WORLD METEOROLOGICAL ORGANIZATION GLOBAL ATMOSPHERE WATCH Report of the WMO-WHO Meeting of Experts on Standardization of UV Indi

Total Page:16

File Type:pdf, Size:1020Kb

WORLD METEOROLOGICAL ORGANIZATION GLOBAL ATMOSPHERE WATCH Report of the WMO-WHO Meeting of Experts on Standardization of UV Indi qAvJ 1'2.1- T.D <J ZI I WORLD METEOROLOGICAL ORGANIZATION GLOBAL ATMOSPHERE WATCH '- No. 127 Report of the WMO-WHO Meeting of Experts on Standardization of UV Indices and their Dissemination to the Public (les Diablerets, Switzerlaod, 21-24 July 1997) "r•T\Y • t'01/-'' ', I. ~V ~~) ' "'""-!!o ..,..:.,.,·· ___ r.. ._,_~I'Ti lh \J./ ,.;; f} er . 'f ~-/: <--· ... : ·"' :· J ?. ~ ..: j, - •• • WMO/TD-No. 921 TABLE OF CONTENTS 1. OPENING OF THE MEETING ............................................................... 1 2. MEETING ARRANGEMENTS ................................................................ 1 3. MEASUREMENTS, MODELLING AND QUALITY CONTROL ............... 2 4. UV INDEX PROGRAMMES ................................................................... 5 5. EFFECTIVENESS OF INDICES AND DISSEMINATION TO THE PUBLIC .................................................................................... 7 6. CLOSURE OF THE MEETING ............................................................. 11 ANNEX A: Agenda ................................................................................... 13 ANNEX 8: Meeting Programme ............................................................... 15 ANNEX C: List of Participants .................................................................. 19 ANNEX D: Presentations to the session on Measurements, Modelling and Quality Control .................................................................. 27 ANNEXE: Presentations to the session of UV Index Programmes .......... 93 ANNEX F: Presentations to the session of Effectiveness of Indices and and Dissemination to the Public ............................................ 161 - ---- - -- ---- -- ---- -- - ---- --- ------ -- -- -- -- - -- -- -- --- --------- - --- -- - -- --- -- ANNEX G: Recommendations for the determination of UV Index ........... 183 ANNEX H: UV Web pages ..................................................................... 185 ANNEX 1: Contact addresses ................................................................ 187 :;. 1. OPENING OF THE MEETING 1.1 The representative of the World Meteorological Organization, Liisa Jalkanen, opened the meeting and welcomed all participants on behalf of the Secretary-General Professor G.O.P. Obasi. Ms Jalkanen reminded the participants of the previous meeting on UV Indices, held in the summer of 1994 in Les Diablerets. At that meeting the first attempt to harmonize the UV Index was made and the current definition ofUV Index was decided upon. The World Health Organization representative, Michael Repacholi, welcomed the participants on behalf of WHO and noted the importance of collaboration on UV Index between WHO, WMO and ICNIRP. David Sliney welcomed the group of experts on behalf of Jtirgen Bemhardt, the chair ofthe International Commission on Non­ Ionizing Radiation Protection, ICNIRP. The Global Solar UV Index booklet was published by ICNIRP as a joint recommendation of WHO, WMO, UNEP and ICNIRP after the 1994 Les Diablerets meeting. 1.2 Experts have reported that human exposure to UV radiation has dramatically increased in the latter half of this century. This is mainly due to the change in the sun habits of people: more of the human skin is subject to ultraviolet (UV) radiation and a "good" tan became desirable. Also, the stratospheric ozone decline is contributing to the increase of UV radiation reaching the human population. This ozone decline during the past 25 years has been well documented (see WMO Ozone Reports 18, 20, 25). As a result of the increased exposure, the number of diagnoses of melanoma and nonmelanoma skin cancers, as well as cataracts, has risen markedly since 1980. Relationships between UV radiation and biological effects on humans, animals and plants continue to be established (WHO Report No. 160). The first education campaigns on the hazards of overexposure to UV radiation were started in Queensland, Australia in the 1980's. Other countries have joined in and consequently a number of nationally sponsored UV stations or networks have been put into operation and also diagnostic and/or predictive levels of UV -B reaching the ground have been initiated. One of the goals of the Les Diablerets meeting was to harmonize the various UV indices that were in use and to this end guidelines for index calculation for worldwide use were prepared. 1.3 When establishing a UV programme, most countries wish to achieve one or more of the following objectives: to develop a UV climatology; to understand the cause-effect relationship between factors that influence UV levels; to develop a reliable data base ofUV observations to evaluate trends; to increase public awareness of UV changes and potential effects of UV. 2. MEETING ARRANGEMENTS 2.1 The Meeting structure comprised individual presentations on three broad themes over the first three days, followed by working group sessions and a plenary discussion on the final day. The broad themes of the UV issue under consideration were: i) Measurements, Modelling and Quality Control; ii) UV Index Programmes; and iii) Effectiveness of Indices and Dissemination to the Public. - 1 - 2.2 The Agenda, as agreed, can be found in Annex A. Annex B contains the detailed meeting programme. A list of participants is in Annex C. 3. MEASUREMENTS, MODELLING AND QUALITY CONTROL Measurements and modelling 3.1 UV Index can be provided as past record, nowcast or forecast. In order to achieve information on UV Index we need measurements, models and validation procedures. To a large extent, the goals of any given UV monitoring network will determine the key aspects of the programme, for example, type of instrumentation, selection of sites for observing stations, observing methods and frequency of observations, and mechanisms for calibration. From the international standpoint, it is important that individual networks coordinate their methods of observation and calibrations in order to determine the global UV climatology and trends. In this regard, following up on a proposal made at a WMO meeting of experts on UV -B measurements held in 1994 (GAW Report No. 95), an international Scientific Steering Committee on UV has been established, under the auspices ofWMO, to guide, amongst others, harmonization ofUV measurements. 3.2 With respect to the accuracy of measurements for providing UV indices, the Meeting stated that it is not as demanding as for research purposes. Spectrally-resolved measurements are required in more specific research applications and for model validation. Nevertheless, if properly maintained with an ·appropriate quality control/assurance programme, broad-band meters and multi-filter instruments can be used for establishing a climatology of the UV Index. The Meeting noted, however, that all data must be qualified (uncertainties specified). 3.3 In this regard, accuracies plus or minus 15% should be achievable (or less than one index point for indices lower than 5). Future improvements to the plus or minus 10% level or better are desirable and should be targeted. 3.4 Instruments for measuring UV will be described in the WMO/GAW publication "Instruments to Measure Solar Ultraviolet Radiation". Guidelines for site quality control are given in the W.MO/GA W publication "Guidelines for Site Quality Control of UV Monitoring". Each group providing UV Index measurements should have procedures for maintaining instrument calibration according to these documents. The UMAP-WMO "Workshop on Broadband UV Radiometers" report also provides further guidance on instrument calibration. The Meeting urged that these documents be finalized and made available to the wider scientific community as soon as possible. 3.5 Several groups have reported large changes in the sensitivity of broad-band meters currently in use. These changes can be great enough to compromise the utility of the UV Index. Therefore, the Meeting strongly advised manufacturers to investigate ways to improve their long term stability and degradation. Also, any ~nstrumental changes made by the manufacturers should be made very clear. - 2 - 3.6 The Meeting then turned to modelling aspects of UV. Although model calculations are required for UV forecasting, these modelling requirements are not as high as those needed for research projects. 3. 7 The Meeting stated that while there may be some advantages to using a standard model for global forecasts ofUV Index, in reality, different countries may want to use their own methods. In this case, cross calibrations of models are required. This can be facilitated by the use of web site links, some ofwhich are already existing. 3.8 The single most difficult and important issue for modelling/forecasting UV levels concerns clouds. Clouds are problematic for a number of reasons: a) It is difficult to forecast the type and/or amount; b) Clouds can increase as well as decrease UV irradiances; c) This increase/decrease often depends upon whether the sun is obscured or not. This is very difficult to predict. Scattered cloud is the most difficult to model; d) More basic research is needed to understand the cloud characteristics which are most important for determining their effect on UV radiative transfer (cloud optical depth?, cloud amount?, opacity?), and how to determine these characteristics. 3.9 In addition to clouds, the Meeting considered that ground level ozone and urban pollution need to be addressed for modelling/forecasting. These can also have significant influence on incident UV. 3.10 The Meeting questioned the need for large measurement networks if, (given
Recommended publications
  • EHC 238 Front Pages Final.Fm
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the International Commission of Non- Ionizing Radiation Protection, the International Labour Organization, or the World Health Organization. Environmental Health Criteria 238 EXTREMELY LOW FREQUENCY FIELDS Published under the joint sponsorship of the International Labour Organization, the International Commission on Non-Ionizing Radiation Protection, and the World Health Organization. WHO Library Cataloguing-in-Publication Data Extremely low frequency fields. (Environmental health criteria ; 238) 1.Electromagnetic fields. 2.Radiation effects. 3.Risk assessment. 4.Envi- ronmental exposure. I.World Health Organization. II.Inter-Organization Programme for the Sound Management of Chemicals. III.Series. ISBN 978 92 4 157238 5 (NLM classification: QT 34) ISSN 0250-863X © World Health Organization 2007 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e- mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Prospects for Nuclear Energy in Asia Hooman Peimani
    2012 Summit Papers Prospects for Nuclear Energy in Asia Hooman Peimani All 2012 Summit Papers are available for download from www.nbr.org. HOOMAN PEIMANI is Head of the Energy Security Division and Principal Fellow at the Energy Studies Institute at the National University of Singapore. He can be reached at <[email protected]>. Pacific Energy Summit • 2012 Summit Papers • Peimani EXECUTIVE SUMMARY This paper outlines the reasons for Asia’s interest in nuclear power and argues that despite the 2011 disaster at Fukushima, the region will continue to be the main arena for expanding the use of nuclear power. Main Argument Asia has established itself as the world’s largest energy consumer, accounting for 45.2% of the global energy consumption in 2010. Today, fossil energy accounts for the bulk of regional energy requirements, but many factors have demanded diversification of the region’s energy mix to include non-fossil energy—particularly nuclear power, which can provide clean energy on a large scale and in a reliable manner. While concerns about the safety of nuclear reactors are legitimate, they are not a strong argument for dismissing nuclear energy. Consequently, safety concerns have not resulted in serious plans in Asia to reverse or downsize nuclear energy programs in its countries with active programs or serious existing plans. Policy Implications The Asia-Pacific region has been growing at a significant rate, which ensures a high and increasing demand for goods and services. In turn, such economic momentum has unsurprisingly ensured a large and growing demand for energy in the region.
    [Show full text]
  • Health Risk Assessment of Electromagnetic Fields
    ! ! ! Attachment!1! Electromagnetic Biology and Medicine, 25: 197–200, 2006 Copyright © Informa Healthcare ISSN 1536-8378 print DOI: 10.1080/15368370601034003 Benevento Resolution 2006 The International Commission for Electromagnetic Safety (ICEMS) held an international conference entitled. The Precautionary EMF Approach: Rationale, Legislation and Implementation, hosted by the City of Benevento, Italy, on February 22–24, 2006. The meeting was dedicated to W. Ross Adey, M.D. (1922–2004). The scientists at the conference endorsed and extended the 2002 Catania Resolution and resolved that: 1. More evidence has accumulated suggesting that there are adverse health effects from occupational and public exposures to electric, magnetic, and electromagnetic fields, or EMF1, at current exposure levels. What is needed, but not yet realized, is a comprehensive, independent, and transparent examination of the evidence pointing to this emerging, potential public health issue. 2. Resources for such an assessment are grossly inadequate despite the explosive growth of technologies for wireless communications as well as the huge For personal use only. ongoing investment in power transmission. 3. There is evidence that present sources of funding bias the analysis and interpretation of research findings towards rejection of evidence of possible public health risks. 4. Arguments that weak (low intensity) EMF cannot affect biological systems do not represent the current spectrum of scientific opinion. 5. Based on our review of the science, biological effects can occur from exposures to both extremely low frequency fields (ELF EMF) and radiation Electromagn Biol Med Downloaded from informahealthcare.com by Gazi Univ. on 04/25/13 frequency fields (RF EMF). Epidemiological and in vivo as well as in vitro experimental evidence demonstrates that exposure to some ELF EMF can increase cancer risk in children and induce other health problems in both children and adults.
    [Show full text]
  • Awareness, Understanding, Use, and Impact of the UV Index A
    Preventive Medicine 123 (2019) 71–83 Contents lists available at ScienceDirect Preventive Medicine journal homepage: www.elsevier.com/locate/ypmed Review Article Awareness, understanding, use, and impact of the UV index: A systematic T review of over two decades of international research ⁎ Carolyn J. Heckmana, , Katherine Liangb, Mary Rileya a Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA b Temple University, 3500 N Broad St, Philadelphia, PA 19140, USA ARTICLE INFO ABSTRACT Keywords: The ultraviolet radiation index (UVI) was adopted internationally to raise awareness about and encourage the UV index public to protect their skin from skin cancer. The current paper is a systematic review of over 20 years of Systematic review research investigating awareness, comprehension, use, and impact of the UVI. Thirty-one studies were included Skin cancer prevention from the USA, Canada, Europe, Australia, New Zealand, and elsewhere. Awareness of the UVI varies by country, Health behavior with samples from some countries demonstrating high awareness. However, comprehension and use of the UVI International to inform sun safety behaviors are typically much lower. In fact, greater UVI awareness has sometimes been associated with riskier UV-related behaviors such as intentional tanning. Fewer studies have evaluated inter- ventions, and their results have been mixed. In summary, more research is needed to determine how to help the public understand and use the UVI for effective skin protection. This review offers suggestions for future useof and research with the UVI. 1. Introduction varying recommendations for sun protection. For example, at a UVI value of 3, sun protection is recommended (i.e., seeking shade during Ultraviolet radiation (Hofbauer et al., 2010) can cause damage to midday, increasing clothing coverage, sunscreen and hat use), and at a the skin and eyes as well as suppress the immune system (Meves et al., UVI value of 8, extra sun protection is recommended (i.e., avoid being 2003).
    [Show full text]
  • Solar Radiation and the UV Index: an Application of Numerical Integration, Trigonometric Functions, Online Education and the Modelling Process
    Solar Radiation and the UV index: An application of Numerical Integration, Trigonometric functions, Online Education and the Modelling Process Nathan Downs, Alfio V Parisi, Linda Galligan, Joanna Turner, Abdurazaq Amar, Rachel King, Filipina Ultra, Harry Butler University of Southern Queensland, Faculty of Health, Engineering and Surveying, Toowoomba, Australia, [email protected] www.ijres.net . To cite this article: Downs, N., Parisi, A.V., Galligan, L., Turner, J., Amar, A., King, R., Ultra, F., & Butler, H. (2016). Solar radiation and the UV index: An application of numerical integration, trigonometric functions, online education and the modelling process. International Journal of Research in Education and Science (IJRES), 2(1), 179-189. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Authors alone are responsible for the contents of their articles. The journal owns the copyright of the articles. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of the research material. International Journal of Research in Education and Science Volume 2, Issue 1, Winter 2016 ISSN: 2148-9955 Solar Radiation and the UV index: An application of Numerical Integration, Trigonometric functions, Online Education and the Modelling Process Nathan Downs*, Alfio V Parisi, Linda Galligan, Joanna Turner, Abdurazaq Amar, Rachel King, Filipina Ultra, Harry Butler University of Southern Queensland, Faculty of Health, Engineering and Surveying, Toowoomba, Australia Abstract A short series of practical classroom mathematics activities employing the use of a large and publicly accessible scientific data set are presented for use by students in years 9 and 10.
    [Show full text]
  • The Ultraviolet Index Is Well Estimated by the Terrestrial Irradiance at 310Nm
    The Ultraviolet Index is well estimated by the terrestrial irradiance at 310nm P.D. KAPLAN1 AND E.L.P. DUMONT1,2 1YouV Labs. Inc (“Shade”), 340 Kingsland St, Nutley, NJ, 07110, USA 2Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA Correspondence to: [email protected] or [email protected]. Ultraviolet (UV) exposure significantly contributes to non-melanoma skin cancer. In the context of health, UV exposure is the product of time and the UV Index (UVI), a weighted sum of the irradiance I(λ) over all wavelengths from λ=250 to 400nm. (1) In our analysis of the United States Environmental Protection Agency’s UV-Net database of over four-hundred thousand spectral irradiance measurements taken over several years, we found that the UVI is well estimated by UVI = 77I310. (2) To better understand this result, we applied an optical atmospheric model of the terrestrial irradiance spectra and found that it applies across a wide range of conditions. 1. Introduction Non-melanoma skin cancer is highly prevalent despite a strong understanding that its risk is driven by ultraviolet light (UV) exposure.1, 2 As UV is not visible, its damage is wavelength dependent, and skin cancer is significantly delayed from UV exposure, the public’s understanding of the links between behavior and risk are poor. Wearable UV monitors have the potential to be a source of data to drive skin-cancer risk reduction. To our knowledge there are, however, no currently available sensors that are both sufficiently accurate and inexpensive for individual use.5 This is due to the complex wavelength-dependent skin sensitivity to UV which these monitors must replicate in order to be accurate.
    [Show full text]
  • Understanding the Factors That Affect Surface Ultraviolet Radiation
    Optical Engineering 44(4), 041002 (April 2005) Understanding the factors that affect surface ultraviolet radiation J. B. Kerr Abstract. Spectral measurements of solar ultraviolet (UV) radiation Meteorological Service of Canada have been made at several ground-based locations and for more than 10 4905 Dufferin Street yr at some sites. These measurements are important for two main rea- Downsview, Canada M3H 5T4 sons. First, the measurements combined with results of radiative transfer models contribute toward our understanding of the many complicated radiative transfer processes in the atmosphere and at the Earth’s sur- face. These processes include absorption of radiation by atmospheric gases such as ozone and sulfur dioxide, scattering by atmospheric aero- sols and clouds, and scattering from the earth’s surface. Knowledge of these processes is required for operational applications such as the es- timation of surface UV radiation from satellite data and the forecasting of the UV index. Also, our ability to estimate UV climatology in the past, as well as in the future, requires thorough knowledge of the UV radiative transfer processes. The second reason for making systematic ground- based measurements of UV radiation is to determine whether long-term changes are occurring as a result of ozone depletion or climate change and to identify specific causes. Examples of how long-term ground- based data records have contributed to our understanding of surface UV radiation are presented. © 2005 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1886817] Subject terms: ultraviolet radiation, ozone, aerosols. Paper UV-09 received Mar. 30, 2004; revised manuscript received Aug.
    [Show full text]
  • Ultraviolet Light Exposure and Skin Cancer in the City of Arica, Chile
    MOLECULAR MEDICINE REPORTS 2: 567-572, 2009 567 Ultraviolet light exposure and skin cancer in the city of Arica, Chile MIGUEL RIVAS1, MARÍA C. ARAYA2, VIVIANA DURÁN2, ELISA ROJAS1, JUAN CORTES3 and GLORIA M. CALAF4,5 1Departamento de Física, Facultad de Ciencias, Universidad de Tarapacá; 2Hospital Juan Noé Arica; 3Departamento de Química, Facultad de Ciencias, 4Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile; 5Center for Radiological Research, Columbia University Medical Center, New York, NY, USA Received December 11, 2008; Accepted May 14, 2009 DOI: 10.3892/mmr_00000138 Abstract. An increase in the amount of solar ultraviolet light its interaction with biological material has a detrimental effect that reaches the Earth is considered to be responsible for the (2). For physical and biological reasons, UV light has been worldwide increase in skin cancer. Solar ultraviolet B (UVB) divided into 3 regions: ultraviolet A (UVA) (320-400 nm), light (290-320 nm) has multiple effects that can be harmful ultraviolet B (UVB) (290-320 nm) and ultraviolet C (UVC) to human beings. The city of Arica in Chile receives high UV (100-290 nm) (3). It has been reported that excessive levels levels. This can explain the high prevalence of skin cancer in of UVA and UVB light have multiple effects, which can be the Arica population. In the present study, pathological reports harmful to human beings (1,4-8). of skin cancer were collected from an Arica hospital and UVB light, a small amount of which reaches the surface retrospectively examined to investigate the possible effects of of the Earth, is deemed to be the most dangerous of the UV UV radiation.
    [Show full text]
  • World Health Organization, Extremely Low Frequency Fields, 2007
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the International Commission of Non- Ionizing Radiation Protection, the International Labour Organization, or the World Health Organization. Environmental Health Criteria 238 EXTREMELY LOW FREQUENCY FIELDS Published under the joint sponsorship of the International Labour Organization, the International Commission on Non-Ionizing Radiation Protection, and the World Health Organization. WHO Library Cataloguing-in-Publication Data Extremely low frequency fields. (Environmental health criteria ; 238) 1.Electromagnetic fields. 2.Radiation effects. 3.Risk assessment. 4.Envi- ronmental exposure. I.World Health Organization. II.Inter-Organization Programme for the Sound Management of Chemicals. III.Series. ISBN 978 92 4 157238 5 (NLM classification: QT 34) ISSN 0250-863X © World Health Organization 2007 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e- mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Projections of UV Radiation Changes in the 21St Century: Impact of Ozone Recovery and Cloud Effects
    Atmos. Chem. Phys., 11, 7533–7545, 2011 www.atmos-chem-phys.net/11/7533/2011/ Atmospheric doi:10.5194/acp-11-7533-2011 Chemistry © Author(s) 2011. CC Attribution 3.0 License. and Physics Projections of UV radiation changes in the 21st century: impact of ozone recovery and cloud effects A. F. Bais1, K. Tourpali1, A. Kazantzidis2, H. Akiyoshi3, S. Bekki4, P. Braesicke5, M. P. Chipperfield6, M. Dameris7, V. Eyring7, H. Garny7, D. Iachetti8, P. Jockel¨ 7, A. Kubin9, U. Langematz9, E. Mancini8, M. Michou10, O. Morgenstern11, T. Nakamura3, P. A. Newman12, G. Pitari8, D. A. Plummer13, E. Rozanov14,15, T. G. Shepherd16, K. Shibata17, W. Tian6, and Y. Yamashita3 1Aristotle University of Thessaloniki, Department of Physics, Thessaloniki, Greece 2University of Patras, Department of Physics, Patras, Greece 3National Institute for Environmental Studies, Tsukuba, Japan 4Service d’Aeronomie, Institut Pierre-Simone Laplace, Paris, France 5University of Cambridge, Department of Chemistry, Cambridge, UK 6Institute for Climate and Atmospheric Science, University of Leeds, Leeds, UK 7Deutsches Zentrum fur¨ Luft- und Raumfahrt, Institut fur¨ Physik der Atmosphare,¨ Oberpfaffenhofen, Germany 8Universita` L’Aquila, Dipartimento di Fisica, L’Aquila, Italy 9Freie Universitat¨ Berlin, Institut fur¨ Meteorologie, Berlin, Germany 10GAME/CNRM (Met´ eo-France,´ CNRS), Toulouse, France 11National Institute of Water and Atmospheric Research, Lauder, New Zealand 12NASA Goddard Space Flight Center, Greenbelt, MD, USA 13Environment Canada, Victoria, BC, Canada 14Physical-Meteorological Observatory Davos/World Rad. Center, Davos, Switzerland 15Institute for Atmospheric and Climate Science ETH, Zurich, Switzerland 16Department of Physics, University of Toronto, Toronto, Canada 17Meteorological Research Institute, Tsukuba, Japan Received: 7 March 2011 – Published in Atmos.
    [Show full text]
  • We May Need to Reconsider When to Apply Sunscreen in Our Daily Life
    Commentary More Information *Address for Correspondence: Win L Chiou, We may need to reconsider when to Chiou Consulting Inc and Winlind Skincare LLC, Burr Ridge, Illinois 60527, USA, Tel: 630 789 9081; Email: [email protected] apply sunscreen in our daily life Submitted: 20 September 2019 Approved: 21 October 2019 Win L Chiou* Published: 22 October 2019 Chiou Consulting Inc and Winlind Skincare LLC, Burr Ridge, Illinois 60527, USA How to cite this article: Chiou WL. We may need to reconsider when to apply sunscreen in our daily life. Ann Dermatol Res. 2019; 3: 007-010. Abstract DOI: dx.doi.org/10.29328/journal.adr.1001007 Copyright: © 2019 Chiou WL. This is an open Broad-spectrum sunscreens are now widely used worldwide as an adjunct to help prevent access article distributed under the Creative sunburn, skin cancers and premature skin aging. In the United States, all persons older than Commons Attribution License, which permits 6 months are recommended to apply sunscreen to all sun-exposed skin from toes to head unrestricted use, distribution, and reproduction except eyes and mouth even on cloudy days. Such a recommendation is apparently based on in any medium, provided the original work is concepts that exposure to sunlight damages the skin, the damage is cumulative and hence any properly cited. sun exposure should be minimized or prevented. This communication raises several questions Keywords: Sunscreens; Sunlight’s benefits and suggesting that the above recommendation may need to be reconsidered. For example, numerous risks; Skin cancers; Sunburn; Aging/antiaging previous studies have indicated many potential health benefi ts from non-burning sun exposure theories; UV Index including protection against sunburn, melanoma, colorectal cancer, breast cancer and prostate cancer, increasing vitamin D synthesis, helping sleep, reducing blood pressure, heart attack and stroke.
    [Show full text]
  • Conflicts of Interest and Misleading Statements in Official Reports About
    magnetochemistry Article Conflicts of Interest and Misleading Statements in Official Reports about the Health Consequences of Radiofrequency Radiation and Some New Measurements of Exposure Levels Susan Pockett School of Psychology, University of Auckland, Auckland 1142, New Zealand; [email protected] Received: 29 March 2019; Accepted: 25 April 2019; Published: 5 May 2019 Abstract: Official reports to governments throughout the Western world attempt to allay public concern about the increasing inescapability of the microwaves (also known as radiofrequency radiation or RF) emitted by “smart” technologies, by repeating the dogma that the only proven biological effect of RF is acute tissue heating, and assuring us that the levels of radiation to which the public are exposed are significantly less than those needed to cause acute tissue heating. The present paper first shows the origin of this “thermal-only” dogma in the military paranoia of the 1950s. It then reveals how financial conflict of interest and intentionally misleading statements have been powerful factors in preserving that dogma in the face of now overwhelming evidence that it is false, using one 2018 report to ministers of the New Zealand government as an example. Lastly, some new pilot measurements of ambient RF power densities in Auckland city are reported and compared with levels reported in other cities, various international exposure limits, and levels shown scientifically to cause biological harm. It is concluded that politicians in the Western world should stop accepting soothing reports from individuals with blatant conflicts of interest and start taking the health and safety of their communities seriously. Keywords: radiofrequency radiation; RF; microwave; cellphone; smart technology; public health; cancer; diabetes; depression; dementia 1.
    [Show full text]