materials Article Development of Self-Healing Cement Slurry through the Incorporation of Dual-Encapsulated Polyacrylamide for the Prevention of Water Ingress in Oil Well G. Richhariya 1, D.T.K. Dora 1,* , K.R. Parmar 2, K.K. Pant 2, N. Singhal 3, K. Lal 4 and P.P. Kundu 5 1 Department of Petroleum & Energy Studies, DIT University, Dehradun 248009, India;
[email protected] 2 Department Chemical Engineering, Indian Institute of Technology, Delhi 110016, India;
[email protected] (K.R.P.);
[email protected] (K.K.P.) 3 Department of Chemistry, DIT University, Dehradun, 248009, India;
[email protected] 4 Institute of Drilling Technology, ONGC, Dehradun 248003, India;
[email protected] 5 Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247667, India;
[email protected] * Correspondence:
[email protected]; Tel.: +91-94387-25976 Received: 25 May 2020; Accepted: 26 June 2020; Published: 29 June 2020 Abstract: In the present work, a novel cross-linked polymer was synthesized though the anionic polymerization of cyanoacrylate with moisture as an initiator, methylene-bis-acrylamide as a cross-linker, and linseed oil as a spacer. Two layers of the synthesized polymer was coated over polyacrylamide for its homogenous impregnation in Class-G cement slurry for the synthesis of cement core. Fourier Transformation Infrared spectroscopy and X-Ray diffraction spectrum of the synthesized polymer and cement core were obtained to investigate the presence of different functional groups and phases. Moreover, the morphologies of the dual-encapsulated polyacrylamide was observed through scanning electron microscopy. Furthermore, the water-absorption capacity of the synthesized dual-encapsulated polyacrylamide in normal and saline conditions were tested.