Qt7r7253zd.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Baryon (Pentaquark)
PentaquarksPentaquarks inin ChiralChiral SolitonSoliton ModelsModels Bo-Qiang Ma ? Department of Physics, Peking University Feb.17-19, 2004, talk on Feb.18 at Yukawa Institute for Theoretical Physics, Kyoto Univ. In Collaboration with B. Wu Hep-ph/0312041, PRD Hep-ph/0312326, PLB Hep-ph/0311331 1 Search for Exotic Baryon States • Standard Quark Model – classifies hadrons as • mesons ( qq ) • baryons ( qqq ) – also allows “non-standard” or exotic hadron states • multiquark mesons ( qqqq ) • multiquark baryons ( qqqqq ) -> appear as baryon resonances • hybrid states ( qqg or q qqg ) • dibaryons ( qqqqqq ) • glueballs -> no convincing previous evidence for exotic baryon states. 2 Baryon States •All baryons observed before – classified as singlets, octets and decuplets of SU(3) flavor group -> constructed of 3 quarks only, - may have higher orbital angular momentum, resonances – have strangeness from S=-3 to S=0 Y baryon octet with JP=½+ 0 I Z baryon decuplet with JP=(3/2)+ • Exotic Baryons with S=+1 – cannot be formed from only 3 quarks – belong to higher SU(3) multiplet 3 Previous Searches for Exotic Baryons • Ideally: kaon-nucleon (KN) scattering R. Cool et al., PRL 17, 102 (1966) • started in 1966 at BNL BNL 1966 -> “clear” resonance peak found in K+p at M=1.91 GeV and Γ=180 MeV • searches: partial wave analyses in KN scattering – candidates: isoscalar Z0(1780) and Z0(1865) -> give poor evidence (PDG) • dropped from PDG listings after 1986 • reasons for failure: – KN (in)elastic scattering at p(K) corresponding to 1.74 ≤ MZ ≤ 2.16 GeV – resonance widths large: 70 ≤ ΓZ ≤ 845 MeV – MIT bag model predictions: MZ ≥ 1.7 GeV • Λ(1405): molecular meson-baryon state uudsu ? – interpretation problematic: could be uds -> ambiguity remains 4 PentaquarkPentaquark StatesStates • Predictions of pentaquark states with both strange and charm (by Lipkin et al.), no evidence found in experimental searches for more than ten years. -
Hadrons and Nuclei Abstract
Hadrons and Nuclei William Detmold (editor),1 Robert G. Edwards (editor),2 Jozef J. Dudek,2, 3 Michael Engelhardt,4 Huey-Wen Lin,5 Stefan Meinel,6, 7 Kostas Orginos,2, 3 and Phiala Shanahan1 (USQCD Collaboration) 1Massachusetts Institute of Technology 2Jefferson Lab 3College of William and Mary 4New Mexico State University 5Michigan State University 6University of Arizona 7RIKEN BNL Research Center Abstract This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice QCD calculations related to the structure and spectroscopy of hadrons and nuclei. An overview of recent lattice calculations of the structure of the proton and other hadrons is presented along with prospects for future extensions. Progress and prospects of hadronic spectroscopy and the study of resonances in the light, strange and heavy quark sectors is summarized. Finally, recent advances in the study of light nuclei from lattice QCD are addressed, and the scope of future investigations that are currently envisioned is outlined. 1 CONTENTS Executive summary3 I. Introduction3 II. Hadron Structure4 A. Charges, radii, electroweak form factors and polarizabilities4 B. Parton Distribution Functions5 1. Moments of Parton Distribution Functions6 2. Quasi-distributions and pseudo-distributions6 3. Good lattice cross sections7 4. Hadronic tensor methods8 C. Generalized Parton Distribution Functions8 D. Transverse momentum-dependent parton distributions9 E. Gluon aspects of hadron structure 11 III. Hadron Spectroscopy 13 A. Light hadron spectroscopy 14 B. Heavy quarks and the XYZ states 20 IV. Nuclear Spectroscopy, Interactions and Structure 21 A. Nuclear spectroscopy 22 B. Nuclear Structure 23 C. Nuclear interactions 26 D. -
Unification of Standard and Exotic Matter Through a $ Z 2 $ Symmetry
Unification of standard and exotic matter through a Z2 symmetry Ernesto A. Matute∗ Departamento de F´ısica, Universidad de Santiago de Chile, Casilla 307, Santiago 2, Chile We consider a scenario in which the discrete weak symmetry between quarks and leptons is extended to the weak force by introducing exotic partners. We conjecture that there exists a hidden discrete symmetry P,˜ defining a Z2 group, between standard and exotic quarks and leptons. The × × × × × ˜ unified model SU(3)q SU(3)q˜ SU(2)qℓ˜ SU(2)qℓ˜ U(1)Y P is discussed, where the unifying discrete symmetry extends over particles and forces. It is shown that the lighter neutral and charged weak bosons generated upon spontaneous symmetry breaking have the same properties as those of the standard model. Cabbibo-Kobayashi-Maskawa unitarity is used to set a mass of order 2.8 TeV for the nonstandard weak bosons, which do not exhibit quark-lepton universality. A grand unified × × ˜ theory of (GUT)qℓ˜ (GUT)qℓ˜ P type, with decay of exotic matter into standard matter and no decay of the ordinary nucleon, is put forward. PACS numbers: 12.60.Cn; 11.30.Hv; 12.10.Dm; 14.70.Pw The unification of quark and lepton properties under unified form G ˜ Gqℓ P,˜ whereq ˜ and ℓ˜ denote exotic qℓ × ˜ × strong and electroweak interactions through a continu- quarks and exotic leptons, respectively, and P,˜ hereafter ous or discrete symmetry has been one of the targets referred to as exotic symmetry, denotes the discrete sym- of research efforts over the last few decades [1]. -
Chiral Extrapolations and Exotic Meson Spectrum
Physics Letters B 526 (2002) 72–78 www.elsevier.com/locate/npe Chiral extrapolations and exotic meson spectrum Anthony W. Thomas a, Adam P. Szczepaniak b a Special Research Centre for the Subatomic Structure of Matter and Department of Physics and Mathematical Physics, Adelaide University, Adelaide SA 5005, Australia b Department of Physics and Nuclear Theory Center, Indiana University, Bloomington, IN 47405, USA Received 15 June 2001; received in revised form 10 December 2001; accepted 18 December 2001 Editor: H. Georgi Abstract We examine the chiral corrections to exotic meson masses calculated in lattice QCD. In the soft pion limit we find that corrections from virtual, closed channels lead to strong non-linear behavior which has been found in other hadronic systems. We find the resulting mass shifts to be as large as 100 MeV and therefore large corrections to the predictions of exotic meson masses based on linear extrapolations to the chiral limit are expected. Furthermore, by considering a class of phenomenologically successful hybrid meson models we show that this behavior is not altered by contributions from open decay channels. 2002 Published by Elsevier Science B.V. One of the biggest challenges in hadronic physics is with glueballs—they have regular quantum numbers to understand the role of gluonic degrees of freedom. and therefore cannot be unambiguously identified as Even though there is evidence from high energy purely gluonic excitations. On the other hand, the ex- experiments that gluons contribute significantly to istence of mesons with exotic quantum numbers (com- hadron structure, for example, to the momentum and binations of spin, parity and charge conjugation, J PC, spin sum rules, there is a pressing need for direct which cannot be attributed to valence quarks alone), observation of gluonic excitations at low energies. -
Quark Masses, Hyperfine Interactions, and Exotic Baryons
Quark masses, hyperfine interaction and exotic baryonsa Marek Karliner ([email protected]) Cavendish Laboratory, Cambridge University, United Kingdom and School of Physics and Astronomy,Tel Aviv University, Israel In collaboration with Harry J. Lipkin ahep-ph/0307243 and hep-ph/0307343 Marek Karliner – Pentaquark Workshop, Jlab, Nov. 7, 2003 1 Renaissance of QCD Spectroscopy Several new surprising experimental results: Marek Karliner – Pentaquark Workshop, Jlab, Nov. 7, 2003 2 Renaissance of QCD Spectroscopy Several new surprising experimental results: • two new extremely narrow mesons containing c and s¯ quarks (BaBar, CLEO, BELLE) Marek Karliner – Pentaquark Workshop, Jlab, Nov. 7, 2003 3 Renaissance of QCD Spectroscopy Several new surprising experimental results: • two new extremely narrow mesons containing c and s¯ quarks (BaBar, CLEO, BELLE) • new very narrow resonance precisely at D0∗D0 threshold (Belle, CDF) Marek Karliner – Pentaquark Workshop, Jlab, Nov. 7, 2003 4 Renaissance of QCD Spectroscopy Several new surprising experimental results: • two new extremely narrow mesons containing c and s¯ quarks (BaBar, CLEO, BELLE) • new very narrow resonance precisely at D0∗D0 threshold (Belle, CDF) • enhancements near pp¯ thresholds (BES, BELLE) Marek Karliner – Pentaquark Workshop, Jlab, Nov. 7, 2003 5 Renaissance of QCD Spectroscopy Several new surprising experimental results: • two new extremely narrow mesons containing c and s¯ quarks (BaBar, CLEO, BELLE) • new very narrow resonance precisely at D0∗D0 threshold (Belle, CDF) • enhancements near pp¯ thresholds (BES, BELLE) • exotic 5-quark KN resonances: Θ+, Ξ∗−− Marek Karliner – Pentaquark Workshop, Jlab, Nov. 7, 2003 6 Renaissance of QCD Spectroscopy Several new surprising experimental results: • two new extremely narrow mesons containing c and s¯ quarks (BaBar, CLEO, BELLE) • new very narrow resonance precisely at D0∗D0 threshold (Belle, CDF) • enhancements near pp¯ thresholds (BES, BELLE) • exotic 5-quark KN resonances: Θ+, Ξ∗−− Marek Karliner – Pentaquark Workshop, Jlab, Nov. -
Exotics with Heavy Quarks
Proceedings of the 8th International Conference on Quarks and Nuclear Physics (QNP2018) Downloaded from journals.jps.jp by Deutsches Elek Synchrotron on 11/15/19 Proc. 8th Int. Conf. Quarks and Nuclear Physics (QNP2018) JPS Conf. Proc. 26, 011005 (2019) https://doi.org/10.7566/JPSCP.26.011005 Exotics with Heavy Quarks Marek Karliner School of Physics and Astronomy, Tel Aviv University, Israel E-mail: [email protected] (Received May 27, 2019) I discuss recent developments regarding new types of hadrons involving heavy quarks: hadronic molecules, doubly heavy baryons, stable tetraquarks and others. I also explain how the discovery of the doubly heavy baryon leads to a quark-level analogue of nuclear fusion, with energy release per reaction an order of magnitude greater than in ordinary fusion. KEYWORDS: QCD,exotic hadrons,heavy quarks,hadronic molecules,tetraquarks,pentaquarks 1. Social Life of Heavy Quarks Studying heavy exotic hadrons is somewhat similar to investigating the social life of heavy quarks. The relevant questions one would be asking in this context are (a) Who with whom? (b) For how long? (c) A short episode? or (d) “Till Death Us Do Part”? In the following I will try to an- swer some of the obvious concrete questions about exotic hadrons: Do they exist? If they do, which ones? What is their internal structure? How best to look for them? Quarks are fundamental building blocks of protons, neutrons and all hadrons. Paraphrasing Orwell [1], one can say that all quarks are equal, but heavy quarks are more equal than others. In recent years a lot of attention has been devoted to new combinations of hadrons containing heavy quarks, including exotics [2,3]: • hadronic molecules, Zb, Zc tetraquark-like states, and more recently the LHCb pentaquark • prediction and discovery of doubly-charmed baryon • a stable bbu¯d¯ tetraquark Hadrons with heavy quarks are much simpler than quarks containing only light quarks. -
Baryogenesis from B Meson Oscillations
PHYSICAL REVIEW D 100, 075002 (2019) Baryogenesis from B meson oscillations † Ann E. Nelson * and Huangyu Xiao Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA (Received 17 June 2019; published 1 October 2019) We show how CP violating B meson oscillations in conjunction with baryon number violating decays can generate the cosmological asymmetry between matter and antimatter, and explore the parameter space of a simple, self-contained model, which can be tested via exotic B meson decays, and via the charge asymmetry in semileptonic decays of neutral B mesons. DOI: 10.1103/PhysRevD.100.075002 I. INTRODUCTION visible matter-anti-matter asymmetry and asymmetric dark matter [6] via B-meson decays. In the present Baryogenesis—generating the cosmological asymme- work, we reexamine the simpler model of Ref. [4],and try between matter and antimatter—requires physics show that for a different parameter range that was not beyond the Standard Model (SM). The pioneering work considered in the previous work, baryon number vio- of Sakharov [1] found three necessary conditions: baryon B0 number violation, C and CP violation, and departure lating decays of mesons are allowed by experiment, from thermal equilibrium. Baryon number violation potentially observable, and could be the explanation for occurs nonperturbatively in the Standard Model [2]. baryogenesis. The baryogenesis scenario described here begins in the CP violation also occurs, however the standard model prenucleosynthesis early universe with the decays of CP violation appears to be too small to explain the a long lived scalar into b-quarks and antiquarks. These observed baryon asymmetry. Finally, the minimal decays are assumed to take place late enough and at Standard Model contains no mechanism for departure low enough temperature to allow hadronization, but from thermal equilibrium. -
GLUEBALLS, HYBRIDS, PENTAQUARKS: Introduction to Hadron Spectroscopy and Review of Selected Topics
GLUEBALLS, HYBRIDS, PENTAQUARKS: Introduction to Hadron Spectroscopy and Review of Selected Topics Eberhard Klempt Helmholtz–Institut f¨urStrahlen- und Kernphysik der Universit¨atBonn Nußallee 14 -16, 53115 Bonn, Germany E-mail: [email protected] Hadron spectroscopy has received revitalised interest due to the discovery of states with unexpected properties. The BABAR collaboration found a DsJ(2317) (likely scalar) me- son, accompanied by a second state, the DsJ(2463) with preferred spin J = 1, discovered at CLEO. Both are found at an unexpectedly low mass and are narrow. A further nar- row resonance, discovered at BELLE in its decay into ¼¼J/Ã, might be a DD¤ molecule or a cc¯ meson in which the color field, concentrated in a flux tube, is excited. A qq¯ state with excited gluon field is called hybrid, such excitations are expected from QCD. The mass of the state at the DD¤ threshold underlines the importance of meson–meson interactions or four–quark dynamics at the opening of new thresholds. BES reports a signal in radiative J/Ã decays into a proton and an antiproton which has the proper- ties as predicted for NN¯ quasi-nuclear bound states. And last not least the Θ+(1540), seen in several experiments, shows that the ’naive’ quark model needs to be extended. There is also considerable progress in understanding the dynamics of quarks in more conventional situations even though the view presented here is not uncontested. In me- son and in baryon spectroscopy, evidence is emerging that one–gluon–exchange does not provide the appropiate means to understand low–energy QCD; instanton–induced inter- actions yield much more insight. -
LINE SHAPES of the EXOTIC C¯C MESONS X(3872)
LINE SHAPES OF THE EXOTIC cc¯ MESONS X(3872) AND Z±(4430) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Meng Lu, B.S., M.S. ***** The Ohio State University 2008 Dissertation Committee: Approved by Eric Braaten, Adviser Richard J. Furnstahl Adviser Klaus Honscheid Graduate Program in Junko Shigemitsu Physics c Copyright by Meng Lu 2008 ABSTRACT The B-factory experiments have recently discovered a series of new cc¯ mesons, including the X(3872) and the first manifestly exotic meson Z±(4430). The prox- 0 0 imity of the mass of the X to the D∗ D¯ threshold has motivated its identification as a loosely-bound hadronic molecule whose constituents are a superposition of the 0 0 0 0 charm mesons pairs D∗ D¯ and D D¯ ∗ . Factorization formulas for its line shapes are derived by taking advantage of the universality of S-wave resonances near a 2-particle threshold and by including the effects from the nonzero width of D∗ meson and the inelastic scattering channels of the charm mesons. The best fit to the line shapes of + 0 0 0 X in the J/ψπ π− and D D¯ π channels measured by the Belle Collaboration corre- 0 0 sponds to the X being a bound state whose mass is just below the D∗ D¯ threshold. The differences between the line shapes of X produced in B+ decays and B0 decays as + + 0 0 0 0 well as in decay channels J/ψπ π−,J/ψπ π−π , and D D¯ π are further derived by taking into account the effects from the closeby channel composed of charged charm mesons. -
Chiral Extrapolations and Exotic Meson Spectrum
IUNTC 01-02 ADP-01-18/T453 May 2001 CHIRAL EXTRAPOLATIONS AND EXOTIC MESON SPECTRUM Anthony W. Thomasa and Adam P. Szczepaniakb a Special Research Centre for the Subatomic Structure of Matter and Department of Physics and Mathematical Physics, Adelaide University, Adelaide SA 5005, Australia a Department of Physics and Nuclear Theory Center Indiana University, Bloomington, IN 47405, USA We examine the chiral corrections to exotic meson masses calculated in lattice QCD. In particular, we ask whether the non-linear chiral behavior at small quark masses, which has been found in other hadronic systems, could lead to large cor- rections to the predictions of exotic meson masses based on linear extrapolations to the chiral limit. We find that our present understanding of exotic meson decay dy- namics suggests that open channels may not make a significant contribution to such non-linearities whereas the virtual, closed channels may be important. arXiv:hep-ph/0106080v1 7 Jun 2001 1. Introduction. One of the biggest challenges in hadronic physics is to understand the role of gluonic degrees of freedom. Even though there is evidence from high energy experiments that gluons contribute significantly to hadron structure, for example to the momentum and spin sum rules, there is a pressing need for direct observation of gluonic excitations at low energies. In particular, it is expected that glue should manifest itself in the meson spectrum and reflect on the nature of confinement. In recent years a few candidates for glueballs and hybrid mesons have been re- ported. For example, there are two major glueball candidates, the f0(1500) and f0(1710), scalar-isoscalar mesons observed inpp ¯ annihilation, in central production as well as in J/ψ (f0(1710)) decays [1]. -
Evidence of Exotic Meson Particle Discovered At
Vol. 51 - No. 37 September 19, 1997 BROOKHAVEN NATIONAL LABORATORY Evidence of Exotic Meson Particle Discovered at AGS Researchers at BNL’s Alternating mass of 1.4 GeV after years of select- Gradient Synchrotron (AGS) accelera- ing and analyzing data from products tor have found evidence of a new and of billions of particle collisions made rare subatomic particle called an “ex- during the experiment’s 1994 run. otic” meson. The result was presented to par- This finding at AGS Experiment ticipants of the Seventh International 852, described in the September 1 Conference on Hadron Spectroscopy, issue of Physical Review Letters, helps held at BNL August 25-30 (see story validate the standard model, the cen- on page 2). At the conference, confir- tral theory of modern physics. mation of the E852 result was re- Also, the finding could improve un- ported by what is called the Crystal derstanding of how matter binds to- Barrel collaboration at CERN, the gether at the relatively low energy European particle physics laboratory. level of 18 billion electron volts (GeV). “In some sense, we’ve discovered a The E852 team of 51 scientists, new form of matter,” said Chung. “This graduate students and undergradu- particle had been hypothesized [in ates includes researchers from: BNL, the late 1970s], but it’s never, never Northwestern University, Rensselaer been pinned down. Polytechnic Institute, the University “To find evidence of a particle that of Massachusetts, Dartmouth College, has never been detected before, one and Russia’s Institute for High En- that’s so important to our understand- ergy Physics and the Moscow State ing of elementary particles, is hugely University. -
(PDF) Beyond the Quark Model: Tetraquarks and Pentaquarks
Beyond the Quark Model: Tetraquarks and Pentaquarks in completion of Drexel University's Physics 502 Final Tyler Rehak March 15, 2016 The Standard Model of particle physics is continually being tested by new experimental findings. One of the main components of the model is the quark model. The quark model was introduced in 1964 independently by Murray Gell-Mann and George Zweig as a way to describe the elementary components of hadrons. While most hadrons are composed of either two or three quarks, there is the possibility of exotic hadrons that break the mold. There have been two recent announcements from particle physics laboratories regarding exotic hadrons. The Dé experiment at Fermilab announced in February 2016 the observation of a possible particle containing four types of quarks, a tetraquark. Earlier in July 2015, the LHCb collaboration at CERN announced the observation of a particle composed of five types of quarks, a pentaquark. Figure 1 The Standard Model of particle physics (wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg) The Standard Model (Figure 1) consists of twelve types of fermions and their antiparticles, four gauge bosons, and the Higgs boson. The gauge bosons are the force carriers of the fundamental forces. Photons mediate the electromagnetic force between electrically charged particles. Gluons mediate the strong force between color charged particles, a property of quarks. The W and Z bosons are responsible for the weak force between quarks and leptons of varying flavors. The fermions are elementary particles with spin ½ and each has a corresponding antiparticle. Six of the types of the fermions are quarks which are the particles interacting via the strong force, and the other six are leptons that do not interact via the strong force.