Planar Branch Decompositions I: the Ratcatcher

Total Page:16

File Type:pdf, Size:1020Kb

Planar Branch Decompositions I: the Ratcatcher INFORMS Journal on Computing informs Vol. 17, No. 4, Fall 2005, pp. 402–412 ® issn 1091-9856 eissn 1526-5528 05 1704 0402 doi 10.1287/ijoc.1040.0075 © 2005 INFORMS Planar Branch Decompositions I: The Ratcatcher Illya V. Hicks Department of Industrial Engineering, Texas A&M University, College Station, Texas 77843-3131, USA, [email protected] he notion of branch decompositions and its related connectivity invariant for graphs, branchwidth, were Tintroduced by Robertson and Seymour in their series of papers that proved Wagner’s conjecture. Branch decompositions can be used to solve NP-hard problems modeled on graphs, but finding optimal branch decom- positions of graphs is also NP-hard. This is the first of two papers dealing with the relationship of branchwidth and planar graphs. A practical implementation of an algorithm of Seymour and Thomas for only computing the branchwidth (not optimal branch decomposition) of any planar hypergraph is proposed. This implementation is used in a practical implementation of an algorithm of Seymour and Thomas for computing the optimal branch decompositions for planar hypergraphs that is presented in the second paper. Since memory requirements can become an issue with this algorithm, two other variations of the algorithm to handle larger hypergraphs are also presented. Key words: planar graph; branchwidth; branch decomposition; carvingwidth History: Accepted by Jan Karel Lenstra, former Area Editor for Design and Analysis of Algorithms; received December 2002; revised August 2003, January 2004; accepted February 2004. 1. Introduction Seymour conceived of two new ways to decompose a A planar graph is a graph that canbe drawnona graph that were beneficial toward the proof. Decom- sphere or plane without having edges that cross. posing a graph by a branch decomposition is one of A subdivisionof a graph G is a graph obtained from these ideas. G by replacing its edges by internally vertex disjoint Branch decompositions open algorithmic possibil- paths. Inthe 1930s, Kuratowski (1930) proved that a ities for intractable problems that can be modeled graph G is planar if and only if G does not contain a ongraphs. Arnborg et al. (1991) showed that sev- eral NP-complete problems canbe solved inpoly- subdivisionof K5 or K3 3. Wagner (1937) later proved that a graph G is planar if and only if G does not con- nomial time using dynamic-programming techniques on input graphs with bounded treewidth, another tain K5 or K3 3 as a minor of G. A graph H is a minor of a graph G if H canbe obtainedfrom a subgraph related connectivity invariant for graphs introduced by RobertsonandSeymour (1983). Actually, the work of G by contracting edges. Let be a class of graphs. of Arnborg et al. was spurred from the work of Cour- is minor closed when all the minors of any member celle (1990). Inaddition,similar results have been of also belong to . Givena minorclosed class of obtained by Borie et al. (1992). The Arnborg et al. graphs , the obstruction set of is the set of minor result is also equivalent to graphs with bounded minimal graphs that are not elements of . Clearly, branchwidth since the branchwidth and treewidth of a anyclass of graphs embeddable ona givensurface graph bound each other by constants (Robertson and is a minor closed class. The question of characteriz- Seymour 1991). Inaddition,there is a plethora of the- ing the obstruction set for other surfaces remained ory about branchwidth and branch decompositions. openuntil1979–1980 whenArchdeacon(1980) and For example, branchwidth and branch decomposi- Glover et al. (1979) solved the case for the projec- tionshave beenshownuseful inproducingmatroid tive plane where they proved that there are 35 minor analogs of the graph minors theorem and shorter minimal “nonprojective-planar” graphs. In the 1930s, proofs of the graph minors theorem related to graphs Erdös posed the questionof whether the obstruc- with bounded branchwidth/treewidth (Geelen et al. tionset for a givensurface is finite.Archdeaconand 2002). Also, Seymour and Thomas (1994) proposed Huneke (1989) proved that the obstruction set for a polynomial-time algorithm to compute the branch- any nonorientable surface is finite, and Robertson and width for planar graphs, which will be referred to as Seymour (1985) proved the case for any surface as a the ratcatcher method. corollary of the graph minors theorem, which proved Despite the number of theoretical results about Wagner’s conjecture, every minor closed class has branch decompositions and branch decomposition- a finiteobstructionset. Inaddition,Robertsonand based algorithms for solving NP-hard problems, there 402 Hicks: Planar Branch Decompositions I: The Ratcatcher INFORMS Journal on Computing 17(4), pp. 402–412, © 2005 INFORMS 403 has beenlittle effort to develop practical algorithms. for the details of the algorithms with a proof of cor- Examples of practical branch decomposition-based rectness for the additional algorithms. Finally, §§5 algorithms are the work of Cook and Seymour (2003) and 6 contain computational results and conclusions, onthe travelingsalesmanproblem (TSP) andthe work respectively. The reader is referred to West (2001) for of Hicks (2004a) on the minor containment problem. background material on graph theory. One is also referred to the work of Christian (2003) for other examples of branch decomposition-based algo- 2. Preliminaries rithms. Similar results for tree decomposition-based algorithms have beengivenby Koster et al. (2002) 2.1. Branch Decompositions for their work onpartial constrainsatisfactionprob- Throughout this paper, a graph is only considered to lems, and Alber and Neidermeier (2002) for their be undirected and may have loops and multiple edges work ondominationproblems. These examples exem- unless stated otherwise. Also, we may assume that all plify the possible usefulness of branch decomposition graphs are biconnected. For instance, for a graph G, and tree decomposition-based algorithms for other onecanderive anoptimal branchdecompositionfor NP-hard problems. G from the optimal branch decompositions of G’s Seymour and Thomas (1994) proved that testing connected components. In addition, for a connected graph G , onecanderive anoptimal branchdecompo- whether a general graph has branchwidth at most k, o sitionfor G from the optimal branch decompositions some input integer, is NP-complete. However, the o of the biconnected components of G . aforementioned ratcatcher method is a polynomial- o A hypergraph H consists of a finite set VH of time algorithm used to compute the branchwidth nodes, a finite set EH of edges, and an incidence of planargraphs. Givenaninteger k, the ratcatcher relationbetweenthem that is notrestricted to two method tests whether the branchwidth of the graph is ends for each edge. Thus, hypergraphs are general- at least k by finding a structure in the graph that pro- izations of graphs where edges can have any num- hibits finding a branch decomposition of the graph ber of ends. Since this paper is about planar graphs with width at most k−1. Seymour and Thomas (1994) and planar hypergraphs, let us define planarity for also proposed a polynomial-time algorithm using the hypergraphs. Let H be a hypergraph; then IH , the ratcatcher method to compute optimal branch decom- incidence graph of H, is the simple bipartite graph positions for planar graphs, which will be referred with vertex set VH ∪ EH such that v ∈ VH is to as the edge-contraction method. Thus, the current adjacent to e ∈ EH if and only if v is anendof e knowledge base to compute optimal branch decom- in H. Seymour and Thomas (1994) define a hyper- positions for planar graphs is a two-stage process. The graph H as being planar if and only if IH is planar. two-stage process involves first finding the branch- In addition, we will denote G∗ as a planar dual of an width of the input planar graph using the ratcatcher embedding of the graph G inthe sphere or plane.Fur- method, then using the edge-contraction method in thermore, for a planar graph G drawninthe sphere, conjunction with the ratcatcher method to examine RG will denote the set of regions of G. planar hypergraphs needed to construct the optimal Let us now define branch decompositions and branch decomposition for the input planar graph. branchwidth of a graph. Let G be a graph with node A more detailed discussionof the implementationof set VG and edge set EG . Let T be a tree having the edge-contractionmethodwith the additionof a EG leaves in which every nonleaf node has degree heuristic, the cycle method, for runtime speedup is three. Let be a bijectionbetweenthe edges of G presented in the related paper (Hicks 2005). and the leaves of T . The pair T is called a branch This paper is spurred from the Seymour and decomposition of G. Notice that removing an edge e Thomas (1994) paper; a practical implementation of of T partitions the edges of G into two subsets Ae the ratcatcher method is presented. Unfortunately, the and Be. The middle set of e, denoted by mide , is the set algorithm requires a significant amount of memory to VAe ∩ VBe . The width of a branch decomposition achieve the proposed complexity of Oe2 where e is T is the maximum cardinality of the middle sets the number of edges in the input graph. This mem- over all edges in T . The branchwidth of G, denoted by ory requirement limits the size of the input graphs for G , is the minimum width over all branch decom- this algorithm (up to 5,000 edges). Thus, two addi- positions of G. A branch decomposition of G is opti- tional methods, the comprat method and the memrat mal if its width is equal to the branchwidth of G.If method, with complexity Oe3 , are presented to han- there exists a nonleaf node in T with degree greater dle medium (up to 20,000 edges) and large (up to thanthree, thenthe pair T is called a partial branch 70,000 edges) graphs respectively.
Recommended publications
  • 1 Vertex Connectivity 2 Edge Connectivity 3 Biconnectivity
    1 Vertex Connectivity So far we've talked about connectivity for undirected graphs and weak and strong connec- tivity for directed graphs. For undirected graphs, we're going to now somewhat generalize the concept of connectedness in terms of network robustness. Essentially, given a graph, we may want to answer the question of how many vertices or edges must be removed in order to disconnect the graph; i.e., break it up into multiple components. Formally, for a connected graph G, a set of vertices S ⊆ V (G) is a separating set if subgraph G − S has more than one component or is only a single vertex. The set S is also called a vertex separator or a vertex cut. The connectivity of G, κ(G), is the minimum size of any S ⊆ V (G) such that G − S is disconnected or has a single vertex; such an S would be called a minimum separator. We say that G is k-connected if κ(G) ≥ k. 2 Edge Connectivity We have similar concepts for edges. For a connected graph G, a set of edges F ⊆ E(G) is a disconnecting set if G − F has more than one component. If G − F has two components, F is also called an edge cut. The edge-connectivity if G, κ0(G), is the minimum size of any F ⊆ E(G) such that G − F is disconnected; such an F would be called a minimum cut.A bond is a minimal non-empty edge cut; note that a bond is not necessarily a minimum cut.
    [Show full text]
  • CLRS B.4 Graph Theory Definitions Unit 1: DFS Informally, a Graph
    CLRS B.4 Graph Theory Definitions Unit 1: DFS informally, a graph consists of “vertices” joined together by “edges,” e.g.,: example graph G0: 1 ···················•······························· ····························· ····························· ························· ···· ···· ························· ························· ···· ···· ························· ························· ···· ···· ························· ························· ···· ···· ························· ············· ···· ···· ·············· 2•···· ···· ···· ··· •· 3 ···· ···· ···· ···· ···· ··· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ······· ······· ······· ······· ···· ···· ···· ··· ···· ···· ···· ···· ···· ··· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ··············· ···· ···· ··············· 4•························· ···· ···· ························· • 5 ························· ···· ···· ························· ························· ···· ···· ························· ························· ···· ···· ························· ····························· ····························· ···················•································ 6 formally a graph is a pair (V, E) where V is a finite set of elements, called vertices E is a finite set of pairs of vertices, called edges if H is a graph, we can denote its vertex & edge sets as V (H) & E(H) respectively if the pairs of E are unordered, the graph is undirected if the pairs of E are ordered the graph is directed, or a digraph two vertices joined by an edge
    [Show full text]
  • Efficient Multicore Algorithms for Identifying Biconnected Components
    International Journal of Networking and Computing { www.ijnc.org ISSN 2185-2839 (print) ISSN 2185-2847 (online) Volume 6, Number 1, pages 87{106, January 2016 Efficient Multicore Algorithms For Identifying Biconnected Components1 Meher Chaitanya [email protected] and Kishore Kothapalli [email protected] International Institute of Information Technology Hyderabad, Gachibowli, India 500 032. Received: July 30, 2015 Revised: October 26, 2015 Accepted: December 1, 2015 Communicated by Akihiro Fujiwara Abstract In this paper we design and implement an algorithm for finding the biconnected components of a given graph. Our algorithm is based on experimental evidence that finding the bridges of a graph is usually easier and faster in the parallel setting. We use this property to first decompose the graph into independent and maximal 2-edge-connected subgraphs. To identify the articulation points in these 2-edge connected subgraphs, we again convert this into a problem of finding the bridges on an auxiliary graph. It is interesting to note that during the conversion process, the size of the graph may increase. However, we show that this small increase in size and the run time is offset by the consideration that finding bridges is easier in a parallel setting. We implement our algorithm on an Intel i7 980X CPU running 12 threads. We show that our algorithm is on average 2.45x faster than the best known current algorithms implemented on the same platform. Finally, we extend our approach to dense graphs by applying the sparsification technique suggested by Cong and Bader in [7]. Keywords: Biconnected components, Least common ancestor, 2-edge connected components, Articulation points 1 Introduction The biconnected components of a given graph are its maximal 2-connected subgraphs.
    [Show full text]
  • Strongly Connected Components and Biconnected Components
    Strongly Connected Components and Biconnected Components Daniel Wisdom 27 January 2017 1 2 3 4 5 6 7 8 Figure 1: A directed graph. Credit: Crash Course Coding Companion. 1 Strongly Connected Components A strongly connected component (SCC) is a set of vertices where every vertex can reach every other vertex. In an undirected graph the SCCs are just the groups of connected vertices. We can find them using a simple DFS. This works because, in an undirected graph, u can reach v if and only if v can reach u. This is not true in a directed graph, which makes finding the SCCs harder. More on that later. 2 Kernel graph We can travel between any two nodes in the same strongly connected component. So what if we replaced each strongly connected component with a single node? This would give us what we call the kernel graph, which describes the edges between strongly connected components. Note that the kernel graph is a directed acyclic graph because any cycles would constitute an SCC, so the cycle would be compressed into a kernel. 3 1,2,5,6 4,7 8 Figure 2: Kernel graph of the above directed graph. 3 Tarjan's SCC Algorithm In a DFS traversal of the graph every SCC will be a subtree of the DFS tree. This subtree is not necessarily proper, meaning that it may be missing some branches which are their own SCCs. This means that if we can identify every node that is the root of its SCC in the DFS, we can enumerate all the SCCs.
    [Show full text]
  • Characterizing Simultaneous Embedding with Fixed Edges
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by computer science publication server Characterizing Simultaneous Embedding with Fixed Edges J. Joseph Fowler1, Michael J¨unger2, Stephen G. Kobourov1, and Michael Schulz2 1 University of Arizona, USA {jfowler,kobourov}@cs.arizona.edu ⋆ 2 University of Cologne, Germany {mjuenger,schulz}@informatik.uni-koeln.de ⋆⋆ Abstract. A set of planar graphs share a simultaneous embedding if they can be drawn on the same vertex set V in the plane without crossings between edges of the same graph. Fixed edges are common edges between graphs that share the same Jordan curve in the simultaneous drawings. While any number of planar graphs have a simultaneous embedding without fixed edges, determining which graphs always share a simultaneous embedding with fixed edges (SEFE) has been open. We partially close this problem by giving a necessary condition to determine when pairs of graphs have a SEFE. 1 Introduction In many practical applications including the visualization of large graphs and very-large-scale in- tegration (VLSI) of circuits on the same chip, edge crossings are undesirable. A single vertex set can suffice in which multiple edge sets correspond to different edge colors or circuit layers. While the union of any pair of edge sets may be nonplanar, a planar drawing of each layer may still be possible, as crossings between edges of distinct edge sets is permitted. This corresponds to the problem of simultaneous embedding (SE). Without restrictions on the types of edges used, this problem is trivial since any number of planar graphs can be drawn on the same fixed set of vertex locations [6].
    [Show full text]
  • Near-Linear Time Constant-Factor Approximation Algorithm for Branch-Decomposition of Planar Graphs
    Near-Linear Time Constant-Factor Approximation Algorithm for Branch-Decomposition of Planar Graphs1 Qian-Ping Gu and Gengchun Xu School of Computing Science, Simon Fraser University Burnaby BC Canada V5A1S6 [email protected],[email protected] Abstract: We give an algorithm which for an input planar graph G of n vertices and integer k, in min{O(n log3 n),O(nk2)} time either constructs a branch-decomposition of G k+1 with width at most (2 + δ)k, δ > 0 is a constant, or a (k + 1) × ⌈ 2 ⌉ cylinder minor of G implying bw(G) >k, bw(G) is the branchwidth of G. This is the first O˜(n) time constant- factor approximation for branchwidth/treewidth and largest grid/cylinder minors of planar graphs and improves the previous min{O(n1+ǫ),O(nk2)} (ǫ> 0 is a constant) time constant- factor approximations. For a planar graph G and k = bw(G), a branch-decomposition of g k width at most (2 + δ)k and a g × 2 cylinder/grid minor with g = β , β > 2 is constant, can be computed by our algorithm in min{O(n log3 n log k),O(nk2 log k)} time. Key words: Branch-/tree-decompositions, grid minor, planar graphs, approximation algo- rithm. 1 Introduction The notions of branchwidth and branch-decomposition introduced by Robertson and Sey- mour [31] in relation to the notions of treewidth and tree-decomposition have important algorithmic applications. The branchwidth bw(G) and the treewidth tw(G) of graph G 3 are linearly related: max{bw(G), 2} ≤ tw(G)+1 ≤ max{⌊ 2 bw(G)⌋, 2} for every G with more than one edge, and there are simple translations between branch-decompositions and tree-decompositions that meet the linear relations [31].
    [Show full text]
  • Number One Is in NC
    数理解析研究所講究録 第 790 巻 1992 年 155-161 155 Deciding whether Graph $G$ Has Page Number One is in NC 増山 繁 (豊橋技術科学大学知識情報工学系) Shigeru MASUYAMA Department of Knowledge-Based Information Engineering Toyohashi University of Technology Toyohashi 441, Japan 内藤昭三 (NTT 基礎研究所) Shozo NAITO Basic Research Laboratories NTT Musashino 180, Japan Abstract Based on a forbidden subgraph characterization of a graph to have one page, we develop a polylog time algorithm to tell if page number of given graph $G$ is one with polynomial number of processors, clarifying this problem to be in NC. 1 Introduction is crossing when they are drawn on the same side of the linear arrangement of vertices. Similar problem setting ap- This paper discusses the problem of pears in the formulation of the non- deciding whether the given graph is crossing constraint on word modifica- noncrossing, where graph $G$ is non- tion to sentence generation in natural crossing if there exists a linear arrange- language processing, which motivates ment of vertices so that no pair of edges 156 us to study this problem. are undirected and may have multiple This problem is a specialization of edges. We also assume that a path the book embedding[12] in the sense denotes a simple path throughout this that this problem asks if the given paper. CREW PRAM (see e.g., [5]) graph has page number one, i.e., a is adopted as a parallel computation graph can be embedded in a single model. page. In general, the book embedding is hard: it is NP-complete to tell if a 2 Forbidden Sub- planar graph can be embedded in two graph Characterization of a pages [3].
    [Show full text]
  • DISSERTATION GENERALIZED BOOK EMBEDDINGS Submitted By
    DISSERTATION GENERALIZED BOOK EMBEDDINGS Submitted by Shannon Brod Overbay Department of Mathematics In partial fulfillment of the requirements for the degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 1998 COLORADO STATE UNIVERSITY May 13, 1998 WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER OUR SUPERVISION BY SHANNON BROD OVERBAY ENTITLED GENERALIZED BOOK EMBEDDINGS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSO- PHY. Committee on Graduate Work Adviser Department Head ii ABSTRACT OF DISSERTATION GENERALIZED BOOK EMBEDDINGS An n-book is formed by joining n distinct half-planes, called pages, together at a line in 3-space, called the spine. The book thickness bt(G) of a graph G is the smallest number of pages needed to embed G in a book so that the vertices lie on the spine and each edge lies on a single page in such a way that no two edges cross each other or the spine. In the first chapter, we provide background material on book embeddings of graphs and preview our results on several related problems. In the second chapter, we use a theorem of Bernhart and Kainen and a result of Whitney to present a large class of two-page embeddable planar graphs. In particular, we prove that a graph G that can be drawn in the plane so that G has no triangles other than faces can be embedded in a two-page book. The discussion of planar graphs continues in the third chapter where we define a book with a tree-spine.
    [Show full text]
  • Schematic Representation of Large Biconnected Graphs?
    Schematic Representation of Large Biconnected Graphs? Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and Marco Tais Roma Tre University, Rome, Italy fgdb,frati,patrigna,[email protected] Abstract. Suppose that a biconnected graph is given, consisting of a large component plus several other smaller components, each separated from the main component by a separation pair. We investigate the existence and the computation time of schematic representations of the structure of such a graph where the main component is drawn as a disk, the vertices that take part in separation pairs are points on the boundary of the disk, and the small components are placed outside the disk and are represented as non-intersecting lunes connecting their separation pairs. We consider several drawing conventions for such schematic representations, according to different ways to account for the size of the small components. We map the problem of testing for the existence of such representations to the one of testing for the existence of suitably constrained 1-page book-embeddings and propose several polynomial-time algorithms. 1 Introduction Many of today's applications are based on large-scale networks, having billions of vertices and edges. This spurred an intense research activity devoted to finding methods for the visualization of very large graphs. Several recent contributions focus on algorithms that produce drawings where either the graph is only partially represented or it is schematically visualized. Examples of the first type are proxy drawings [6,12], where a graph that is too large to be fully visualized is represented by the drawing of a much smaller proxy graph that preserves the main features of the original graph.
    [Show full text]
  • Planarity Testing and Embedding
    1 Planarity Testing and Embedding 1.1 Introduction................................................. 1 1.2 Properties and Characterizations of Planar Graphs . 2 Basic Definitions • Properties • Characterizations 1.3 Planarity Problems ........................................ 7 Constrained Planarity • Deletion and Partition Problems • Upward Planarity • Outerplanarity 1.4 History of Planarity Algorithms.......................... 10 1.5 Common Algorithmic Techniques and Tools ........... 10 1.6 Cycle-Based Algorithms ................................... 11 Adding Segments: The Auslander-Parter Algorithm • Adding Paths: The Hopcroft-Tarjan Algorithm • Adding Edges: The de Fraysseix-Ossona de Mendez-Rosenstiehl Algorithm 1.7 Vertex Addition Algorithms .............................. 17 The Lempel-Even-Cederbaum Algorithm • The Shih-Hsu Algorithm • The Boyer-Myrvold Algorithm 1.8 Frontiers in Planarity ...................................... 31 Simultaneous Planarity • Clustered Planarity • Maurizio Patrignani Decomposition-Based Planarity Roma Tre University References ................................................... ....... 34 1.1 Introduction Testing the planarity of a graph and possibly drawing it without intersections is one of the most fascinating and intriguing algorithmic problems of the graph drawing and graph theory areas. Although the problem per se can be easily stated, and a complete characterization of planar graphs has been known since 1930, the first linear-time solution to this problem was found only in the 1970s. Planar graphs
    [Show full text]
  • 286 Graphs 6.2.5 Biconnected Components
    l 286 Graphs 6.2.5 Biconnected Components The operations that we have implemented thus far are simple extensions of depth first and breadth first search. The next operation we implement is more complex and requires the introduction of additional terminology. We begin by assuming that G is an undirected connected graph. An articulation point is a vertex v of G such that the deletion of v, together with all edges incident on v, produces a graph, G', that has at least two connected com­ ponents. For example, the connected graph of Figure 6.19 has four articulation points, vertices 1,3,5, and 7. A biconnected graph is a connected graph that has no articulation points. For example, the graph of Figure 6.16 is biconnected, while the graph of Figure 6.19 obvi­ ously is not. In many graph applications, articulation points are undesirable. For instance, suppose that the graph of Figure 6.19(a) represents a communication network. In such graphs, the vertices represent communication stations and the edges represent communication links. Now suppose that one of the stations that is an articulation point fails. The result is a loss of communication not just to and from that single station, but also between certain other pairs of stations. A biconnected component of a connected undirected graph is a maximal bicon­ nected subgraph, H, of G. By maximal, we mean that G contains no other subgraph that is both biconnected and properly contains H. For example, the graph of Figure 6.19(a) contains the six biconnected components shown in Figure 6.19(b).
    [Show full text]
  • Large-Deviation Properties of the Largest Biconnected Component for Random Graphs
    EPJ manuscript No. (will be inserted by the editor) Large-deviation properties of the largest biconnected component for random graphs Hendrik Schawea and Alexander K. Hartmannb Institut f¨urPhysik, Universit¨atOldenburg, 26111 Oldenburg, Germany November 13, 2018 Abstract. We study the size of the largest biconnected components in sparse Erd}os-R´enyi graphs with finite connectivity and Barab´asi-Albert graphs with non-integer mean degree. Using a statistical-mechanics inspired Monte Carlo approach we obtain numerically the distributions for different sets of parameters over 100 almost their whole support, especially down to the rare-event tails with probabilities far less than 10− . This enables us to observe a qualitative difference in the behavior of the size of the largest biconnected component and the largest 2-core in the region of very small components, which is unreachable using simple sampling methods. Also, we observe a convergence to a rate function even for small sizes, which is a hint that the large deviation principle holds for these distributions. PACS. XX.XX.XX No PACS code given 1 Introduction the function of the network even in case that an arbitrary edge has too low throughput or an arbitrary node of the The robustness of networks [1,2,3,4,5] attracted much in- biconnected component is damaged. terest in recent time, from practical applications for, e.g., At the same time the biconnected component is a sim- power grids [6,7,8], the internet [9,10], to examinations ple concept enabling to some extent its treatment by an- of genomes [11,12].
    [Show full text]