, but some can cause severe disease. Traveller; Here the British Infection Society guidelines group reviews common and serious infectious Migrant; causes of eosinophilia, and outlines a scheme for investigating returning travellers and mi- Investigation; grants. All returning travellers and migrants with eosinophilia should be investigated with con- Management centrated stool microscopy and strongyloides serology, in addition to tests specific to the region they have visited. Terminal urine microscopy and serology for schistosomiasis should also be performed in those returning from Africa. Eosinophilia is also a feature of significant non-infective conditions, which should be considered. ª 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved. * Corresponding author at: Jenner Vaccine Institute, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK. Tel.: þ44 1865 617636; fax: þ44 1865 617608. E-mail address: [email protected] (A.M. Checkley). 0163-4453/$36 ª 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.jinf.2009.11.003 2 A.M. Checkley et al. Contents 1. Introduction ...................................................................................... 3 2. General principles ................................................................................. 3 2.1 Patient group ............................................................................... 3 2.2 Geographical area ........................................................................... 3 2.3 Timing ..................................................................................... 3 2.4 Serology ................................................................................... 3 3. Investigating asymptomatic eosinophilia ............................................................... 3 4. Eosinophilia associated with specific symptoms ........................................................ 8 4.1 Eosinophilia with fever and/or respiratory symptoms .............................................. 8 4.1.1 Katayama syndrome - Schistosoma sp. ................................................... 8 4.1.2 Loeffler’s syndrome ................................................................... 8 4.1.3 Visceral larva migrans/acute toxocariasis - Toxocara canis and T. catis ........................ 9 4.1.4 Tropical pulmonary eosinophilia - Wuchereria bancrofti and Brugia malayi .................... 10 4.1.5 Pulmonary hydatid disease (Echinococcus granulosus and E. multilocularis) ................... 10 4.1.6 Paragonimiasis (Paragonimus sp.) ....................................................... 10 4.1.7 Coccidioidomycosis and paracoccidioidomycosis - Coccidioides immitis, Paracoccidioides braziliensis ......................................................................... 10 4.1.8 Other causes of peripheral eosinophilia and pulmonary infiltrates ........................... 11 4.2 Eosinophilia with gastrointestinal symptoms .................................................... 11 4.2.1 Strongyloidiasis - Strongyloides stercoralis ............................................... 11 4.2.2 Schistosomiasis/bilharzia with gastrointestinal symptoms - Schistosoma mansoni and S. japonicum 11 4.2.3 Ascariasis-Ascaris lumbricoides ......................................................... 11 4.2.4 Tapeworm - Taenia saginata/T. solium .................................................. 12 4.2.5 Dwarf tapeworm - Hymenolepis nana ................................................... 12 4.2.6 Hookworm - Ancylostoma duodenale/Necator americanus .................................. 12 4.2.7 Whipworm - Trichuris trichiura ......................................................... 12 4.2.8 Pin worm - Enterobius vermicularis ..................................................... 12 4.2.9 Trichinellosis - Trichinella sp. .......................................................... 12 4.2.10 Anisakiasis - Anisakis spp. and Pseudoterranova decipiens ................................. 12 4.2.11 Angiostrongylus costaricensis ......................................................... 13 4.2.12 Other causes of eosinophilia and GI symptoms ........................................... 13 4.3 Eosinophilia and right upper quadrant pain/jaundice ............................................. 13 4.3.1 Hydatid disease in the liver - Echinococcosis granulosus and E. multilocularis ................. 13 4.3.2 Fasciola hepatica/F. giganta ........................................................... 13 4.3.3 Liver flukes: Clonorchis sinensis and Opisthorchis sp. ...................................... 13 4.3.4 Schistosomiasis - S. mansoni and S. japonicum ........................................... 14 4.4 Eosinophilia with neurological symptoms ....................................................... 14 4.4.1 Angiostrongylus cantonensis - rat lung worm ............................................. 14 4.4.2 Gnathostomiasis - Gnathostoma spinigerum .............................................. 14 4.4.3 Neurocysticercosis causing meningitis - T. solium ......................................... 14 4.4.4 Schistosomiasis/bilharzia and CNS symptoms - Schistosoma haematobium, S. mansoni, S. japonicum (4.2.2) ............................................................................. 14 4.4.5 Toxocariasis - T. canis, T. catis (4.1.3) .................................................. 15 4.4.6 Coccidioidomycosis and paracoccidioidomycosis - C. immitis, P. braziliensis (4.1.7) ............ 15 4.4.7 Other causes ........................................................................ 15 4.5 Eosinophilia with skin/musculokeletal symptoms ................................................ 15 4.5.1 Onchocerciasis - Onchocerca volvulus ................................................... 15 4.5.2 Larva currens - S. stercoralis .......................................................... 15 4.5.3 Lymphatic filariasis - W. bancrofti, B. malayi ............................................. 15 4.5.4 Loiasis - Loa loa ..................................................................... 16 4.5.5 Gnathostomiasis - Gnathostoma spinigerum .............................................. 16 4.5.6 Trichinellosis - Trichinella spiralis ...................................................... 16 4.5.7 Swimmers’ itch/cercarial dermatitis - Schistosoma sp. ..................................... 16 4.6 Eosinophilia and urinary symptoms ............................................................ 16 4.6.1 Schistosomiasis/bilharzia - Schistosoma haematobium (4.2.2) ............................... 16 5. Conclusion ...................................................................................... 17 Investigation and initial management of eosinophilia in returning travellers and migrants 3 Acknowledgements ............................................................................... 17 References ...................................................................................... 17 1. Introduction infection1,2,16,17 while travellers are often newly infected and have a greater immune response with more pronounced eosinophilia.18 Infection with multiple helminth species may Eosinophilia occurs commonly in individuals returning from occur in migrants, however, which is also associated with the tropics. In a UK series of 852 asymptomatic returning more pronounced eosinophilia.2,3 Rare complications of travellers, 8% had eosinophilia,1 and in a Canadian series chronic schistosomiasis such as bladder carcinoma or portal of 1605 individuals returning from the tropics 10% of asymp- hypertension are more often seen in migrants, whereas tomatic individuals had eosinophilia.2 For the purpose of Katayama syndrome and Loeffler’s syndrome are more these recommendations, eosinophilia is defined as a periph- frequent in travellers. eral blood eosinophil count of >0.45 Â 109/L. Helminth infection is the commonest identifiable cause of eosinophilia in the returning traveller or migrant, rates 2.2. Geographical area varying from 14%2 to 64%.3 However there are multiple causes, both infectious and non-infectious, of a peripheral The incidence
Recommended publications
  • Gnathostoma Spinigerum Was Positive
    Department Medicine Diagnostic Centre Swiss TPH Winter Symposium 2017 Helminth Infection – from Transmission to Control Sushi Worms – Diagnostic Challenges Beatrice Nickel Fish-borne helminth infections Consumption of raw or undercooked fish - Anisakis spp. infections - Gnathostoma spp. infections Case 1 • 32 year old man • Admitted to hospital with severe gastric pain • Abdominal pain below ribs since a week, vomiting • Low-grade fever • Physical examination: moderate abdominal tenderness • Laboratory results: mild leucocytosis • Patient revealed to have eaten sushi recently • Upper gastrointestinal endoscopy was performed Carmo J, et al. BMJ Case Rep 2017. doi:10.1136/bcr-2016-218857 Case 1 Endoscopy revealed 2-3 cm long helminth Nematode firmly attached to / Endoscopic removal of larva with penetrating gastric mucosa a Roth net Carmo J, et al. BMJ Case Rep 2017. doi:10.1136/bcr-2016-218857 Anisakiasis Human parasitic infection of gastrointestinal tract by • herring worm, Anisakis spp. (A.simplex, A.physeteris) • cod worm, Pseudoterranova spp. (P. decipiens) Consumption of raw or undercooked seafood containing infectious larvae Highest incidence in countries where consumption of raw or marinated fish dishes are common: • Japan (sashimi, sushi) • Scandinavia (cod liver) • Netherlands (maatjes herrings) • Spain (anchovies) • South America (ceviche) Source: http://parasitewonders.blogspot.ch Life Cycle of Anisakis simplex (L1-L2 larvae) L3 larvae L2 larvae L3 larvae Source: Adapted to Audicana et al, TRENDS in Parasitology Vol.18 No. 1 January 2002 Symptoms Within few hours of ingestion, the larvae try to penetrate the gastric/intestinal wall • acute gastric pain or abdominal pain • low-grade fever • nausea, vomiting • allergic reaction possible, urticaria • local inflammation Invasion of the third-stage larvae into gut wall can lead to eosinophilic granuloma, ulcer or even perforation.
    [Show full text]
  • Case 16-2019: a 53-Year-Old Man with Cough and Eosinophilia
    The new england journal of medicine Case Records of the Massachusetts General Hospital Founded by Richard C. Cabot Eric S. Rosenberg, M.D., Editor Virginia M. Pierce, M.D., David M. Dudzinski, M.D., Meridale V. Baggett, M.D., Dennis C. Sgroi, M.D., Jo-Anne O. Shepard, M.D., Associate Editors Alyssa Y. Castillo, M.D., Case Records Editorial Fellow Emily K. McDonald, Sally H. Ebeling, Production Editors Case 16-2019: A 53-Year-Old Man with Cough and Eosinophilia Rachel P. Simmons, M.D., David M. Dudzinski, M.D., Jo-Anne O. Shepard, M.D., Rocio M. Hurtado, M.D., and K.C. Coffey, M.D.​​ Presentation of Case From the Department of Medicine, Bos- Dr. David M. Dudzinski: A 53-year-old man was evaluated in an urgent care clinic of ton Medical Center (R.P.S.), the Depart- this hospital for 3 months of cough. ment of Medicine, Boston University School of Medicine (R.P.S.), the Depart- Five years before the current evaluation, the patient began to have exertional ments of Medicine (D.M.D., R.M.H.), dyspnea and received a diagnosis of hypertrophic obstructive cardiomyopathy, with Radiology (J.-A.O.S.), and Pathology a resting left ventricular outflow gradient of 110 mm Hg on echocardiography. (K.C.C.), Massachusetts General Hos- pital, and the Departments of Medicine Although he received medical therapy, symptoms persisted, and percutaneous (D.M.D., R.M.H.), Radiology (J.-A.O.S.), alcohol septal ablation was performed 1 year before the current evaluation, with and Pathology (K.C.C.), Harvard Medical resolution of the exertional dyspnea.
    [Show full text]
  • Opisthorchiasis: an Emerging Foodborne Helminthic Zoonosis of Public Health Significance
    IJMPES International Journal of http://ijmpes.com doi 10.34172/ijmpes.2020.27 Medical Parasitology & Vol. 1, No. 4, 2020, 101-104 eISSN 2766-6492 Epidemiology Sciences Review Article Opisthorchiasis: An Emerging Foodborne Helminthic Zoonosis of Public Health Significance Mahendra Pal1* ID , Dimitri Ketchakmadze2 ID , Nino Durglishvili3 ID , Yagoob Garedaghi4 ID 1Narayan Consultancy on Veterinary Public Health and Microbiology, Gujarat, India 2Faculty of Chemical Technologies and Metallurgy, Georgian Technical University, Tbilisi, Georgia 3Department of Sociology and Social Work, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia 4Department of Parasitology, Tabriz Branch, Islamic Azad University, Tabriz, Iran Abstract Opisthorchiasis is an emerging foodborne parasitic zoonosis that has been reported from developing as well as developed nations of the world. Globally, around 80 million people are at risk of acquiring Opisthorchis infection. The source of infection is exogenous, and ingestion is considered as the primary mode of transmission. Humans get the infection by consuming raw or undercooked fish. In most cases, the infection remains asymptomatic. However, in affected individuals, the clinical manifestations are manifold. Occasionally, complications including cholangitis, cholecystitis, and cholangiocarcinoma are observed. The people who have the dietary habit of eating raw fish usually get the infection. Certain occupational groups, such as fishermen, agricultural workers, river fleet employees, and forest industry personnel are mainly infected with Opisthorchis. The travelers to the endemic regions who consume raw fish are exposed to the infection. Parasitological, immunological, and molecular techniques are employed to confirm the diagnosis of disease. Treatment regimens include oral administration of praziquantel and albendazole. In the absence of therapy, the acute phase transforms into a chronic one that may persist for two decades.
    [Show full text]
  • Gnathostomiasis: an Emerging Imported Disease David A.J
    RESEARCH Gnathostomiasis: An Emerging Imported Disease David A.J. Moore,* Janice McCroddan,† Paron Dekumyoy,‡ and Peter L. Chiodini† As the scope of international travel expands, an ous complication of central nervous system involvement increasing number of travelers are coming into contact with (4). This form is manifested by painful radiculopathy, helminthic parasites rarely seen outside the tropics. As a which can lead to paraplegia, sometimes following an result, the occurrence of Gnathostoma spinigerum infection acute (eosinophilic) meningitic illness. leading to the clinical syndrome gnathostomiasis is increas- We describe a series of patients in whom G. spinigerum ing. In areas where Gnathostoma is not endemic, few cli- nicians are familiar with this disease. To highlight this infection was diagnosed at the Hospital for Tropical underdiagnosed parasitic infection, we describe a case Diseases, London; they were treated over a 12-month peri- series of patients with gnathostomiasis who were treated od. Four illustrative case histories are described in detail. during a 12-month period at the Hospital for Tropical This case series represents a small proportion of gnathos- Diseases, London. tomiasis patients receiving medical care in the United Kingdom, in whom this uncommon parasitic infection is mostly undiagnosed. he ease of international travel in the 21st century has resulted in persons from Europe and other western T Methods countries traveling to distant areas of the world and return- The case notes of patients in whom gnathostomiasis ing with an increasing array of parasitic infections rarely was diagnosed at the Hospital for Tropical Diseases were seen in more temperate zones. One example is infection reviewed retrospectively for clinical symptoms and confir- with Gnathostoma spinigerum, which is acquired by eating uncooked food infected with the larval third stage of the helminth; such foods typically include fish, shrimp, crab, crayfish, frog, or chicken.
    [Show full text]
  • Disseminated Peritoneal Schistosoma Japonicum: a Case Report And
    [Downloaded free from http://www.saudiannals.net on Monday, May 10, 2010] case report Disseminated peritoneal Schistosoma japonicum: a case report and review of the pathological manifestations of the helminth Salah Al-Waheeb,a Maryam Al-Murshed,a Fareeda Dashti,b Parsotam R. Hira,c Lamia Al-Sarrafd From the aDepartments of Histopathology, and bSurgery, Mubarak Al-Kabeer Hospital, cDepartment of Microbiology, Kuwait University, dDepart- ment of Radiology, Mubarak Al-Kabeer Hospital, Jabriyah, Kuwait Correspondence: Salah Al-Waheeb, MD · Mubarak Al-Kabeer Hospital, PO Box 72, Code 71661, Jabriyah, Shamiyah City, Kuwait · T: +975-531- 2700 ext. 2188 · [email protected] · Approved for publication August 2008 Ann Saudi Med 2009; 29(2): 149-152 Schistosomiasis (also known as bilharzia, bilharziasis, bilharziosis or snail fever) is a human disease syn- drome caused by infection from one of several species of parasitic trematodes of the genus Schistosoma. The three main species infecting humans are S haematobium, S japonicum, and S mansoni. S japonicum is most common in the far east, mostly in China and the Philippines. We present an unusual case of S japonicum in a 32-year-old Filipino woman who had schistosomal ova studding the peritoneal cavity and forming a mass in the right iliac fossa. chistosomiasis (also known as bilharzia, bilharziaa liver (Figure 1). CT examination showed multiple cala asis, bilharziosis or snail fever) is a human disease cific foci throughout the abdomen, particularly in the Ssyndrome caused by infection from one of several RIF. Prominent small bowel dilatation and fluid colleca species of parasitic trematodes of the genus Schistosoma.
    [Show full text]
  • Ultrasound of Tropical Medicine Parasitic Diseases of the Liver
    Ultrasound of the liver …. 20.11.2012 11:05 1 EFSUMB – European Course Book Editor: Christoph F. Dietrich Ultrasound of Tropical Medicine Parasitic diseases of the liver Enrico Brunetti1, Tom Heller2, Francesca Tamarozzi3, Adnan Kabaalioglu4, Maria Teresa Giordani5, Joachim Richter6, Roberto Chiavaroli7, Sam Goblirsch8, Carmen Cretu9, Christoph F Dietrich10 1 Department of Infectious Diseases, San Matteo Hospital Foundation- University of Pavia, Pavia, Italy 2 Department of Internal Medicine, Klinikum Muenchen Perlach, Munich, Germany 3 Department of Infectious Diseases, San Matteo Hospital Foundation- University of Pavia, Pavia, Italy 4 Department of Radiology, Akdeniz University, Antalya, Turkey 5 Infectious and Tropical Diseases Unit, San Bortolo Hospital, Vicenza, Italy 6 Tropenmedizinische Ambulanz, Klinik für Gastroenterologie, Hepatologie und Infektiologie, Heinrich-Heine-Universität, Düsseldorf, Germany 7 Infectious Diseases Unit, Santa Caterina Novella Hospital, Galatina, Italy 8 Department of Medicine and Pediatrics, University of Minnesota, Minneapolis, MN, USA 9 University of Medicine and Pharmacy "Carol Davila" Parasitology Department Colentina Teaching Hospital, Bucharest, Romania 10 Caritas-Krankenhaus Bad Mergentheim, Germany Ultrasound of parasitic disease …. 20.11.2012 11:05 2 Content Content ....................................................................................................................................... 2 Amoebiasis ................................................................................................................................
    [Show full text]
  • Model-Based Spatial-Temporal Mapping of Opisthorchiasis in Endemic
    medRxiv preprint doi: https://doi.org/10.1101/2020.06.12.20126169; this version posted June 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 Model-based spatial-temporal mapping of opisthorchiasis in endemic 2 countries of Southeast Asia 3 Ting-Ting Zhao,1 Yi-Jing Feng,1 Pham Ngoc Doanh,2 Somphou Sayasone,3 Virak Khieu,4 Choosak 4 Nithikathkul,5 Men-Bao Qian,6,7 Yuan-Tao Hao1,8 Ying-Si Lai,1,8* 5 1Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, 6 Guangdong, People's Republic of China. 7 2Department of Parasitology, Institute of Ecology and Biological Resources, Graduate University of 8 Science and Technology, Vietnam Academy of Sciences and Technology, Cau Giay, Hanoi, Vietnam. 9 3Lao Tropical and Public Health Institute, Ministry of Health, Vientiane Capital, Lao People's Democratic 10 Republic. 11 4National Center for Parasitology, Entomology and Malaria Control, Ministry of Health, Phnom Penh, 12 Cambodia. 13 5Tropical and Parasitic Diseases Research Unit, Faculty of Medicine, Mahasarakham University, 14 Mahasarakham, Thailand. 15 6National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 16 People's Republic of China. 17 7WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, 18 Ministry of Health, Shanghai, People's Republic of China. 19 8Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic 20 of China.
    [Show full text]
  • Cerebral Paragonimiasis
    CEREBRAL PARAGONIMIASIS REPORT OF FOUR CASES MAJOR SUN KEUN KIM, M.C.* 3rd Army Hospital (Republic of Korea), Pusan, Korea (Received for publication October 6, 1954) ARAGONIMIASIS, or infestation by the lung fluke Paragonimus wester- p manii, is known to be endemic in certain areas of the Far East, par- ticularly in Korea, Japan, and Formosa. In Korea it is found particu- larly in the areas of Yong Hung, Jun Joo, and the Yak Dong river valley. It is acquired by man by the ingestion of raw fresh water fish, an old tradi- tional delicacy in this part of the world. The disease is so common that it is referred to as "To-Zil," or endemic hemoptysis, and it presents a great problem from the standpoint of medical treatment, public health control and national economy. It is known that Paragonimus westermanii may involve the lungs, pleura, liver, intestinal wall, mesenteric lymph glands, testes, muscles, peritoneum, and brain. The following 4 cases of cerebral cysts caused by paragonimiasis, which were encountered during the last year, are reported because of the rarity of cerebral involvement. CASE REPORTS Case 1. An 8-year-old Korean lad was admitted because of motor aphasia, right hemiparesis, and right 7th nerve paresis. He had a history of epileptiform seizures every 2-3 weeks from the age of 8 to 6 years, at which time the seizures stopped but there was insidious onset of right-sided hemiparesis. Examination. He was a somewhat drowsy boy in no acute distress. His face was slightly puffy. His mentality was low.
    [Show full text]
  • Waterborne Zoonotic Helminthiases Suwannee Nithiuthaia,*, Malinee T
    Veterinary Parasitology 126 (2004) 167–193 www.elsevier.com/locate/vetpar Review Waterborne zoonotic helminthiases Suwannee Nithiuthaia,*, Malinee T. Anantaphrutib, Jitra Waikagulb, Alvin Gajadharc aDepartment of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Patumwan, Bangkok 10330, Thailand bDepartment of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Bangkok 10400, Thailand cCentre for Animal Parasitology, Canadian Food Inspection Agency, Saskatoon Laboratory, Saskatoon, Sask., Canada S7N 2R3 Abstract This review deals with waterborne zoonotic helminths, many of which are opportunistic parasites spreading directly from animals to man or man to animals through water that is either ingested or that contains forms capable of skin penetration. Disease severity ranges from being rapidly fatal to low- grade chronic infections that may be asymptomatic for many years. The most significant zoonotic waterborne helminthic diseases are either snail-mediated, copepod-mediated or transmitted by faecal-contaminated water. Snail-mediated helminthiases described here are caused by digenetic trematodes that undergo complex life cycles involving various species of aquatic snails. These diseases include schistosomiasis, cercarial dermatitis, fascioliasis and fasciolopsiasis. The primary copepod-mediated helminthiases are sparganosis, gnathostomiasis and dracunculiasis, and the major faecal-contaminated water helminthiases are cysticercosis, hydatid disease and larva migrans. Generally, only parasites whose infective stages can be transmitted directly by water are discussed in this article. Although many do not require a water environment in which to complete their life cycle, their infective stages can certainly be distributed and acquired directly through water. Transmission via the external environment is necessary for many helminth parasites, with water and faecal contamination being important considerations.
    [Show full text]
  • Biliary Obstruction Caused by the Liver Fluke, Fasciola Hepatica
    CME Practice CMAJ Cases Biliary obstruction caused by the liver fluke, Fasciola hepatica Takuya Ishikawa MD PhD, Vanessa Meier-Stephenson MD PhD, Steven J. Heitman MD MSc Competing interests: None 20-year-old previously healthy man declared. presented to hospital with a two-day This article has been peer A history of right upper quadrant pain reviewed. and vomiting. Nine months earlier, he had The authors have obtained immigrated to Canada from Sudan, but he had patient consent. also lived in Djibouti and Ethiopia. Four Correspondence to: months before he presented to hospital, he Steven Heitman, received a diagnosis of tuberculous lymphade- [email protected] nitis and a four-drug course of tuberculosis CMAJ 2016. DOI:10.1503 treatment was started. However, he was non- /cmaj.150696 adherent after only two months of treatment. In addition, results from screening tests at that time showed evidence of schistosomiasis for Figure 1: A flat, leaf-shaped, brown worm emerg- which he was prescribed praziquantel. ing from the common bile duct of a 20-year-old On examination, he was alert and without man with abdominal pain. jaundice or scleral icterus. He had right upper quadrant tenderness on abdominal examination, ter of 1.1 cm. A computed tomography scan of but there were no palpable masses. The remain- the abdomen also showed prominence of the der of his examination was unremarkable. Labo- common bile duct, but no calcified stone was ratory test results showed elevated liver enzymes identified (Appendix 1). A hepatobiliary imino- (aspartate transaminase 133 [normal < 40] U/L, diacetic acid scan suggested distal obstruction in alanine transaminase 217 [normal < 41] U/L, the common bile duct.
    [Show full text]
  • Imaging Parasitic Diseases
    Insights Imaging (2017) 8:101–125 DOI 10.1007/s13244-016-0525-2 REVIEW Unexpected hosts: imaging parasitic diseases Pablo Rodríguez Carnero1 & Paula Hernández Mateo2 & Susana Martín-Garre2 & Ángela García Pérez3 & Lourdes del Campo1 Received: 8 June 2016 /Revised: 8 September 2016 /Accepted: 28 September 2016 /Published online: 23 November 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Radiologists seldom encounter parasitic dis- • Some parasitic diseases are still endemic in certain regions eases in their daily practice in most of Europe, although in Europe. the incidence of these diseases is increasing due to mi- • Parasitic diseases can have complex life cycles often involv- gration and tourism from/to endemic areas. Moreover, ing different hosts. some parasitic diseases are still endemic in certain • Prompt diagnosis and treatment is essential for patient man- European regions, and immunocompromised individuals agement in parasitic diseases. also pose a higher risk of developing these conditions. • Radiologists should be able to recognise and suspect the This article reviews and summarises the imaging find- most relevant parasitic diseases. ings of some of the most important and frequent human parasitic diseases, including information about the para- Keywords Parasitic diseases . Radiology . Ultrasound . site’s life cycle, pathophysiology, clinical findings, diag- Multidetector computed tomography . Magnetic resonance nosis, and treatment. We include malaria, amoebiasis, imaging toxoplasmosis, trypanosomiasis, leishmaniasis, echino- coccosis, cysticercosis, clonorchiasis, schistosomiasis, fascioliasis, ascariasis, anisakiasis, dracunculiasis, and Introduction strongyloidiasis. The aim of this review is to help radi- ologists when dealing with these diseases or in cases Parasites are organisms that live in another organism at the where they are suspected.
    [Show full text]
  • Learning Objectives
    Restrictive Lung Diseases & Pulmonary Vascular Disease Pulmonary 2018 RESTRICTIVE LUNG DISEASES AND PULMONARY VASCULAR DISEASE Joel Thibodeaux, MD, Phone: 469-419-4535 Email: [email protected] INTRODUCTION This lecture will discuss basic concepts, etiologic factors, pathologic features, pathogenesis, and clinicopathologic findings in the different types of interstitial lung diseases. It also will touch briefly on pulmonary vascular diseases. LEARNING OBJECTIVES: • Acute respiratory distress syndrome (ARDS) (BP, pp. 460-461) o Define ARDS and list common causes o Illustrate the mechanism of lung injury in ARDS and the role of proinflammatory and anti-inflammatory mediators o Describe the morphologic features of ARDS. Understand how they evolve, and know what happens if the patient survives. • Diffuse interstitial lung disease (BP, pp. 472-474, 480-482) o List the major forms of diffuse interstitial lung diseases discussed o Be able to identify classic morphologic features of common interstitial lung diseases. o Recognize the major causes of pneumoconioses (BP, pp. 474-478) o Delineate the gross and microscopic features resulting from exposure to coal dust, silica, organic/animal dust, and asbestos. o Sarcoidosis (BP, pp. 478-480) . Define sarcoidosis . List the most common organs involved, and describe the characteristic histologic lesion . Describe the radiographic, gross, and histologic appearance of lesions in the hilar lymph nodes and lungs • Define primary pulmonary hypertension. Recognize the characteristic histologic
    [Show full text]