Fundamentals – Parallel Architectures, Models, and Languages

Total Page:16

File Type:pdf, Size:1020Kb

Fundamentals – Parallel Architectures, Models, and Languages HPC – Algorithms and Applications Fundamentals – Parallel Architectures, Models, and Languages Michael Bader TUM – SCCS Winter 2017/2018 Part I Parallel Architectures (sorry, not everywhere the latest ones . ) Michael Bader j HPC – Algorithms and Applications j Fundamentals j Winter 2017/2018 2 Manycore CPU – Intel Xeon Phi Coprocessor • coprocessor = works as an extension card on the PCI bus • ≈ 60 cores, 4 hardware threads per core • simpler architecture for each core, but • wider vector computing unit (8 double-precision floats) • next generation (Knights Landing) available as standalone CPU (since 2017) Michael Bader j HPC – Algorithms and Applications j Fundamentals j Winter 2017/2018 3 Manycore CPU – Intel “Knights Landing” 2nd half ’15 Unveiling Details of Knights Landing 1st commercial systems (Next Generation Intel® Xeon Phi™ Products) 3+ TFLOPS1 In One Package Platform Memory: DDR4 Bandwidth and Parallel Performance & Density Capacity Comparable to Intel® Xeon® Processors Compute: Energy-efficient IA cores2 … . Microarchitecture enhanced for HPC3 . 3X Single Thread Performance vs Knights Corner4 5 . Intel Xeon Processor Binary Compatible . Intel® Silvermont Arch. On-Package Memory: Enhanced for HPC . up to 16GB at launch . 1/3X the Space6 Integrated Fabric . 5X Bandwidth vs DDR47 . 5X Power Efficiency6 Processor Package Jointly Developed with Micron Technology All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. 1Over 3 Teraflops of peak theoretical double-precision performance is preliminary and based on current expectations of cores, clock frequency and floating point operations per cycle. FLOPS = cores x clock frequency x floating- point operations per second per cycle. 2Modified version of Intel® Silvermont microarchitecture currently found in Intel® AtomTM processors. 3Modifications include AVX512 and 4 threads/core support. 4Projected peak theoretical single-thread performance relative to 1st Generation Intel® Xeon Phi™ Coprocessor 7120P (formerly codenamed Knights Corner). 5 Binary Compatible with Intel Xeon processors using Haswell Instruction Set (except TSX) . 6Projected results based on internal Intel analysis of Knights Landing memory vs Knights Corner (GDDR5). 7Projected result based on internal Intel analysis of STREAM benchmark using a Knights Landing processor with 16GB of ultra high-bandwidth versus DDR4 memory only with all channels populated. Conceptual—Not Actual Package Layout (source: Intel/Raj Hazra – ISC’14 keynote presentation) Michael Bader j HPC – Algorithms and Applications j Fundamentals j Winter 2017/2018 4 Hardware Execution CUDA’s hierarchy of threads maps to a hierarchy of processors on the GPU; a GPU executes one or more kernel grids; a streaming multiprocessor (SM) executes one or more thread blocks; and CUDA cores and other execution units in the SM execute threads. The SM executes threads in groups of 32 threads called a warp. While programmers can generally ignore warp execution for functional correctness and think of programming one thread, they can greatly improve performance by having threads in a warp execute the same code path and access memory in nearby addresses. An Overview of the Fermi Architecture The first Fermi based GPU, implemented with 3.0 billion transistors, features up to 512 CUDA cores. A CUDA core executes a floating point or integer instruction per clock for a thread. The 512 CUDA cores are organized in 16 SMs of 32 cores each. The GPU has six 64-bit memory partitions, for a 384-bit memory interface, supporting up to a total of 6 GB of GDDR5 DRAM memory. A host interface connects the GPU to the CPU via PCI-Express. The GigaThread GPGPUglobal scheduler – NVIDIA distributes thread Fermi blocks to SM thread schedulers. Fermi’s 16 SM are positioned(source: NVIDIAaround a – common Fermi Whitepaper) L2 cache. Each SM is a vertical rectangular strip that contain an orange portion (scheduler and dispatch), a green portion Michael Bader j HPC – Algorithms(execution units), and and Applications light blue portionsj Fundamentals(register file and L1 jcache).Winter 2017/2018 5 7 Instruction Cache Third Generation Streaming Warp Scheduler Warp Scheduler Multiprocessor Dispatch Unit Dispatch Unit The third generation SM introduces several Register File (32,768 x 32-bit) architectural innovationsGPGPU that – NVIDIAmake it not Fermionly the (2) most powerful SM yet built, but also the most LD/ST programmable and efficient. Core CoreInstruction Cache Core Core Third Generation Streaming Warp Scheduler Warp Scheduler LD/ST Multiprocessor Dispatch Unit Dispatch Unit SFU 512 High Performance CUDA cores LD/ST The third generation SM introduces several Core RegisterCore File (32,768 x 32-bit) Core Core architectural innovations that make it not only the LD/ST most powerful SM yet built, but also the most LD/ST LD/ST Each SM features 32 CUDAprogrammable CUDAand efficient. Core Core Core Core Core LD/ST Core Core Core SFU Core 512 High PerformanceDispatch CUDA Port cores LD/ST processors—a fourfold Core Core Core Core LD/ST Operand Collector LD/ST SFU Each SM features 32 CUDA CUDA Core LD/ST increase over prior SM Core Core Core Core LD/ST processors—a fourfold Dispatch Port LD/ST Operand Collector Core Core Core SFU Core increase over prior SM LD/ST designs. Each CUDA Core Core Core Core LD/ST LD/ST designs. EachFP CUDA Unit INTFP UnitUnit INT Unit processor has a fully LD/ST Core Core Core Core LD/ST processor has a fully pipelined integer arithmetic Result Queue LD/ST Core Core Core SFU Core logic unit (ALU) and floating LD/ST Result Queue Core Core Core Core LD/ST pipelined integer arithmetic LD/ST point unit (FPU). Prior GPUs used IEEE 754-1985 SFU LD/ST floating point arithmetic. The Fermi architecture Core Core Core Core LD/ST logic unit (ALU) and floating LD/ST implements the new IEEE 754-2008 floating-point Core Core Core SFU Core LD/ST standard, providing the fused multiply-add (FMA) Core Core Core Core LD/ST point unit (FPU). Prior GPUsinstruction used for both IEEE single and754-1985 double precision LD/ST arithmetic. FMA improves over a multiply-add Interconnect Network LD/ST floating point arithmetic. The(MAD) instructionFermi by architecture doing the multiplication and Core Core Core Core 64 KB Shared Memory / L1 Cache addition with a single final rounding step, with no LD/ST implements the new IEEE 754-2008loss of precision in thefloating-point addition. FMA is more Uniform Cache SFU (source: NVIDIA – Fermiaccurate Whitepaper) than performing the operations Fermi Streaming Multiprocessor (SM) LD/ST standard, providing the fusedseparately. multiply-add GT200 implemented double (FMA) precision FMA. Core Core Core Core LD/ST instruction for bothMichael single Bader jandIn HPCGT200, double –theAlgorithms integer ALU precision was andlimited Applications to 24-bit precisionj forFundamentals multiply operations; asj aWinter result, 2017/2018 6 multi-instruction emulation sequences were required for integer arithmetic. In Fermi, the newly arithmetic. FMA improvesdesigned over integer a multiply-add ALU supports full 32-bit precision for all instructions, consistent withInterconnect standard Network programming language requirements. The integer ALU is also optimized to efficiently support (MAD) instruction by doing64-bit the and multiplication extended precision operations. and Various instructions are supported, including Boolean, shift, move, compare, convert, bit-field extract, bit-reverse insert, and64 population KB Shared Memory / L1 Cache addition with a single final count.rounding step, with no loss of precision in the addition.16 Load/Store FMA Units is more Uniform Cache Each SM has 16 load/store units, allowing source and destination Fermiaddresses Streamingto be calculated Multiprocessor (SM) accurate than performing thefor sixteen operations threads per clock. Supporting units load and store the data at each address to separately. GT200 implementedcache or DRAM. double precision FMA. In GT200, the integer ALU was limited to 24-bit precision for multiply operations; as a result, 8 multi-instruction emulation sequences were required for integer arithmetic. In Fermi, the newly designed integer ALU supports full 32-bit precision for all instructions, consistent with standard programming language requirements. The integer ALU is also optimized to efficiently support 64-bit and extended precision operations. Various instructions are supported, including Boolean, shift, move, compare, convert, bit-field extract, bit-reverse insert, and population count. 16 Load/Store Units Each SM has 16 load/store units, allowing source and destination addresses to be calculated for sixteen threads per clock. Supporting units load and store the data at each address to cache or DRAM. 8 GPGPU – NVIDIA Fermi (3) Memory Subsystem Innovations General Purpose GraphicsNVIDIA Parallel Processing DataCache TM with Configurable Unit: L1 and Unified L2 Cache Working with hundreds of GPU computing applications from various industries, we learned that while Shared memory benefits many problems, it is not appropriate for all problems. Some algorithms map naturally to Shared • 512 CUDA coresmemory, (organized others require a cache, in 16 while others require a combination of both. The optimal streaming multiprocessors)memory hierarchy should offer the benefits of both Shared memory and cache, and allow the • improved doubleprogrammer precision a choice over its partitioning. The Fermi memory hierarchy
Recommended publications
  • Paralellizing the Data Cube
    PARALELLIZING THE DATA CUBE By Todd Eavis SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT DALHOUSIE UNIVERSITY HALIFAX, NOVA SCOTIA JUNE 27, 2003 °c Copyright by Todd Eavis, 2003 DALHOUSIE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE The undersigned hereby certify that they have read and recommend to the Faculty of Graduate Studies for acceptance a thesis entitled “Paralellizing the Data Cube” by Todd Eavis in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Dated: June 27, 2003 External Examiner: Virendra Bhavsar Research Supervisor: Andrew Rau-Chaplin Examing Committee: Qigang Gao Evangelos Milios ii DALHOUSIE UNIVERSITY Date: June 27, 2003 Author: Todd Eavis Title: Paralellizing the Data Cube Department: Computer Science Degree: Ph.D. Convocation: October Year: 2003 Permission is herewith granted to Dalhousie University to circulate and to have copied for non-commercial purposes, at its discretion, the above title upon the request of individuals or institutions. Signature of Author THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S WRITTEN PERMISSION. THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE IS CLEARLY ACKNOWLEDGED. iii To the two women in my life: Amber and Bailey. iv Table of Contents Table of Contents v List of Tables x List of Figures xi Abstract i Acknowledgements ii 1 Introduction 1 1.1 Overview of Primary Research .
    [Show full text]
  • Cache-Aware Roofline Model: Upgrading the Loft
    1 Cache-aware Roofline model: Upgrading the loft Aleksandar Ilic, Frederico Pratas, and Leonel Sousa INESC-ID/IST, Technical University of Lisbon, Portugal ilic,fcpp,las @inesc-id.pt f g Abstract—The Roofline model graphically represents the attainable upper bound performance of a computer architecture. This paper analyzes the original Roofline model and proposes a novel approach to provide a more insightful performance modeling of modern architectures by introducing cache-awareness, thus significantly improving the guidelines for application optimization. The proposed model was experimentally verified for different architectures by taking advantage of built-in hardware counters with a curve fitness above 90%. Index Terms—Multicore computer architectures, Performance modeling, Application optimization F 1 INTRODUCTION in Tab. 1. The horizontal part of the Roofline model cor- Driven by the increasing complexity of modern applica- responds to the compute bound region where the Fp can tions, microprocessors provide a huge diversity of compu- be achieved. The slanted part of the model represents the tational characteristics and capabilities. While this diversity memory bound region where the performance is limited is important to fulfill the existing computational needs, it by BD. The ridge point, where the two lines meet, marks imposes challenges to fully exploit architectures’ potential. the minimum I required to achieve Fp. In general, the A model that provides insights into the system performance original Roofline modeling concept [10] ties the Fp and the capabilities is a valuable tool to assist in the development theoretical bandwidth of a single memory level, with the I and optimization of applications and future architectures.
    [Show full text]
  • CS 575: the Roofline Model
    CS 575: The Roofline Model Wim Bohm Colorado State University Spring 2013 Roofline: An Insightful Visual Performance Model.. David Patterson.. U.C. Berkeley submitted to CAM April 2008 Analyzing Program Performance n In empirical Computer Science, we plot functions describing the run time (or the memory use) of a program: ¨ This can be as a function of the input size. We have seen this in e.g. cs320 or cs420, where we studied polynomial and exponential (monotonically growing) complexity. ¨ In this class we also study program performance as a function of the number of processors. n In this case the functions are positive and, hopefully decreasing. n Also we plot speedup curves, which are usually asymptotic ¨ The roofline model plots GFlops/second as a function of Operational Intensity (GFlops/byte) Straight Lines CS475: When plotting data we get the most information from straight lines! ¨ We can easily recognize a straight line (y = ax+b) n The slope (a) and y intercept (b) tells us all. ¨ So we need to turn our data sets into straight lines. ¨ This is easiest done using log-s, because they turn a multiplicative factor into a shift up (y intercept) , and an exponential into a multiplicative factor (slope) Exponential functions log(2n) = n log2 linear in n log(3n) = n log 3 slope is base of log log(4.3n) = n log3 + log4 * shifts it up log((3n)/4) = n log3 – log4 / shifts it down Exponentials: semi-log plot n 2n 3n 20*3n 10000000" 0 1 1 20 1000000" 1 2 3 60 2 4 9 180 100000" 3 8 27 540 10000" 4 16 81 1620 2^n" 3^n" 5 32 243 4860 1000" 20"3^n" 7 128 2087 41740 10 1024 56349 1126980 100" 10" semi-log plot: y–axis on log scale 1" x-axis linear 0" 2" 4" 6" 8" 10" 12" angle: base shift: multiplicative factor Polynomials n What if we take the log of a polynomial? e.g.
    [Show full text]
  • Two-Level Main Memory Co-Design: Multi-Threaded Algorithmic Primitives, Analysis, and Simulation
    Two-Level Main Memory Co-Design: Multi-Threaded Algorithmic Primitives, Analysis, and Simulation Michael A. Bender∗x Jonathan Berryy Simon D. Hammondy K. Scott Hemmerty Samuel McCauley∗ Branden Moorey Benjamin Moseleyz Cynthia A. Phillipsy David Resnicky and Arun Rodriguesy ∗Stony Brook University, Stony Brook, NY 11794-4400 USA fbender,[email protected] ySandia National Laboratories, Albuquerque, NM 87185 USA fjberry, sdhammo, kshemme, bjmoor, caphill, drresni, [email protected] zWashington University in St. Louis, St. Louis, MO 63130 USA [email protected] xTokutek, Inc. www.tokutek.com Abstract—A fundamental challenge for supercomputer memory close to the processor, there can be a higher architecture is that processors cannot be fed data from number of connections between the memory and caches, DRAM as fast as CPUs can consume it. Therefore, many enabling higher bandwidth than current technologies. applications are memory-bandwidth bound. As the number 1 of cores per chip increases, and traditional DDR DRAM While the term scratchpad is overloaded within the speeds stagnate, the problem is only getting worse. A computer architecture field, we use it throughout this variety of non-DDR 3D memory technologies (Wide I/O 2, paper to describe a high-bandwidth, local memory that HBM) offer higher bandwidth and lower power by stacking can be used as a temporary storage location. DRAM chips on the processor or nearby on a silicon The scratchpad cannot replace DRAM entirely. Due to interposer. However, such a packaging scheme cannot contain sufficient memory capacity for a node. It seems the physical constraints of adding the memory directly likely that future systems will require at least two levels of to the chip, the scratchpad cannot be as large as DRAM, main memory: high-bandwidth, low-power memory near although it will be much larger than cache, having the processor and low-bandwidth high-capacity memory gigabytes of storage capacity.
    [Show full text]
  • Beyond the Roofline: Cache-Aware Power and Energy-Efficiency
    This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. The final version of record is available at http://dx.doi.org/10.1109/TC.2016.2582151 TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MAY 2016 1 Beyond the Roofline: Cache-aware Power and Energy-Efficiency Modeling for Multi-cores Aleksandar Ilic, Member, IEEE, Frederico Pratas, Member, IEEE, and Leonel Sousa, Senior Member, IEEE Abstract—To foster the energy-efficiency in current and future multi-core processors, the benefits and trade-offs of a large set of optimization solutions must be evaluated. For this purpose, it is often crucial to consider how key micro-architecture aspects, such as accessing different memory levels and functional units, affect the attainable power and energy consumption. To ease this process, we propose a set of insightful cache-aware models to characterize the upper-bounds for power, energy and energy-efficiency of modern multi-cores in three different domains of the processor chip: cores, uncore and package. The practical importance of the proposed models is illustrated when optimizing matrix multiplication and deriving a set of power envelopes and energy-efficiency ranges of the micro-architecture for different operating frequencies. The proposed models are experimentally validated on a computing platform with a quad-core Intel 3770K processor by using hardware counters, on-chip power monitoring facilities and assembly micro-benchmarks. Index Terms—Multicore architectures, Modeling and simulation, Performance evaluation and measurement. F 1 INTRODUCTION N the road to pursuing highly energy-efficient execu- The key contribution of this paper is a set of insight- O tion, current and future trends in computer architec- ful cache-aware models to characterize the upper-bounds ture move towards complex and heterogeneous designs by for power, energy and energy-efficiency of modern multi- incorporating specialized functional units and cores [1].
    [Show full text]
  • Minimizing Writes in Parallel External Memory Search
    Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Minimizing Writes in Parallel External Memory Search Nathan R. Sturtevant and Matthew J. Rutherford University of Denver Denver, CO, USA fsturtevant, [email protected] Abstract speed in Chinese Checkers, and is 3.5 times faster in Rubik’s Cube. Recent research on external-memory search has shown that disks can be effectively used as sec- WMBFS is motivated by several observations: ondary storage when performing large breadth- first searches. We introduce the Write-Minimizing First, most large-scale BFSs have been performed to ver- Breadth-First Search (WMBFS) algorithm which ify the diameter (the number of unique depths at which states is designed to minimize the number of writes per- can be found) or the width (the maximum number of states at formed in an external-memory BFS. WMBFS is any particular depth) of a state space, after which any com- also designed to store the results of the BFS for puted data is discarded. There are, however, many scenarios later use. We present the results of a BFS on a in which the results of a large BFS can be later used for other single-agent version of Chinese Checkers and the computation. In particular, a breadth-first search is the under- Rubik’s Cube edge cubes, state spaces with about lying technique for building pattern databases (PDBs), which 1 trillion states each. In evaluating against a com- are used as heuristics for search. PDBs require that the depth parable approach, WMBFS reduces the I/O for the of each state in the BFS be stored for later usage.
    [Show full text]
  • How to Write Fast Numerical Code Fall 2016 Lecture: Roofline Model
    How to Write Fast Numerical Code Fall 2016 Lecture: Roofline model Instructor: Torsten Hoefler & Markus Püschel TA: Salvatore Di Girolamo Roofline model (Williams et al. 2008) Roofline model Resources in a processor that bound performance: Example: one core with π = 2 and β = 1 and no SSE • peak performance [flops/cycle] ops are double precision flops • memory bandwidth [bytes/cycle] • <others> performance [ops/cycle] Platform model bound based on β mem 4 bound based on π Bandwidth β carefully measured π = 2 [bytes/cycle] • raw bandwidth from manual is β: 1 unattainable (maybe 60% is) cache x • Stream benchmark may be 1/2 mem. compute bound conservative 1/4 bound P1 Pp 1/4 1/2 1 2 4 8 operational Peak performance π [ops/cycle] intensity some function [ops/bytes] run on some input Algorithm model (n is the input size) Operational intensity I(n) = W(n)/Q(n) = Bound based on β? - assume program as operational intensity of x ops/byte number of flops (cost) [ops/bytes] - it can get only β bytes/cycle number of bytes transferred - hence: performance = y ≤ βx between memory and cache - in log scale: log2(y) ≤ log2(β) + log2(x) - line with slope 1; y = β for x = 1 Q(n): assumes empty cache; Variations best measured with performance counters - vector instructions: peak bound goes up (e.g., 4 times for AVX) - multiple cores: peak bound goes up (p times for p cores) Notes - program has uneven mix adds/mults: peak bound comes down In general, Q and hence W/Q depend on the cache size m [bytes].
    [Show full text]
  • A Roofline Model of Energy
    Preprint – To appear in the IEEE Int’l. Parallel & Distributed Processing Symp. (IPDPS), May 2013 A roofline model of energy Jee Whan Choi Daniel Bedard, Robert Fowler Richard Vuduc Georgia Institute of Technology Renaissance Computing Institute Georgia Institute of Technology Atlanta, Georgia, USA Chapel Hill, North Carolina, USA Atlanta, Georgia, USA [email protected] fdanb,[email protected] [email protected] Abstract—We describe an energy-based analogue of the time- or alternative explanations about time, energy, and power based roofline model. We create this model from the perspective relationships. of algorithm designers and performance tuners, with the intent not of making exact predictions, but rather, developing high- First, when analyzing time, the usual first-order analytic level analytic insights into the possible relationships among tool is to assess the balance of the processing system [7]– the time, energy, and power costs of an algorithm. The model [12]. Recall that balance is the ratio of work the system expresses algorithms in terms of operations, concurrency, and can perform per unit of data transfer. To this notion of memory traffic; and characterizes the machine based on a time-balance, we define an energy-balance analogue, which small number of simple cost parameters, namely, the time and energy costs per operation or per word of communication. We measures the ratio of flops and bytes per unit-energy (e.g., confirm the basic form of the model experimentally. From this Joules). We compare balancing computations in time against model, we suggest under what conditions we ought to expect balancing in energy. [xII] an algorithmic time-energy trade-off, and show how algorithm Secondly, we use energy-balance to develop an energy- properties may help inform power management.
    [Show full text]
  • Roofline-Based Data Migration Methodology for Hybrid Memories 849
    Roofline-based Data Migration Methodology for Hybrid Memories 849 Roofline-based Data Migration Methodology for Hybrid Memories Jongmin Lee1, Kwangho Lee1, Mucheol Kim2, Geunchul Park3, Chan Yeol Park3 1 Department of Computer Engineering, Won-Kwang University, Korea 2 School of Software, Chung-Ang University, Korea 3 National Institute of Supercomputing and Networking, Korea Institute of Science and Technology Information, Korea [email protected], [email protected], [email protected], [email protected], [email protected]* Abstract be the future memory systems in high-performance computing (HPC) systems [4-7]. High-performance computing (HPC) systems provide Knights Landing (KNL) is the code name for the huge computational resources and large memories. The second-generation Intel Xeon Phi product family [1, 8]. hybrid memory is a promising memory technology that The KNL processor contains tens of cores and it contains different types of memory devices, which have provides the HBM 3D-stacked memory as a Multi- different characteristics regarding access time, retention Channel DRAM (MCDRAM). DRAM and MCDRAM time, and capacity. However, the increasing performance differ significantly in terms of access time, bandwidth and employing hybrid memories induce more complexity and capacity. Because of those differences between as well. In this paper, we propose a roofline-based data DRAM and MCDRAM, performance will vary migration methodology called HyDM to effectively use depending on the application characteristics and the hybrid memories targeting at Intel Knight Landing (KNL) usage of memory resources. The efficient use of these processor. HyDM monitors status of applications running systems requires prior application knowledge to on a system and migrates pages of selected applications determine which data of applications to place in which to the High Bandwidth Memory (HBM).
    [Show full text]
  • Roofline Model Toolkit: a Practical Tool for Architectural and Program
    Roofline Model Toolkit: A Practical Tool for Architectural and Program Analysis Yu Jung Lo, Samuel Williams, Brian Van Straalen, Terry J. Ligocki, Matthew J. Cordery, Nicholas J. Wright, Mary W. Hall, and Leonid Oliker University of Utah, Lawerence Berkeley National Laboratory {yujunglo,mhall}@cs.utah.edu {swwilliams,bvstraalen,tjligocki,mjcordery,njwright,loliker}@lbl.gov Abstract. We present preliminary results of the Roofline Toolkit for multicore, manycore, and accelerated architectures. This paper focuses on the processor architecture characterization engine, a collection of portable instrumented micro benchmarks implemented with Message Passing Interface (MPI), and OpenMP used to express thread-level paral- lelism. These benchmarks are specialized to quantify the behavior of dif- ferent architectural features. Compared to previous work on performance characterization, these microbenchmarks focus on capturing the perfor- mance of each level of the memory hierarchy, along with thread-level parallelism, instruction-level parallelism and explicit SIMD parallelism, measured in the context of the compilers and run-time environments. We also measure sustained PCIe throughput with four GPU memory managed mechanisms. By combining results from the architecture char- acterization with the Roofline model based solely on architectural spec- ifications, this work offers insights for performance prediction of current and future architectures and their software systems. To that end, we in- strument three applications and plot their resultant performance on the corresponding Roofline model when run on a Blue Gene/Q architecture. Keywords: Roofline, Memory Bandwidth, CUDA Unified Memory 1 Introduction The growing complexity of high-performance computing architectures makes it difficult for users to achieve sustained application performance across different architectures.
    [Show full text]
  • FPGA-Roofline: an Insightful Model for FPGA-Based Hardware
    FPGA-Roofline: An Insightful Model for FPGA-based Hardware Accelerators in Modern Embedded Systems Moein Pahlavan Yali Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Computer Engineering Patrick R. Schaumont, Chair Thomas L. Martin Chao Wang December 10, 2014 Blacksburg, Virginia Keywords: Embedded Systems, FPGA, Hardware Accelerator, Performance Model FPGA-Roofline: An Insightful Model for FPGA-based Hardware Accelerators in Modern Embedded Systems Moein Pahlavan Yali (ABSTRACT) The quick growth of embedded systems and their increasing computing power has made them suitable for a wider range of applications. Despite the increasing performance of modern em- bedded processors, they are outpaced by computational demands of the growing number of modern applications. This trend has led to emergence of hardware accelerators in embed- ded systems. While the processing power of dedicated hardware modules seems appealing, they require significant effort of development and integration to gain performance benefit. Thus, it is prudent to investigate and estimate the integration overhead and consequently the hardware acceleration benefit before committing to implementation. In this work, we present FPGA-Roofline, a visual model that offers insights to designers and developers to have realistic expectations of their system and that enables them to do their design and analysis in a faster and more efficient fashion. FPGA-Roofline allows simultaneous analysis of communication and computation resources in FPGA-based hardware accelerators. To demonstrate the effectiveness of our model, we have implemented hardware accelerators in FPGA and used our model to analyze and optimize the overall system performance.
    [Show full text]
  • Gables: a Roofline Model for Mobile Socs
    2019 IEEE International Symposium on High Performance Computer Architecture (HPCA) Gables: A Roofline Model for Mobile SoCs Mark D. Hill∗ Vijay Janapa Reddi∗ Computer Sciences Department School Of Engineering And Applied Sciences University of Wisconsin—Madison Harvard University [email protected] [email protected] Abstract—Over a billion mobile consumer system-on-chip systems with multiple cores, GPUs, and many accelerators— (SoC) chipsets ship each year. Of these, the mobile consumer often called intellectual property (IP) blocks, driven by the market undoubtedly involving smartphones has a significant need for performance. These cores and IPs interact via rich market share. Most modern smartphones comprise of advanced interconnection networks, caches, coherence, 64-bit address SoC architectures that are made up of multiple cores, GPS, and many different programmable and fixed-function accelerators spaces, virtual memory, and virtualization. Therefore, con- connected via a complex hierarchy of interconnects with the goal sumer SoCs deserve the architecture community’s attention. of running a dozen or more critical software usecases under strict Consumer SoCs have long thrived on tight integration and power, thermal and energy constraints. The steadily growing extreme heterogeneity, driven by the need for high perfor- complexity of a modern SoC challenges hardware computer mance in severely constrained battery and thermal power architects on how best to do early stage ideation. Late SoC design typically relies on detailed full-system simulation once envelopes, and all-day battery life. A typical mobile SoC in- the hardware is specified and accelerator software is written cludes a camera image signal processor (ISP) for high-frame- or ported.
    [Show full text]