Topics in Continuum Theory John Samples a Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master O
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Sheaf-Theoretic Topos Model of the Physical “Continuum” and Its Cohomological Observable Dynamics
A Sheaf-Theoretic Topos Model of the Physical “Continuum” and its Cohomological Observable Dynamics ELIAS ZAFIRIS University of Athens Department of Mathematics Panepistimiopolis, 15784 Athens Greece Abstract The physical “continuum” is being modeled as a complex of events interconnected by the relation of extension and forming an abstract partially ordered structure. Operational physical procedures for dis- cerning observable events assume their existence and validity locally, by coordinatizing the informational content of those observable events in terms of real-valued local observables. The localization process is effectuated in terms of topological covering systems on the events “con- tinuum”, that do not presuppose an underlying structure of points on the real line, and moreover, respect only the fundamental relation of extension between events. In this sense, the physical “continuum” is represented by means of a fibered topos-theoretic structure, modeled as a sheaf of algebras of continuous real-valued functions. Finally, the dy- namics of information propagation, formulated in terms of continuous real-valued observables, is described in the context of an appropriate sheaf-cohomological framework corresponding to the localization pro- cess. 0E-mail : ezafi[email protected] 1 Keywords: Observables; Modern Differential Geometry; Topos and Sheaf Theory; Functoriality; Connection; De Rham Cohomology. 2 1 Prologue The semantics of the physical “continuum” in the standard interpretation of physical systems theories is associated with the codomain of valuation of physical attributes (Butterfield and Isham (2000)). Usually the notion of “continuum” is tied with the attribute of position, serving as the range of values characterizing this particular attribution. The model adopted to represent these values is the real line R and its powers, specified as a set the- oretical structure of points that are independent and possess the property of infinite distinguishability with absolute precision. -
L. Maligranda REVIEW of the BOOK by MARIUSZ URBANEK
Математичнi Студiї. Т.50, №1 Matematychni Studii. V.50, No.1 УДК 51 L. Maligranda REVIEW OF THE BOOK BY MARIUSZ URBANEK, “GENIALNI – LWOWSKA SZKOL A MATEMATYCZNA” (POLISH) [GENIUSES – THE LVOV SCHOOL OF MATHEMATICS] L. Maligranda. Review of the book by Mariusz Urbanek, “Genialni – Lwowska Szko la Matema- tyczna” (Polish) [Geniuses – the Lvov school of mathematics], Wydawnictwo Iskry, Warsaw 2014, 283 pp. ISBN: 978-83-244-0381-3 , Mat. Stud. 50 (2018), 105–112. This review is an extended version of my short review of Urbanek's book that was published in MathSciNet. Here it is written about his book in greater detail, which was not possible in the short review. I will present facts described in the book as well as some false information there. My short review of Urbanek’s book was published in MathSciNet [24]. Here I write about his book in greater detail. Mariusz Urbanek, writer and journalist, author of many books devoted to poets, politicians and other figures of public life, decided to delve also in the world of mathematicians. He has written a book on the phenomenon in the history of Polish science called the Lvov School of Mathematics. Let us add that at the same time there were also the Warsaw School of Mathematics and the Krakow School of Mathematics, and the three formed together the Polish School of Mathematics. The Lvov School of Mathematics was a group of mathematicians in the Polish city of Lvov (Lw´ow,in Polish; now the city is in Ukraine) in the period 1920–1945 under the leadership of Stefan Banach and Hugo Steinhaus, who worked together and often came to the Scottish Caf´e (Kawiarnia Szkocka) to discuss mathematical problems. -
Homology and Vortices I
The role of homology in fluid vortices I: non-relativistic flow D. H. Delphenich † Spring Valley, OH 45370 Abstract : The methods of singular and de Rham homology and cohomology are reviewed to the extent that they are applicable to the structure and motion of vortices. In particular, they are first applied to the concept of integral invariants. After a brief review of the elements of fluid mechanics, when expressed in the language of exterior differential forms and homology theory, the basic laws of vortex theory are shown to be statements that are rooted in the homology theory of integral invariants. (†) E-mail: [email protected] Contents Page Introduction ……………………………………………………………………………………… 1 Part I: Mathematical preliminaries 1. Elementary homology and cohomology……………………………………………………… 3 a. Singular homology 3 b. Singular cohomology 10 c. De Rham cohomology 12 d. De Rham homology 15 e. Differentiable homotopies of chains. 17 f. Chain homotopies 18 2. Vector homology …………………………………………………………………………… 19 3. Integral invariants ………………………………………………………………………….. 23 Part II: The theory of vortices 4. Basic fluid kinematics ………………………………………………………………………. 26 a. The basic flow region 26 b. Flow velocity vector field 27 c. The velocity gradient 27 d. Flow covelocity 1-form 29 e. Integrability of covelocity 29 f. The convective acceleration 1-form 31 5. Kinematical vorticity 2-form ………………..……………………………………………... 32 a. Basic definition 32 b. Vorticity vector field. 33 c. Vortex lines and tubes. 34 d. Vorticity flux as a 2-coboundary 34 e. The magnetic analogy 35 6. Circulation as a 1-cochain ………………………………………………………………….. 36 a. Basic definition 36 b. Topological sources of vorticity for irrotational flow 37 7. Basic fluid dynamics …………………………………………………………………………. -
NOTE the Theorem on Planar Graphs
HISTORIA MATHEMATICA 12(19X5). 356-368 NOTE The Theorem on Planar Graphs JOHN W. KENNEDY AND LOUIS V. QUINTAS Mathematics Department, Pace University, Pace Plaza, New York, New York, 10038 AND MACEJ M. SYSKO Institute of Computer Science, University of Wroc+aw, ul. Prz,esyckiego 20, 511.51 Wroclow, Poland In the late 1920s several mathematicians were on the verge of discovering a theorem for characterizing planar graphs. The proof of such a theorem was published in 1930 by Kazi- mierz Kuratowski, and soon thereafter the theorem was referred to as the Kuratowski Theorem. It has since become the most frequently cited result in graph theory. Recently, the name of Pontryagin has been coupled with that of Kuratowski when identifying this result. The events related to this development are examined with the object of determining to whom and in what proportion the credit should be given for the discovery of this theorem. 0 1985 AcademicPress. Inc Pendant les 1920s avancts quelques mathkmaticiens &aient B la veille de dCcouvrir un theor&me pour caracttriser les graphes planaires. La preuve d’un tel th6or&me a et6 publiCe en 1930 par Kazimierz Kuratowski, et t6t apres cela, on a appele ce thCor&me le ThCortime de Kuratowski. Depuis ce temps, c’est le rtsultat le plus citC de la thCorie des graphes. Rtcemment le nom de Pontryagin a &e coup16 avec celui de Kuratowski en parlant de ce r&&at. Nous examinons les CvCnements relatifs g ce dCveloppement pour determiner 2 qui et dans quelle proportion on devrait attribuer le mtrite de la dCcouverte de ce th6oreme. -
COMPLEXITY of CURVES 1. Introduction in This Note We Study
COMPLEXITY OF CURVES UDAYAN B. DARJI AND ALBERTO MARCONE Abstract. We show that each of the classes of hereditarily locally connected, 1 ¯nitely Suslinian, and Suslinian continua is ¦1-complete, while the class of 0 regular continua is ¦4-complete. 1. Introduction In this note we study some natural classes of continua from the viewpoint of descriptive set theory: motivations, style and spirit are the same of papers such as [Dar00], [CDM02], and [Kru03]. Pol and Pol use similar techniques to study problems in continuum theory in [PP00]. By a continuum we always mean a compact and connected metric space. A subcontinuum of a continuum X is a subset of X which is also a continuum. A continuum is nondegenerate if it contains more than one point. A curve is a one- dimensional continuum. Let us start with the de¯nitions of some classes of continua: all these can be found in [Nad92], which is our main reference for continuum theory. De¯nition 1.1. A continuum X is hereditarily locally connected if every subcon- tinuum of X is locally connected, i.e. a Peano continuum. A continuum X is hereditarily decomposable if every nondegenerate subcontin- uum of X is decomposable, i.e. is the union of two proper subcontinua. A continuum X is regular if every point of X has a neighborhood basis consisting of sets with ¯nite boundary. A continuum X is rational if every point of X has a neighborhood basis consisting of sets with countable boundary. The following classes of continua were de¯ned by Lelek in [Lel71]. -
Topology Proceedings FOLDERS of CONTINUA 1. Introduction The
To appear in Topology Proceedings FOLDERS OF CONTINUA C.L. HAGOPIAN, M.M. MARSH, AND J.R. PRAJS Abstract. This article is motivated by the following unsolved fixed point problem of G. R. Gordh, Jr. If a continuum X ad- mits a map onto an arc such that the preimage of each point is either a point or an arc, then must X have the fixed point prop- erty? We call such a continuum an arc folder. This terminology generalizes naturally to the concept of a continuum folder. We give several partial solutions to Gordh's problem. The an- swer is yes if X is either planar, one dimensional, or an approx- imate absolute neighborhood retract. We establish basic proper- ties of both continuum folders and arc folders. We provide several specific examples of arc folders, and give general methods for con- structing continuum folders. Numerous related questions are raised for further research. 1. Introduction The main focus of this paper is arc folders; that is, continua admit- ting maps onto an arc with point preimages being an arc or a point. In conversation (circa 1980) with a number of topologists, G. R. Gordh, Jr. asked the following question, which is still open. Question 1. Do all arc folders have the fixed point property? We find this question challenging and intriguing, and the class of arc folders interesting and more diverse than its rather restrictive definition may suggest. In this paper, we give some partial answers to Gordh's 2010 Mathematics Subject Classification. Primary 54F15, 54B15, 54D80; Sec- ondary 54C10, 54B17. -
L. Maligranda REVIEW of the BOOK by ROMAN
Математичнi Студiї. Т.46, №2 Matematychni Studii. V.46, No.2 УДК 51 L. Maligranda REVIEW OF THE BOOK BY ROMAN DUDA, “PEARLS FROM A LOST CITY. THE LVOV SCHOOL OF MATHEMATICS” L. Maligranda. Review of the book by Roman Duda, “Pearls from a lost city. The Lvov school of mathematics”, Mat. Stud. 46 (2016), 203–216. This review is an extended version of my two short reviews of Duda's book that were published in MathSciNet and Mathematical Intelligencer. Here it is written about the Lvov School of Mathematics in greater detail, which I could not do in the short reviews. There are facts described in the book as well as some information the books lacks as, for instance, the information about the planned print in Mathematical Monographs of the second volume of Banach's book and also books by Mazur, Schauder and Tarski. My two short reviews of Duda’s book were published in MathSciNet [16] and Mathematical Intelligencer [17]. Here I write about the Lvov School of Mathematics in greater detail, which was not possible in the short reviews. I will present the facts described in the book as well as some information the books lacks as, for instance, the information about the planned print in Mathematical Monographs of the second volume of Banach’s book and also books by Mazur, Schauder and Tarski. So let us start with a discussion about Duda’s book. In 1795 Poland was partioned among Austria, Russia and Prussia (Germany was not yet unified) and at the end of 1918 Poland became an independent country. -
L. Maligranda REVIEW of the BOOK BY
Математичнi Студiї. Т.50, №1 Matematychni Studii. V.50, No.1 УДК 51 L. Maligranda REVIEW OF THE BOOK BY MARIUSZ URBANEK, “GENIALNI – LWOWSKA SZKOL A MATEMATYCZNA” (POLISH) [GENIUSES – THE LVOV SCHOOL OF MATHEMATICS] L. Maligranda. Review of the book by Mariusz Urbanek, “Genialni – Lwowska Szko la Matema- tyczna” (Polish) [Geniuses – the Lvov school of mathematics], Wydawnictwo Iskry, Warsaw 2014, 283 pp. ISBN: 978-83-244-0381-3 , Mat. Stud. 50 (2018), 105–112. This review is an extended version of my short review of Urbanek's book that was published in MathSciNet. Here it is written about his book in greater detail, which was not possible in the short review. I will present facts described in the book as well as some false information there. My short review of Urbanek’s book was published in MathSciNet [24]. Here I write about his book in greater detail. Mariusz Urbanek, writer and journalist, author of many books devoted to poets, politicians and other figures of public life, decided to delve also in the world of mathematicians. He has written a book on the phenomenon in the history of Polish science called the Lvov School of Mathematics. Let us add that at the same time there were also the Warsaw School of Mathematics and the Krakow School of Mathematics, and the three formed together the Polish School of Mathematics. The Lvov School of Mathematics was a group of mathematicians in the Polish city of Lvov (Lw´ow,in Polish; now the city is in Ukraine) in the period 1920–1945 under the leadership of Stefan Banach and Hugo Steinhaus, who worked together and often came to the Scottish Caf´e (Kawiarnia Szkocka) to discuss mathematical problems. -
Leaders of Polish Mathematics Between the Two World Wars
COMMENTATIONES MATHEMATICAE Vol. 53, No. 2 (2013), 5-12 Roman Duda Leaders of Polish mathematics between the two world wars To Julian Musielak, one of the leaders of post-war Poznań mathematics Abstract. In the period 1918-1939 mathematics in Poland was led by a few people aiming at clearly defined but somewhat different goals. They were: S. Zaremba in Cracow, W. Sierpiński and S. Mazurkiewicz in Warsaw, and H. Steinhaus and S. Banach in Lvov. All were chairmen and editors of mathematical journals, and each promoted several students to continue their efforts. They were highly successful both locally and internationally. When Poland regained its independence in 1918, Polish mathematics exploded like a supernova: against a dark background there flared up, in the next two deca- des, the Polish Mathematical School. Although the School has not embraced all mathematics in the country, it soon attracted common attention for the whole. Ho- wever, after two decades of a vivid development the School ended suddenly also like a supernova and together with it there silenced, for the time being, the rest of Polish mathematics. The end came in 1939 when the state collapsed under German and Soviet blows from the West and from the East, and the two occupants cooperated to cut short Polish independent life. After 1945 the state and mathematics came to life again but it was a different state and a different mathematics. The aim of this paper is to recall great leaders of the short-lived interwar Polish mathematics. By a leader we mean here a man enjoying an international reputation (author of influential papers or monographs) and possessing a high position in the country (chairman of a department of mathematics in one of the universities), a man who had a number of students and promoted several of them to Ph.D. -
The Emergence of “Two Warsaws”: Transformation of the University In
The emergence of “two Warsaws”: Transformation of the University in Warsaw and the analysis of the role of young, talented and spirited mathematicians in this process Stanisław Domoradzki (University of Rzeszów, Poland), Margaret Stawiska (USA) In 1915, when the front of the First World War was moving eastwards, Warsaw, which had been governed by Russians for over a century, found itself under a German rule. In the summer of 1915 the Russians evacuated the Imperial University to Rostov-on-Don and in the fall of 1915 general Hans von Beseler opened a Polish-language University of Warsaw and gave it a statute. Many Poles from other occupied territories as well as those studying abroad arrived then to Warsaw, among others Kazimierz Kuratowski (1896–1980), from Glasgow. At the beginning Stefan Mazurkiewicz (1888–1945) played the leading role in the university mathematics, joined in 1918 by Zygmunt Janiszewski (1888–1920) after complet- ing service in the Legions. The career of both scholars was related to scholarly activities of Wacław Sierpi ński (1882–1969) in Lwów. Janiszewski worked there since 1912, nostrified a doctorate from Sorbonne and got veniam legendi (1913), Mazurkiewicz obtained a doctorate (1913). During the war Sierpi ński was interned in Russia as an Austro-Hungarian subject. In 1918 he was nominated for a chair in mathematics at the University of Warsaw. The commu- nity congregating around these mathematicians managed to create somewhat later a solid mathematical school focused on set theory and its applications. It corresponded to a vision of a mathematical school presented by Janiszewski. Warsaw had an efficiently functioning mathematical community for several decades. -
Appendix: Sites for Topoi
Appendix: Sites for Topoi A Grothendieck topos was defined in Chapter III to be a category of sheaves on a small site---or a category equivalent to such a sheaf cate gory. For a given Grothendieck topos [; there are many sites C for which [; will be equivalent to the category of sheaves on C. There is usually no way of selecting a best or canonical such site. This Appendix will prove a theorem by Giraud, which provides conditions characterizing a Grothendieck topos, without any reference to a particular site. Gi raud's theorem depends on certain exactness properties which hold for colimits in any (cocomplete) topos, but not in more general co complete categories. Given these properties, the construction of a site for topos [; will use a generating set of objects and the Hom-tensor adjunction. The final section of this Appendix will apply Giraud's theorem to the comparison of different sites for a Grothendieck topos. 1. Exactness Conditions In this section we consider a category [; which has all finite limits and all small colimits. As always, such colimits may be expressed in terms of coproducts and coequalizers. We first discuss some special properties enjoyed by colimits in a topos. Coproducts. Let E = It, Ea be a coproduct of a family of objects Ea in [;, with the coproduct inclusions ia: Ea -> E. This coproduct is said to be disjoint when every ia is mono and for every 0: =I- (3 the pullback Ea XE E{3 is the initial object in [;. Thus in the category Sets the coproduct, often described as the disjoint union, is disjoint in this sense. -
The Continuum As a Formal Space
Arch. Math. Logic (1999) 38: 423–447 c Springer-Verlag 1999 The continuum as a formal space Sara Negri1, Daniele Soravia2 1 Department of Philosophy, P.O. Box 24 (Unioninkatu 40), 00014 University of Helsinki, Helsinki, Finland. e-mail: negri@helsinki.fi 2 Dipartimento di Matematica Pura ed Applicata, Via Belzoni 7, I-35131 Padova, Italy. e-mail: [email protected] Received: 11 November 1996 Abstract. A constructive definition of the continuum based on formal topol- ogy is given and its basic properties studied. A natural notion of Cauchy sequence is introduced and Cauchy completeness is proved. Other results include elementary proofs of the Baire and Cantor theorems. From a clas- sical standpoint, formal reals are seen to be equivalent to the usual reals. Lastly, the relation of real numbers as a formal space to other approaches to constructive real numbers is determined. 1. Introduction In traditional set-theoretic topology the points of a space are the primitive objects and opens are defined as sets of points. In pointfree topology this conceptual order is reversed and opens are taken as primitive; points are then built as ideal objects consisting of particular, well behaved, collections of opens. The germs of pointfree topology can already be found in some remarks by Whitehead and Russell early in the century. For a detailed account of the historical roots of pointfree topology cf. [J] (notes on ch. II), and [Co]. The basic algebraic structure for pointfree topology is that of frame, or equivalently locale, or complete Heyting algebra, that is, a complete lattice with (finite) meets distributing over arbitrary joins.