Mechanisms and Implications of Bone Adipose Tissue-Mineral Relationships

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms and Implications of Bone Adipose Tissue-Mineral Relationships European Journal of Clinical Nutrition (2012) 66, 979–982 & 2012 Macmillan Publishers Limited All rights reserved 0954-3007/12 www.nature.com/ejcn EDITORIAL Mechanisms and implications of bone adipose tissue-mineral relationships European Journal of Clinical Nutrition (2012) 66, 979–982; marrow and 1.5 kg yellow marrow (1.3 kg of each in the reference 15 doi:10.1038/ejcn.2012.88 58 kg female). INVERSE BONE MINERAL AND BONE FAT RELATIONSHIP BACKGROUND Since fat accumulates in bone marrow, while mineral is lost Although there has been extensive interest in the adverse effects especially after age 30–40 years, an inverse relationship between of obesity on health and the role of fat distribution between and individuals of widely different adult ages is expected to exist, and many scanning studies support the information obtained from within different tissues, the significance of fat in the bone marrow 15,16 has received relatively little attention. This issue of European bone biopsy or autopsy studies. However, it is more difficult to Journal of Clinical Nutrition contains an article1 that reports an conclude that the same inverse relationship applies to individuals inverse relationship between intra-osseous adipose tissue volume, of comparable age, especially since several studies examining measured in the pelvis of adults using magnetic resonance bone adipose tissue (or fat)-mineral relationships have not adjusted for age.16,17,19–22 A few studies have adjusted for imaging (MRI), and bone mineral density (BMD) of the pelvis, 23,24 1 lumbar vertebrae and the whole body, measured using dual age, among them being the recent study of Shen et al. This energy X-ray absorptiometry (DXA). They suggest that the two last study stands out from others in that it has substantial power may be causally linked according to an existing hypothesis about due to the large sample size (200 aged 18–40 years and another mesenchymal stem cells, which can preferentially differentiate 200 440 years) and in demonstrating that the inverse bone into adipocytes or osteoblasts. The paper not only raises questions adipose tissue-mineral relationship is robust, persisting in both the about the biology of mineralisation and fat metabolism in bone, younger and older groups even after adjustment for multiple but also about the potential interaction between them and their variables (age, weight, total body fat, subcutaneous adipose tissue, relevance to the development of osteoporosis. To contextualise visceral adipose tissue, skeletal muscle, sex, ethnicity and the new findings, it is helpful to first briefly consider the normal menopausal status; r values ranging from À 0.155 and À 0.266). changes in both the fat and mineral content of bone which occur The paper raises questions about the mechanisms responsible for during the normal adult lifespan. the inverse bone adipose tissue-mineral relationship and the There has been some controversy about the age of peak bone merits and limitations of different methodological approaches to mass using measurements of whole body BMD or bone mineral assess such relationships. content (BMC) obtained by DXA. Some studies indicate that it occurs at 20–30 years2,3 (longitudinal and cross-sectional studies), but others suggest that it occurs later at 30–40 years4,5 and POSSIBLE MECHANISMS RESPONSIBLE FOR THE INVERSE perhaps earlier in the late teens.6,7 The age varies according to BONE MINERAL-FAT RELATIONSHIP gender, ethnicity, pubertal status, physical activity and genetic A key hypothesis supported by Shen et al.1 concerns mesangial factors. It also varies according to the type of bone8–10 and even stem cells that can differentiate into either osteoblasts or fat region within the same bone.8–10 Peak bone mass of the lumbar cells.25 Preferential differentiation into osteoblasts can help spine has generally been reported to occur at 20–40 years8–14 but explain why more bone is associated with less fat, and vice at the femoral neck, it has often been reported to occur earlier at versa. The hypothesis, which is based on experimental laboratory around 20 years or even earlier.8–10 There appears to be little work, is attractive because it is conceptually simple, with a single information about age of the peak bone mass of the pelvis. In the event explaining partitioning of tissue into fat and bone. However, whole body little net bone loss generally occurs before the age of a number of alternative hypotheses can also be suggested. For 40 years, although about a 10% reduction in BMD has been example, a traditional explanation is that fat simply accumulates reported to occur at some sites.8,10 passively in the variable bone marrow space26 made available The temporal pattern of change in bone fat differs from that of during development and remodelling. However, this does not mineral in that it continues to accumulate in bone during the explain why the marrow space is not filled by extracellular fluid or entire lifespan15–17 due to two major processes. First, red marrow another type of tissue/substance. Another hypothesis is that the (a homeopoietic tissue), which contains a smaller proportion of fat, biological variation in bone to marrow space, known to occur both is replaced by yellow fat, with a larger proportion of fat (B80% before and after peak bone mass is attained, is due to the direct fat).15,18 At birth nearly all the marrow is red. In the young adult, effect of regulated processes on mature bone cells associated with red marrow is found predominantly in the vertebrae, skull, bone formation (osteoblasts) and/or bone resorption (osteoclasts) sternum, ribs, skull pelvis and the proximal ends of femurs and which occur simultaneously during the lifespan. humerii, and in several of these bones (for example, vertebrae, A distinctly different hypothesis is that metabolic processes in sternum and ileum) red marrow continues to be replaced by mature fat cells influence the function of mature bone cells yellow marrow during the remaining adult lifespan.15 Second, fat (osteoblasts and/or osteoclasts) or vice versa. The location of bone fills the space made available from the net loss of bone mineral, fat in the trabercular area where remodelling is active raises the predominantly after the age of 40 years as part of the ‘aging’ possibility of a functional metabolic relationships between the two process. As a result of both of these processes, the amount of types of cells, including the provision of energy by fat cells to bone marrow fat during the adult lifespan doubles in both males allow osteoblasts and osteoclasts to remodel bone.27 The and females. In the reference 70 kg male there is 1.5 kg of red possibility of cross-talk between fat and bone cells is suggested Editorial 980 by the presence of receptors for fatty acids28 and adipokines, such mesenchymal cells towards the adipocyte cell line (more fat) at as leptin and adiponectin,29 on both osteoblasts and osteoclasts. the expense of osteoblast formation (less bone mass)).36,37 Much Two types of interactions have been suggested: systemic more needs to be understood about the underlying mechanisms and local.30 Experimental studies indicate that bone marrow fat controlling bone mass and function before novel pharmacological cells can inhibit the function and survival of osteoblasts while strategies to treat or prevent osteoporosis can be successfully stimulating osteoclast differentiation and function. This local or implemented in clinical practice. paracrine interaction depends on locally produced fatty acids and adipokines. The notion of systemic interactions is partly based on the potential activation of the same bone cell receptors by METHODOLOGICAL ISSUES circulating fatty acids and adipokines produced by extra-osseous Methodological issues associated with establishing bone adipose adipose tissue. It is also partly based on a variety of other tissue (or fat)-mineral relationships also need consideration since observations, such as the effect of hyperlipidemia in promoting they have more general implications for biomedical research. First, osteoclastic potential of mouse bone marrow cells examined in assessing BMD using DXA at least two potential errors can arise ex vivo,31 and on the effect of an atherogenic high fat diet in from the presence of fat. One relates to the inhomogeneous mice32 in reducing vertebral bone mineralisation, a process that distribution of fat around the projected bone (it is assumed that appears to involve reduced marrow expression of osteocalcin the fat in front and behind bone is similar to that in the other derived from osteoclasts. A relationship has also been reported areas surrounding the bone). The other relates to the presence of between visceral adipose tissue mass and fat in the lumbar intra-osseous fat. With an assumed variability (s.d.) of ±10% for vertebrae of humans19 although in the study of Shen et al. the the proportion of fat in lumbar vertebrae it was estimated,38 using relationship between volume of bone marrow fat and BMD data from three studies, that this would translate to an error in persisted after adjustment for visceral adipose tissue volume BMD estimation of ±0.4% (s.d.) to ±3%.38–40 Since the variability which was measured by MRI. in BMD in the study of Shen et al. is much greater than this (about Yet another theoretical possibility that may help explain the 15% when s.d. is expressed as a percentage of the mean BMD) inverse bone adipose tissue (or fat)-mineral relationship concerns the error arising from the presence of intra-osseous fat is likely to the effects of other systemic factors, such as circulating hormones be small. that simultaneously influence bone cells and intra-osseous fat Second, since DXA scanning is a two-dimensional process the cells. For example, a recent study19 found an inverse relationship amount of bone mineral is expressed in relation to a projected between fat in the lumbar vertebrae of humans, measured by bone area (areal density (areal BMD); g/cm2), from which the total magnetic resonance spectroscopy (MRS) (see below) and mineral content (BMC) of the bone or region of interest can be circulating insulin-like growth factor 1 concentration, which calculated (BMC ¼ areal BMD Â bone projected area).
Recommended publications
  • ICRS Heritage Summit 1
    ICRS Heritage Summit 1 20th Anniversary www.cartilage.org of the ICRS ICRS Heritage Summit June 29 – July 01, 2017 Gothia Towers, Gothenburg, Sweden Final Programme & Abstract Book #ICRSSUMMIT www.cartilage.org Picture Copyright: Zürich Tourismus 2 The one-step procedure for the treatment of chondral and osteochondral lesions Aesculap Biologics Facing a New Frontier in Cartilage Repair Visit Anika at Booth #16 Easy and fast to be applied via arthroscopy. Fixation is not required in most cases. The only entirely hyaluronic acid-based scaffold supporting hyaline-like cartilage regeneration Biologic approaches to tissue repair and regeneration represent the future in healthcare worldwide. Available Sizes Aesculap Biologics is leading the way. 2x2 cm Learn more at www.aesculapbiologics.com 5x5 cm NEW SIZE Aesculap Biologics, LLC | 866-229-3002 | www.aesculapusa.com Aesculap Biologics, LLC - a B. Braun company Website: http://hyalofast.anikatherapeutics.com E-mail: [email protected] Telephone: +39 (0)49 295 8324 ICRS Heritage Summit 3 The one-step procedure for the treatment of chondral and osteochondral lesions Visit Anika at Booth #16 Easy and fast to be applied via arthroscopy. Fixation is not required in most cases. The only entirely hyaluronic acid-based scaffold supporting hyaline-like cartilage regeneration Available Sizes 2x2 cm 5x5 cm NEW SIZE Website: http://hyalofast.anikatherapeutics.com E-mail: [email protected] Telephone: +39 (0)49 295 8324 4 Level 1 Study Proves Efficacy of ACP in
    [Show full text]
  • Marrow Adipose Tissue Spectrum in Obesity and Type 2 Diabetes Mellitus
    176:1 I M de Araújo and others Marrow adipose tissue in 176:1 21–30 Clinical Study type 2 diabetes Marrow adipose tissue spectrum in obesity and type 2 diabetes mellitus Iana M de Araújo¹, Carlos E G Salmon², Andressa K Nahas³, Marcello H Nogueira-Barbosa¹, Jorge Elias Jr¹ and Francisco J A de Paula¹ Correspondence 1Department of Internal Medicine, Ribeirao Preto Medical School, 2Department of Physics, Faculty of should be addressed Philosophy, Sciences and Arts of Ribeirao Preto, and 3Department of Epidemiology, School of Public to F J A de Paula Health, USP, Ribeirão Preto, Sao Paulo,, Brazil Email [email protected] Abstract Objective: To assess the association of bone mass and marrow adipose tissue (MAT) with other fat depots, insulin resistance, bone remodeling markers, adipokines and glucose control in type 2 diabetes and obesity. Design and methods: The study groups comprised 24 controls (C), 26 obese (O) and 28 type 2 diabetes. Dual-energy X-ray absorptiometry was used to determine bone mineral density (BMD). Blood samples were collected for biochemical measurements. 1H Magnetic resonance spectroscopy was used to assess MAT in the L3 vertebra, and abdominal magnetic resonance imaging was used to assess intrahepatic lipids in visceral (VAT) and subcutaneous adipose tissue. Regression analysis models were used to test the association between parameters. Results: At all sites tested, BMD was higher in type 2 diabetes than in O and C subjects. The C group showed lower VAT values than the type 2 diabetes group and lower IHL than the O and type 2 diabetes groups.
    [Show full text]
  • Adipose-Derived Mesenchymal Stem Cell Treatments and Available Formulations
    Current Reviews in Musculoskeletal Medicine (2020) 13:264–280 https://doi.org/10.1007/s12178-020-09624-0 STEM CELLS IN ORTHOPAEDIC SURGERY (J DRAGOO AND K JONES, SECTION EDITORS) Adipose-Derived Mesenchymal Stem Cell Treatments and Available Formulations Kyle N. Kunze1 & Robert A. Burnett1 & Joshua Wright-Chisem2 & Rachel M. Frank3 & Jorge Chahla1 Published online: 23 April 2020 # Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract Purpose of Review The use of human adipose-derived mesenchymal stem cells (ADSCs) has gained attention due to its potential to expedite healing and the ease of harvesting; however, clinical evidence is limited, and questions concerning optimal method of delivery and long-term outcomes remain unanswered. Recent Findings Administration of ADSCs in animal models has been reported to aid in improved healing benefits with enhanced repair biomechanics, superior gross histological appearance of injury sites, and higher concentrations of growth factors associated with healing compared to controls. Recently, an increasing body of research has sought to examine the effects of ADSCs in humans. Summary Several available processing techniques and formulations for ADSCs exist with evidence to suggest benefits with the use of ADSCs, but the superiority of any one method is not clear. Evidence from the most recent clinical studies available demonstrates promising outcomes following treatment of select musculoskeletal pathologies with ADSCs despite reporting variability among ADSCs harvesting and processing; these include (1) healing benefits and pain improvement for rotator cuff and Achilles tendinopathies, (2) improvements in pain and function in those with knee and hip osteoarthritis, and (3) improved cartilage regeneration for osteochondral focal defects of the knee and talus.
    [Show full text]
  • CKD: Bone Mineral Metabolism Peter Birks, Nephrology Fellow
    CKD: Bone Mineral Metabolism Peter Birks, Nephrology Fellow CKD - KDIGO Definition and Classification of CKD ◦ CKD: abnormalities of kidney structure/function for > 3 months with health implications ≥1 marker of kidney damage: ACR ≥30 mg/g Urine sediment abnormalities Electrolyte and other abnormalities due to tubular disorders Abnormalities detected by histology Structural abnormalities (imaging) History of kidney transplant OR GFR < 60 Parathyroid glands 4 glands behind thyroid in front of neck Parathyroid physiology Parathyroid hormone Normal circumstances PTH: ◦ Increases calcium ◦ Lowers PO4 (the renal excretion outweighs the bone release and gut absorption) ◦ Increases Vitamin D Controlled by feedback ◦ Low Ca and high PO4 increase PTH ◦ High Ca and low PO4 decrease PTH In renal disease: Gets all messed up! Decreased phosphate clearance: High Po4 Low 1,25 OH vitamin D = Low Ca Phosphate binds calcium = Low Ca Low calcium, high phosphate, and low VitD all feedback to cause more PTH release This is referred to as secondary hyperparathyroidism Usually not seen until GFR < 45 Who cares Chronically high PTH ◦ High bone turnover = renal osteodystrophy Osteoporosis/fractures Osteomalacia Osteitis fibrosa cystica High phosphate ◦ Associated with faster progression CKD ◦ Associated with higher mortality Calcium-phosphate precipitation ◦ Soft tissue, blood vessels (eg: coronary arteries) Low 1,25 OH-VitD ◦ Immune status, cardiac health? KDIGO KDIGO: Kidney Disease Improving Global Outcomes Most recent update regarding
    [Show full text]
  • The Challenge of Articular Cartilage Repair
    Doctoral Program of Clinical Research Faculty of Medicine University of Helsinki Finland THE CHALLENGE OF ARTICULAR CARTILAGE REPAIR STUDIES ON CARTILAGE REPAIR IN ANIMAL MODELS AND IN CELL CULTURE Eve Salonius ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Medicine of the University of Helsinki, for public examination in lecture room PIII, Porthania, Yliopistonkatu 3, on Friday the 22nd of November, 2019 at 12 o’clock. Helsinki 2019 Supervisors: Professor Ilkka Kiviranta, M.D., Ph.D. Department of Orthopaedics and Traumatology Clinicum Faculty of Medicine University of Helsinki Finland Virpi Muhonen, Ph.D. Department of Orthopaedics and Traumatology Clinicum Faculty of Medicine University of Helsinki Finland Reviewers: Professor Heimo Ylänen, Ph.D. Department of Electronics and Communications Engineering Tampere University of Technology Finland Adjunct Professor Petri Virolainen, M.D., Ph.D. Department of Orthopaedics and Traumatology University of Turku Finland Opponent: Professor Leif Dahlberg, M.D., Ph.D. Department of Orthopaedics Lund University Sweden The Faculty of Medicine uses the Urkund system (plagiarism recognition) to examine all doctoral dissertations © Eve Salonius 2019 ISBN 978-951-51-5613-6 (paperback) ISBN 978-951-51-5614-3 (PDF) Unigrafia Helsinki 2019 ABSTRACT Articular cartilage is highly specialized connective tissue that covers the ends of bones in joints. Damage to articulating joint surface causes pain and loss of joint function. The prevalence of cartilage defects is expected to increase, and if untreated, they may lead to premature osteoarthritis, the world’s leading joint disease. Early intervention may cease this process. The first-line treatment of non-surgical management of articular cartilage defects is physiotherapy and pain medication to alleviate symptoms.
    [Show full text]
  • Adipocytes in Hematopoiesis and Acute Leukemia: Friends, Enemies, Or Innocent Bystanders?
    Leukemia (2020) 34:2305–2316 https://doi.org/10.1038/s41375-020-0886-x REVIEW ARTICLE Molecular targets for therapy Adipocytes in hematopoiesis and acute leukemia: friends, enemies, or innocent bystanders? 1 1 1 Julia Zinngrebe ● Klaus-Michael Debatin ● Pamela Fischer-Posovszky Received: 15 April 2020 / Revised: 15 May 2020 / Accepted: 21 May 2020 / Published online: 30 May 2020 © The Author(s) 2020. This article is published with open access Abstract The bone marrow is home to well-balanced normal hematopoiesis, but also the stage of leukemia’s crime. Marrow adipose tissue (MAT) is a unique and versatile component of the bone marrow niche. While the importance of MAT for bone health has long been recognized, its complex role in hematopoiesis has only recently gained attention. In this review article we summarize recent conceptual advances in the field of MAT research and how these developments impact our understanding of MAT regulation of hematopoiesis. Elucidating routes of interaction and regulation between MAT and cells of the hematopoietic system are essential to pinpoint vulnerable processes resulting in malignant transformation. The concept of white adipose tissue contributing to cancer development and progression on the cellular, metabolic, and systemic level is 1234567890();,: 1234567890();,: generally accepted. The role of MAT in malignant hematopoiesis, however, is controversial. MAT is very sensitive to changes in the patient’s metabolic status hampering a clear definition of its role in different clinical situations. Here, we discuss future directions for leukemia research in the context of metabolism-induced modifications of MAT and other adipose tissues and how this might impact on leukemia cell survival, proliferation, and antileukemic therapy.
    [Show full text]
  • Factors Associated with Bone Mineral Density and Bone Resorption Markers in Postmenopausal HIV-Infected Women on Antiretroviral Therapy: a Prospective Cohort Study
    nutrients Article Factors Associated with Bone Mineral Density and Bone Resorption Markers in Postmenopausal HIV-Infected Women on Antiretroviral Therapy: A Prospective Cohort Study Christa Ellis 1,*, Herculina S Kruger 1,2 , Michelle Viljoen 3, Joel A Dave 4 and Marlena C Kruger 5 1 Centre of Excellence for Nutrition, North-West University, Potchefstroom 2520, South Africa; [email protected] 2 Medical Research Council Hypertension and Cardiovascular Disease Research Unit, North-West University, Potchefstroom 2520, South Africa 3 Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, University of the Western Cape, Bellville 7535, South Africa; [email protected] 4 Division of Endocrinology, Department of Medicine, University of Cape Town, Cape Town 7535, South Africa; [email protected] 5 School of Health Sciences, Massey University, Palmerston North 0745, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +27-83-374-9477 Abstract: The study aimed to determine factors associated with changes in bone mineral density (BMD) and bone resorption markers over two years in black postmenopausal women living with hu- man immunodeficiency virus (HIV) on antiretroviral therapy (ART). Women (n = 120) aged > 45 years were recruited from Potchefstroom, South Africa. Total lumbar spine and left femoral neck (LFN) Citation: Ellis, C.; Kruger, H.S.; BMD were measured with dual energy X-ray absorptiometry. Fasting serum C-Telopeptide of Type I Viljoen, M.; Dave, J.A.; Kruger, M.C. collagen (CTx), vitamin D and parathyroid hormone were measured. Vitamin D insufficiency levels Factors Associated with Bone Mineral increased from 23% at baseline to 39% at follow up.
    [Show full text]
  • Association Between Visceral and Bone Marrow Adipose Tissue and Bone Quality in Sedentary and Physically Active Ovariectomized Wistar Rats
    life Article Association between Visceral and Bone Marrow Adipose Tissue and Bone Quality in Sedentary and Physically Active Ovariectomized Wistar Rats Hélder Fonseca 1,2,3,* , Andrea Bezerra 1,2,3, Ana Coelho 1,2,3 and José Alberto Duarte 1,2,3,4 1 Faculty of Sport, University of Porto (FADE/UP), 4200-450 Porto, Portugal; [email protected] (A.B.); [email protected] (A.C.); [email protected] (J.A.D.) 2 Research Center of Physical Activity, Health and Leisure (CIAFEL), 4200-450 Porto, Portugal 3 Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal 4 Polytechnic and University Higher Education Cooperative (CESPU), 4485-116 Gandra Campus, 4050-600 Porto, Portugal * Correspondence: [email protected]; Tel.: +351-220-425-239 Abstract: Background: Obesity is considered protective for bone mass, but this view has been progressively challenged. Menopause is characterized by low bone mass and increased adiposity. Our aim was to determine how visceral and bone marrow adiposity change following ovariectomy (OVX), how they correlate with bone quality and if they are influenced by physical activity. Methods: Five-month-old Wistar rats were OVX or sham-operated and maintained in sedentary or physically active conditions for 9 months. Visceral and bone marrow adiposity as well as bone turnover, femur bone quality and biomechanical properties were assessed. Results: OVX resulted in higher weight, visceral and bone marrow adiposity. Visceral adiposity correlated inversely with femur Ct.Th Citation: Fonseca, H.; Bezerra, A.; (r = −0.63, p < 0.001), BV/TV (r = −0.67, p < 0.001), Tb.N (r = −0.69, p < 0.001) and positively with Coelho, A.; Duarte, J.A.
    [Show full text]
  • Bone Marrow Adipocytes: a Link Between Obesity and Bone Cancer
    cancers Review Bone Marrow Adipocytes: A Link between Obesity and Bone Cancer Michaela R. Reagan 1,2,3,*, Heather Fairfield 1,2,3 and Clifford J. Rosen 1,2,3 1 Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, ME 04074, USA; [email protected] (H.F.); [email protected] (C.J.R.) 2 School of Medicine, Tufts University, Boston, MA 02111, USA 3 Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA * Correspondence: [email protected]; Tel.: +1-207-396-8196 Simple Summary: This review discusses the important newly-established roles for bone marrow adipose tissue in cancer progression and highlights the research demonstrating great promise for clinically targeting the cells in oncology. Bone marrow adipose tissue expands during aging and in obesity. It primarily comprises bone marrow adipocytes (also known as fat cells) and can also contain other cells, such as pre-adipocytes, fibroblasts, macrophages, other immune cells, and endothelial cells. Bone marrow adipocytes are scattered throughout the hematopoietic or “red” marrow, or are densely packed in the marrow cavity, creating “yellow” marrow. Bone marrow biologists are interrogating many questions to understand the nature of bone marrow adipocytes, including how aging and obesity affect these cells; their origins, functions, and endocrine roles; and whether they can be targeted to treat osteoporosis. In parallel, and often in concert, cancer researchers are delineating the role of bone marrow adipocytes in oncology and their potential translational significance for future therapeutics. Abstract: Cancers that grow in the bone marrow are for most patients scary, painful, and incurable.
    [Show full text]
  • Cellular Processes by Which Osteoblasts and Osteocytes Control Bone Mineral Deposition and Maturation Revealed by Stage-Specific Ephrinb2 Knockdown
    Current Osteoporosis Reports (2019) 17:270–280 https://doi.org/10.1007/s11914-019-00524-y SKELETAL BIOLOGY AND REGULATION (M FORWOOD AND A ROBLING, SECTION EDITORS) Cellular Processes by Which Osteoblasts and Osteocytes Control Bone Mineral Deposition and Maturation Revealed by Stage-Specific EphrinB2 Knockdown Martha Blank1 & Natalie A. Sims1 Published online: 10 August 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of Review We outline the diverse processes contributing to bone mineralization and bone matrix maturation by describ- ing two mouse models with bone strength defects caused by restricted deletion of the receptor tyrosine kinase ligand EphrinB2. Recent Findings Stage-specific EphrinB2 deletion differs in its effects on skeletal strength. Early-stage deletion in osteoblasts leads to osteoblast apoptosis, delayed initiation of mineralization, and increased bone flexibility. Deletion later in the lineage targeted to osteocytes leads to a brittle bone phenotype and increased osteocyte autophagy. In these latter mice, although mineralization is initiated normally, all processes involved in matrix maturation, including mineral accrual, carbonate substitu- tion, and collagen compaction, progress more rapidly. Summary Osteoblasts and osteocytes control the many processes involved in bone mineralization; defining the contributing signaling activities may lead to new ways to understand and treat human skeletal fragilities. Keywords Biomineralization . Mineralization . Bone matrix . Osteocyte . EphrinB2 . Osteoblast Introduction because of changes in mineral structure brought about by in- corporation of fluoride into the apatite structure [1]. This review Bone strength is determined both by its mass and its mechanical will focus on recent advances describing the processes by competence governed by relative collagen and mineral levels in which bone matrix matures and the stages in the osteoblast the bone matrix.
    [Show full text]
  • The Role of Diet in Bone and Mineral Metabolism and Secondary Hyperparathyroidism
    nutrients Review The Role of Diet in Bone and Mineral Metabolism and Secondary Hyperparathyroidism Matteo Bargagli 1,2,* , Maria Arena 1 , Alessandro Naticchia 1, Giovanni Gambaro 3 , Sandro Mazzaferro 4,5 , Daniel Fuster 6,† and Pietro Manuel Ferraro 1,2,*,† 1 U.O.C. Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; [email protected] (M.A.); [email protected] (A.N.) 2 Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Roma, Italy 3 U.O.C. Nefrologia, Azienda Ospedaliera Universitaria Integrata di Verona, 37126 Verona, Italy; [email protected] 4 Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; [email protected] 5 Nephrology Unit, Policlinico Umberto I, 00161 Rome, Italy 6 Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; [email protected] * Correspondence: [email protected] (M.B.); [email protected] (P.M.F.); Tel.: +39-06-3015-7825 (M.B.); +39-06-3015-7819 (P.M.F.); Fax: +39-06-3015-9423 (M.B. & P.M.F.) † Contributed equally to the article. Citation: Bargagli, M.; Arena, M.; Abstract: Bone disorders are a common complication of chronic kidney disease (CKD), obesity and Naticchia, A.; Gambaro, G.; gut malabsorption. Secondary hyperparathyroidism (SHPT) is defined as an appropriate increase Mazzaferro, S.; Fuster, D.; Ferraro, in parathyroid hormone (PTH) secretion, driven by either reduced serum calcium or increased P.M. The Role of Diet in Bone and phosphate concentrations, due to an underlying condition.
    [Show full text]
  • Bone Mineral Density Update Frequently Asked Questions
    CLINICAL PRACTICE Bone mineral density Update Frequently asked questions Patrick J Phillips MBBS, MA, FRACP, MRACMA, GradDipHealthEcon, is Senior Director of Endocrinology, How do you interpret a BMD report (Figure 1a) (SD) that the absolute BMD is above or below Osteoporosis Centre, The Measurements of bone mineral density (BMD) are the mean value for a healthy, same sex, young Queen Elizabeth Hospital, used to diagnose osteoporosis, assess future fracture adult population (typically 20–35 years when Woodville, South Australia. risk, and monitor treatment. However a busy general peak bone mass occurs) [email protected] practitioner reading a complicated report may find it • Z-score: the number of SDs the absolute BMD is George Phillipov difficult to interpret. This primer addresses frequently above or below the mean value for a healthy, age BSc, MSc, PhD, is Research asked questions about BMD and aims to help GPs and sex matched population. Laboratory Director, Osteoporosis Centre, The extract the key points from BMD reports. Which numbers are important? Queen Elizabeth Hospital, Woodville, South Australia. How is BMD measured? • Measurement site: Only BMD measurements by dual energy X-ray – spine: normally this value represents the average absorptiometry (DEXA) or quantitative CT radiography of several vertebrae, typically L2–L4 or L1–L4. (QCT) are recognised by the Australian Department of However if spinal degeneration is present, specific Health and Ageing for Medicare reimbursement. Dual vertebrae (if possible) may be excluded energy X-ray absorptiometry, unlike QCT, is a planar – hip: the total hip or femoral neck measurement measurement where bone mineral content (BMC, g) is • Absolute BMD value: allows comparison between estimated and then related to the scanned region area measurements at different times (cm2) to provide the BMD (g/cm2), ie.
    [Show full text]