Belgrade Lakes Water Quality
Total Page:16
File Type:pdf, Size:1020Kb
“Keeping Great Pond $$Golden$$: The Belgrade Lakes Project” D. Whitney King, Cathy Bevier, Denise Bruesewitz, Russ Cole, Sahan Dissanayake, Philip Nyhus, James Fleming, Michael Donihue, Bruce Rueger1, Maggie Shannon2, Charlie Baeder, Peter Kallin3, Kathi Wall, Lisa Hallee4, Brenda Fekete 1Colby College, 2Maine Lakes Society, 3Belgrade Regional Conservation Alliance, 4Maine Lakes Resource Center Supported by National Science Foundation award #EPS-0904155 to Maine EPSCoR at the University of Maine http://web.colby.edu/epscor/ VLMP Links of Interest Interactive Lake Data Page: http://www.mapsforgood.org/mlrc/ Water flow animation: https://rossdonihue.cartodb.com/viz/a16b9a20-f516-11e4-8280-0e018d66dc29/embed_map Live Buoy Data: http://web.colby.edu/lakes/ A Maine Sense of Place - with economic value of billions of dollars Stakeholder Perceptions of Water Quality Hydrology of the Belgrade Lake Chain $$$ 48 $$$ 12 17 28 22 East Pond North Pond McGrath Pond $$$ Salmon Lake Great $$$ Pond 4 8 3 $$$ Long Pond - North Long Pond - South Snow Pond Life is controlled by the limiting reagent How many bicycles can I make from three wheels and two frames????? Volunteer Science 1988 Anoxic Factor (AF) = (anoxic area/ lake area) * days of anoxia AF provides an estimate of internal phosphorus loading 12 mg P/m2 day of anoxic area <10 is good, 20 is a concern, 30 is bad, 50+ is awful Oxygen above 2 ppm Depth of anoxia Oxygen below 2 ppm Nurnberg, G. K. 2004 ScienceWorld 4:42 Clear Water Lake China Lake Long Pond station 1 Great Pond Station 2 Deep Lakes good concern bad awful Shallow Lakes Belgrade Lakes Nurnberg, G. K. 2004 ScienceWorld 4:42 Stop Studying the Problem and Fix It! The 2015 Research Team Great Pond Depth (M) vs temp F Depth (M) vs % RDO 40 45 50 55 60 65 70 75 80 85 0 20 40 60 80 100 120 0 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14 16 16 18 18 20 20 5/3/15 5/8/15 5/13/15 6/3/15 6/12/15 6/17/15 6/22/15 6/29/15 7/6/15 7/16/15 7/23/15 7/30/15 8/6/15 8/12/15 8/20/15 Dissolved Oxygen (PPM) Great Pond 1989 0 9.4 9.8 8.9 8.8 8 8.2 10.8 9.9 8.7 8.8 7.9 8.2 11.4 9.3 8.9 8.8 7.8 8.4 11.6 10.2 8.9 8.8 7.8 8.4 11.4 10.2 8.9 8.8 7.8 8.4 5 11.4 9.8 8.9 8.8 7.8 8.4 11.2 9.3 8.8 8.6 7.6 8.6 11.2 8.8 7.8 7.8 7.8 8.4 11 8.4 7 5.5 3.6 8.6 10.8 8.2 6.4 5 3.6 8.4 10 10.8 8.1 6.4 5 3.6 3.2 10.9 8.1 6.4 5 3.6 2.8 10.8 8.1 6.4 5.2 3.8 2.7 Depth (meters) Depth 10.8 8 6.8 5.2 3.9 2.8 10.7 7.9 6.8 5.4 3.9 2.8 15 10.8 7.9 6.8 5.2 3.5 2.2 10.8 7.8 6.8 4.8 3.2 2.2 6.3 0.6 10.7 6.3 6.5 3.8 1.4 20 5.6 1.2 0.8 150 170 190 210 230 250 270 Julian Day (210 = 8/1/1989) 12 12 ppm ppm11 10 ppm 9 ppm 8 ppm 7 ppm 6 ppm 5 ppm ppm4 3 ppm 2 ppm 26 ºC 24ºC 22ºC 20ºC 18ºC 16ºC 14ºC 12ºC 10ºC 8ºC 6ºC May-8 May-13 Temperature (ºC) Depthby (M) Temperature Jun-3 Jun-12 Jun-17 Jun-22 Jun-29 Jul-6 Jul-16 Jul-23 Jul-30 Pond Great Aug-6 Aug-12 Aug-20 May-8 May-13 Jun-3 RDO (ppm) by Depth (M) Jun-12 Jun-17 Jun-22 Jun-29 Jul-6 Jul-16 Jul-23 Jul-30 Aug-6 Aug-12 Aug-20 12 12 ppm ppm11 10 ppm 9 ppm 8 ppm 7 ppm 6 ppm 5 ppm ppm4 3 ppm 2 ppm 26 ºC 24ºC 22ºC 20ºC 18ºC 16ºC 14ºC 12ºC 10ºC 8ºC 6ºC May-8 May-13 Temperature (ºC) Depthby (M) Temperature Jun-3 Jun-12 Jun-17 Jun-22 Jun-29 Jul-6 Jul-16 Jul-23 Jul-30 Pond Great Aug-6 Aug-12 Aug-20 May-8 May-13 Jun-3 RDO (ppm) by Depth (M) Jun-12 Jun-17 Jun-22 Jun-29 Jul-6 Jul-16 Jul-23 Jul-30 Aug-6 Aug-12 Aug-20 Fraction of Lake Area (10 cm layer) Cumulative Lake Area 0 0.005 0.01 0.015 0 0.5 1 0 0 2 2 4 4 6 6 8 8 10 10 Depth in in Depth Meters Depth in in Depth Meters 12 12 14 14 16 16 18 18 20 20 Great Pond - Belgrade Maine Additional slides on high frequency data – buoys! Healthy Lake Phosphorus Flows must balance + O2 Inflow + NP Sources + Internal Load < Outflow + Burial -PO Fe(II) + 4 hv hv Building our website with the community in mind SDL500 Data Logger Data sent to Colby’s server Goldie measures Weather data every 15 minutes sent to Colby’s server LabView integrates data Dynamic Graphs created in Graphs created in LabView HighChart and displayed on web Additional slides “Free Water” productivity measurements Light (I) Light (I) Wind (U) Gas exchange www.colby.edu Oxygen (blue) “algae” (green) Zmix GPP – Gross Primary Productivity (function of light) R – Respiration F – Gas Exchange Temperature (yellow) Hanson et al. 2008 L&O Methods 6: 454 Solomon, Bruesewitz et al. 2013 L&O 58(3): 849 Free-Water Metabolism “Free Water” productivity measurements Light (I) Light (I) Wind (U) Gas exchange www.colby.edu Oxygen (blue) “algae” (green) Zmix GPP – Gross Primary Productivity (function of light) {1 mg O2/L day} R – Respiration {0.7 mg O2/L day} F – Gas Exchange {0.1 mg O2/L day} NPP (net primary productivity) = GPP – R {0.3 mg O2/L day} Temperature (yellow) Hanson et al. 2008 L&O Methods 6: 454 Solomon, Bruesewitz et al. 2013 L&O 58(3): 849 “Free Water” productivity measurements Light (I) Light (I) Wind (U) Gas exchange www.colby.edu GPP Oxygen (blue) O2 “algae” (green) R Zmix NPP CH2O + O2 CO2 + H2O Deep water oxygen sink NPP (net primary productivity) = GPP – R {0.3 mg O2/L day} “Free Water” productivity measurements Light (I) Light (I) Wind (U) Gas exchange www.colby.edu GPP Oxygen (blue) O2 “algae” (green) R Zmix NPP 0.3 mg O2/L day 11 1x10 L 30,000 kg O2/day CH2O + O2 CO2 + H2O Deep water oxygen sink 11 0.7x10 L 800,000 kg O2 800,000 kg O2/30,000 kg O2/day = 27 days to anoxia .