The Feasibility of Reintroducing Pine Martens to the Forest of Dean And

Total Page:16

File Type:pdf, Size:1020Kb

The Feasibility of Reintroducing Pine Martens to the Forest of Dean And The feasibility of reintroducing pine martens ( Martes martes ) to the Forest of Dean and lower Wye Valley May 2018 Authors: Stringer AP 1, MacPherson J2, Carter S2, Gill R 3, Ambrose-Oji B 3, Wilson R 4, Kelsall P 4, Feirn WG, Galbraith LC, Hilário CM, Parry G 1 & Taylor A 1. 1 Gloucestershire Wildlife Trust, Conservation Centre, Robinswood Hill Country Park, Reservoir Road, Gloucester, GL4 6SX. 2 The Vincent Wildlife Trust, 3 & 4 Bronsil Courtyard, Eastnor, Ledbury, Herefordshire, HR8 1EP. 3 Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH. 4 Forestry Commission, Bank House, Bank Street, Coleford, Gloucestershire, GL16 8BA. Acknowledgements : We would like to thank Johnny Birks, Jonathan Spencer, Kevin Stannard, Lauren Harrington, Xavier Lambin, Emma Sheehy, Mike Townsend, Kat Walsh (and staff at Natural England), Henry Schofield, David Priddis, Roger Ransome, Freya Durham, Rob Lambert, Andrew Brook, members of the UK pine marten strategy group, and a number of local stakeholders for their in-depth and interesting discussions and review of the feasibility study. Many thanks to the volunteer group for all their hard work, and in particular to Ali Moss, Alex Blundell, and Nick Martin. The study is indebted to the British Society for Shooting and Conservation, and the National Gamekeepers Organisation, in particular Ian Danby, Sam Walker, and Julian Murray-Evans, for the collaborative survey of their members. We would also like to thank Bianca Ambrose-Oji, Michael Dunn, and Mark Atkinson for their time and effort on the accompanying report “Pine martens in the Forest of Dean: Stakeholder and public attitudes”. We would also like to thank ‘The Dutch National Database Flora and Fauna’ for their help. Finally, we would like to thank Forest Holidays and the Woodland Trust for their generous support. Cover photo © Nick Martin. 1 Contents List of Figures .......................................................................................................................................... 3 List of Tables ........................................................................................................................................... 4 Executive Summary ................................................................................................................................. 5 1. Project goals and justification ................................................................................................... 7 2. Legal review ............................................................................................................................. 9 3. The biological feasibility of a pine marten reintroduction ........................................................ 10 3.1 The biology and habitat requirements of pine martens ................................................................. 10 3.2 Habitat map .................................................................................................................................... 18 3.3 Road mortality ................................................................................................................................ 29 3.4 Ground truthing of habitat maps .................................................................................................... 37 3.5 Release area criteria ....................................................................................................................... 43 3.6 Ecological Carrying Capacity and Population Viability Analysis ...................................................... 44 3.7 Dispersal potential .......................................................................................................................... 51 3.8 Provenance and genetic considerations ......................................................................................... 58 4. The ecological feasibility of a pine marten reintroduction........................................................ 60 4.1 Potential ecological benefits ........................................................................................................... 60 4.2 Ecological risk assessment .............................................................................................................. 62 5. The socio-economic feasibility of a pine marten reintroduction ............................................... 80 5.1 Potential socio-economic benefits.................................................................................................. 80 5.2 Socio-economic risks ....................................................................................................................... 85 5.3 Attitudes to pine marten reintroduction ........................................................................................ 87 6. Conclusions and recommendations ......................................................................................... 92 References ............................................................................................................................................ 94 2 List of Figures Figure 1. Forest of Dean and lower Wye Valley habitat map for pine martens.. ................................. 22 Figure 2. Changes in oak diameter at breast height with respect to age ............................................. 23 Figure 3. Pine marten natal den site availability map showing potential denning areas within the Forest of Dean main block ............................................................................................................................... 26 Figure 4. Landscape scale habitat connectivity in south Wales and western England based on percentage woodland cover within 1km 2 squares. .............................................................................. 27 Figure 5. Landscape resistance map showing the difficulty pine martens may have in traversing different landscape types. .................................................................................................................... 28 Figure 6. Motorway and primary road density in the Netherlands ...................................................... 31 Figure 7. Motorway and primary road density in the UK ..................................................................... 32 Figure 8. All Risky Roads and High-Risk Roads in the release region .................................................... 34 Figure 9. Dominant ground cover across plots within the Forest of Dean ........................................... 39 Figure 10. Fox density estimates for sites in the UK ............................................................................. 41 Figure 11. The effect of ecological carrying capacity on extinction risk ............................................... 48 Figure 12. The change in the risk of population extinction over time .................................................. 48 Figure 13. Effect of multiple populations and migration between those populations on the index of extinction risk ........................................................................................................................................ 49 Figure 14. a) Metapopulation extinction risk over 50 years with and without a Forest of Dean reintroduction. b) Extinction risk over 20 years (before expected significant migration between populations) for the Forest of Dean population ................................................................................... 49 Figure 15. Influence of a) home range size (determined by minimum range resource), b) Minimum habitat value to be eligible for a home range, c) displacement distance (determined by juvenile dispersal), on Hexsim model outcomes. ............................................................................................... 54 Figure 16. Hexsim model predictions of 2012 pine marten range in Scotland .................................... 55 Figure 17. Predicting pine marten range in 30 years if reintroduction projects are successful. ......... 56 Figure 18. Corine land cover map of The Vincent Wildlife Trust release area in central Wales. ......... 81 Figure 19. Corine land cover map for the Forest of Dean and lower Wye Valley. ............................... 81 Figure 20. Corine Land cover map for central Netherlands area between Utrecht and Amersfoort ... 82 Figure 21. Multiple years of bark stripping by grey squirrels on a young oak tree .............................. 83 3 Figure 22. Results from public opinion surveys in the Forest of Dean and Wye Valley ....................... 88 Figure 23. Responders to survey of BASC and the NGO members asked, ‘Please select the options that best describe you (multiple answers may apply)?’ ............................................................................... 89 List of Tables Table 1. The proportion of different food groups within pine marten diet ......................................... 13 Table 2. Areas of suitable pine marten habitat .................................................................................... 23 Table 3. Numbers of pine marten killed on different road types in the Netherlands .......................... 33 Table 4. Abundance of rodents within pine marten habitat across Europe in comparison to the Forest of Dean. ................................................................................................................................................. 40 Table 5. Ecological carrying capacity in the release region as estimated by the abundance of suitable habitat, density,
Recommended publications
  • MINNESOTA MUSTELIDS Young
    By Blane Klemek MINNESOTA MUSTELIDS Young Naturalists the Slinky,Stinky Weasel family ave you ever heard anyone call somebody a weasel? If you have, then you might think Hthat being called a weasel is bad. But weasels are good hunters, and they are cunning, curious, strong, and fierce. Weasels and their relatives are mammals. They belong to the order Carnivora (meat eaters) and the family Mustelidae, also known as the weasel family or mustelids. Mustela means weasel in Latin. With 65 species, mustelids are the largest family of carnivores in the world. Eight mustelid species currently make their homes in Minnesota: short-tailed weasel, long-tailed weasel, least weasel, mink, American marten, OTTERS BY DANIEL J. COX fisher, river otter, and American badger. Minnesota Conservation Volunteer May–June 2003 n e MARY CLAY, DEMBINSKY t PHOTO ASSOCIATES r mammals a WEASELS flexible m Here are two TOM AND PAT LEESON specialized mustelid feet. b One is for climb- ou can recognize a ing and the other for hort-tailed weasels (Mustela erminea), long- The long-tailed weasel d most mustelids g digging. Can you tell tailed weasels (M. frenata), and least weasels eats the most varied e food of all weasels. It by their tubelike r which is which? (M. nivalis) live throughout Minnesota. In also lives in the widest Ybodies and their short Stheir northern range, including Minnesota, weasels variety of habitats and legs. Some, such as badgers, hunting. Otters and minks turn white in winter. In autumn, white hairs begin climates across North are heavy and chunky. Some, are excellent swimmers that hunt to replace their brown summer coat.
    [Show full text]
  • Download Trip Report
    BULGARIA: BIRDING THE BLACK SEA AND VITOSHA IN WINTER SET DEPARTURE TRIP REPORT 4 – 11 FEBRUARY 2019 By Dylan Vasapolli The prized White-backed Woodpecker was one of the major highlights on the tour. www.birdingecotours.com [email protected] 2 | TRIP REPORT Bulgaria: February 2019 Overview This Bulgarian winter tour takes in essentially the best of Bulgaria, as we visit the many important bird wintering sites along the Black Sea, along with exploring various woodlands and mountains that play host to some of Europe’s most sought-after species. All these combine for a short, well- rounded tour that is not to be missed. This particular winter was relatively mild, in comparison to what it usually is, which, although it meant that we didn’t need to brave extremely cold conditions, did also mean that the large numbers of geese which use this region to overwinter didn’t show up to the fullest. And despite the mild winter the weather wasn’t fantastic on the tour; we had to battle cold and windy conditions on most days, which made the birding tough at times. This tour is timed to give us the best chances at the prized Red-breasted Goose, and we were very successful, enjoying sightings on a few occasions, including some great and prolonged looks at a relatively large flock feeding in a wheat field. We still did well on the tour, though, finding many other prized species, including Whooper and Tundra Swans, Ruddy Shelduck, Red-crested Pochard, Ferruginous Duck, Greater Scaup, Smew, White-headed Duck, Black-throated Loon, Eurasian Bittern, Dalmatian Pelican, Golden Eagle, Slender-billed, Pallas’s, and Caspian Gulls, Eurasian Eagle-Owl, a flock of Long-eared Owls, Middle Spotted, Syrian, White-backed, Black, and Grey-headed Woodpeckers, Spotted Nutcracker, Sombre, Marsh, and Willow Tits, Eurasian Penduline Tit, Calandra Lark, Moustached Warbler, Short-toed Treecreeper, White-throated Dipper, and Cirl Bunting among many others.
    [Show full text]
  • Preserving the Symbol of Siberia, Moving On: Sobol' and The
    EA-13 • RUSSIA • JULY 2009 ICWA Letters INSTITUTE OF CURRENT WORLD AFFAIRS Preserving the Symbol of Siberia, Moving On: Sobol’ and the Elena Agarkova is studying management Barguzinsky Zapovednik (Part I) of natural resources and the relationship between By Elena Agarkova Siberia’s natural riches and its people. Previously, Elena was a Legal Fellow at the LAKE BAIKAL–I started researching this news- University of Washington’s letter with a plan to write about the Barguzin- School of Law, at the sky zapovednik, a strict nature reserve on the Berman Environmental eastern shore of Baikal, the first and the old- Law Clinic. She has clerked est in the country.1 I went to Nizhneangarsk, a for Honorable Cynthia M. Rufe of the federal district small township at the north shore of the lake, court in Philadelphia, and where the zapovednik’s head office is located has practiced commercial now. I crossed the lake and hiked on the east- litigation at the New York ern side through some of the zapovednik’s ter- office of Milbank, Tweed, ritory. I talked to people who devoted their lives Hadley & McCloy LLP. Elena to preserving a truly untouched wilderness, on was born in Moscow, Rus- a shoestring budget. And along the way I found sia, and has volunteered for myself going in a slightly different direction environmental non-profits than originally planned. An additional protago- in the Lake Baikal region of Siberia. She graduated nist emerged. I became fascinated by a small, from Georgetown Universi- elusive animal that played a central role not ty Law Center in 2001, and only in the creation of Russia’s first strict nature has received a bachelor’s reserve, but in the history of Russia itself.
    [Show full text]
  • Cape Sable Seaside Sparrow Ammodramus Maritimus Mirabilis
    Cape Sable Seaside Sparrow Ammodramus maritimus mirabilis ape Sable seaside sparrows (Ammodramus Federal Status: Endangered (March 11, 1967) maritimus mirabilis) are medium-sized sparrows Critical Habitat: Designated (August 11, 1977) Crestricted to the Florida peninsula. They are non- Florida Status: Endangered migratory residents of freshwater to brackish marshes. The Cape Sable seaside sparrow has the distinction of being the Recovery Plan Status: Revision (May 18, 1999) last new bird species described in the continental United Geographic Coverage: Rangewide States prior to its reclassification to subspecies status. The restricted range of the Cape Sable seaside sparrow led to its initial listing in 1969. Changes in habitat that have Figure 1. County distribution of the Cape Sable seaside sparrrow. occurred as a result of changes in the distribution, timing, and quantity of water flows in South Florida, continue to threaten the subspecies with extinction. This account represents a revision of the existing recovery plan for the Cape Sable seaside sparrow (FWS 1983). Description The Cape Sable seaside sparrow is a medium-sized sparrow, 13 to 14 cm in length (Werner 1975). Of all the seaside sparrows, it is the lightest in color (Curnutt 1996). The dorsal surface is dark olive-grey and the tail and wings are olive- brown (Werner 1975). Adult birds are light grey to white ventrally, with dark olive grey streaks on the breast and sides. The throat is white with a dark olive-grey or black whisker on each side. Above the whisker is a white line along the lower jaw. A grey ear patch outlined by a dark line sits behind each eye.
    [Show full text]
  • EU Zoo Inquiry Report Findings and Recommendations
    1 THE EU ZOO INQUIRY 2011 An evaluation of the implementation and enforcement of EC Directive 1999/22, relating to the keeping of animals in zoos. REPORT FINDINGS AND RECOMMENDATIONS Written for the European coalition ENDCAP by the Born Free Foundation 2 THE EU ZOO INQUIRY 2011 An evaluation of the implementation and enforcement of EC Directive 1999/22, relating to the keeping of animals in zoos. REPORT FINDINGS AND RECOMMENDATIONS 3 CONTENTS Page ABBREVIATIONS USED ............................................ 04 TERMS USED ............................................................... 04 FOREWORD ................................................................. 05 RECOMMENDATIONS ................................................ 06 EC ZOOS DIRECTIVE 1999/22, SUCCESS, FAILURE – OR WORK IN PROGRESS? ..... 08 THE EU ZOO INQUIRY 2011 FINDINGS 11 INTRODUCTION .......................................................... 12 METHODOLOGY .......................................................... 14 TRANSPOSITION ........................................................ 17 IMPLEMENTATION ..................................................... 22 ENFORCEMENT ........................................................... 28 COMPLIANCE .............................................................. 30 COUNTRY REPORTS AND UPDATES 41 AUSTRIA............................................................ 42 BELGIUM........................................................... 43 BULGARIA ........................................................ 44 CYPRUS............................................................
    [Show full text]
  • Phylogeography of Finches and Sparrows
    In: Animal Genetics ISBN: 978-1-60741-844-3 Editor: Leopold J. Rechi © 2009 Nova Science Publishers, Inc. Chapter 1 PHYLOGEOGRAPHY OF FINCHES AND SPARROWS Antonio Arnaiz-Villena*, Pablo Gomez-Prieto and Valentin Ruiz-del-Valle Department of Immunology, University Complutense, The Madrid Regional Blood Center, Madrid, Spain. ABSTRACT Fringillidae finches form a subfamily of songbirds (Passeriformes), which are presently distributed around the world. This subfamily includes canaries, goldfinches, greenfinches, rosefinches, and grosbeaks, among others. Molecular phylogenies obtained with mitochondrial DNA sequences show that these groups of finches are put together, but with some polytomies that have apparently evolved or radiated in parallel. The time of appearance on Earth of all studied groups is suggested to start after Middle Miocene Epoch, around 10 million years ago. Greenfinches (genus Carduelis) may have originated at Eurasian desert margins coming from Rhodopechys obsoleta (dessert finch) or an extinct pale plumage ancestor; it later acquired green plumage suitable for the greenfinch ecological niche, i.e.: woods. Multicolored Eurasian goldfinch (Carduelis carduelis) has a genetic extant ancestor, the green-feathered Carduelis citrinella (citril finch); this was thought to be a canary on phonotypical bases, but it is now included within goldfinches by our molecular genetics phylograms. Speciation events between citril finch and Eurasian goldfinch are related with the Mediterranean Messinian salinity crisis (5 million years ago). Linurgus olivaceus (oriole finch) is presently thriving in Equatorial Africa and was included in a separate genus (Linurgus) by itself on phenotypical bases. Our phylograms demonstrate that it is and old canary. Proposed genus Acanthis does not exist. Twite and linnet form a separate radiation from redpolls.
    [Show full text]
  • Toward Successful Reintroductions: the Combined Importance of Species Traits, Site Quality, and Restoration Technique
    Kaye: Toward Successful Reintroductions Proceedings of the CNPS Conservation Conference, 17–19 Jan 2009 pp. 99–106 © 2011, California Native Plant Society TOWARD SUCCESSFUL REINTRODUCTIONS: THE COMBINED IMPORTANCE OF SPECIES TRAITS, SITE QUALITY, AND RESTORATION TECHNIQUE THOMAS N. KAYE Institute for Applied Ecology, P.O. Box 2855, Corvallis, Oregon 97339-2855; Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 ([email protected]) ABSTRACT Reintroduction of endangered plant species may be necessary to protect them from extinction, provide connectivity between populations, and reach recovery goals under the U.S. Endangered Species Act. But what factors affect reintroduction success? And which matter more: traits inherent to the species, qualities of the site, or reintroduction technique? Here I propose that all three interact. First, reintroduction success will be highest for endangered species that share traits with non-rare native species, invasive plants, and species that excel in restoration plantings as reviewed from the ecological literature. Ten traits are identified as common to at least two of these groups. Second, reintroductions will do best in habitats ecologically similar to existing wild populations and with few local threats, such as non-native plants and herbivores. And third, the methods used to establish plants, such as planting seeds vs. transplants or selecting appropriate microsites, will influence outcomes. For any reintroduction project, potential pitfalls associated with a particular species, site, or technique may be overcome by integrating information from all three areas. Conducting reintroductions as designed experiments that test clearly stated hypotheses will maximize the amount and quality of information gained from each project and support adaptive management.
    [Show full text]
  • Ipterists Digest
    ipterists Digest Dipterists’ Digest is a popular journal aimed primarily at field dipterists in the UK, Ireland and adjacent countries, with interests in recording, ecology, natural history, conservation and identification of British and NW European flies. Articles may be of any length up to 3000 words. Items exceeding this length may be serialised or printed in full, depending on the competition for space. They should be in clear concise English, preferably typed double spaced on one side of A4 paper. Only scientific names should be underlined- Tables should be on separate sheets. Figures drawn in clear black ink. about twice their printed size and lettered clearly. Enquiries about photographs and colour plates — please contact the Production Editor in advance as a charge may be made. References should follow the layout in this issue. Initially the scope of Dipterists' Digest will be:- — Observations of interesting behaviour, ecology, and natural history. — New and improved techniques (e.g. collecting, rearing etc.), — The conservation of flies and their habitats. — Provisional and interim reports from the Diptera Recording Schemes, including provisional and preliminary maps. — Records of new or scarce species for regions, counties, districts etc. — Local faunal accounts, field meeting results, and ‘holiday lists' with good ecological information/interpretation. — Notes on identification, additions, deletions and amendments to standard key works and checklists. — News of new publications/references/iiterature scan. Texts concerned with the Diptera of parts of continental Europe adjacent to the British Isles will also be considered for publication, if submitted in English. Dipterists Digest No.1 1988 E d ite d b y : Derek Whiteley Published by: Derek Whiteley - Sheffield - England for the Diptera Recording Scheme assisted by the Irish Wildlife Service ISSN 0953-7260 Printed by Higham Press Ltd., New Street, Shirland, Derby DE5 6BP s (0773) 832390.
    [Show full text]
  • The Black Woodpecker Dryocopns Martius Is One of the Few Species
    he Black Woodpecker Dryocopns martius is one of the few species which Thave in recent years considerably extended their breeding range in some western European countries. Nesting was first reported in Belgium around 1908, and in Luxemburg and the Netherlands in 1915. Westwards expansion continued in the Netherlands, where the species has now reached the coast (fig. 1; Teixeira 1979). In Belgium and Luxemburg, progression appears to have stopped, or slowed down greatly (figs. 2 & 3; Tricot 1977; Weiss 1979). It is in France and Denmark that range- extension has been the most spectacular. Strangely, the Black Woodpecker did not breed in Denmark before 1961, when it nested in Nord Sjaelland. It reached Bornholm (about 30km from Sweden) towards 1950, but did not nest there until 1966 (Hansen 1973); it has now completely invaded this island. In Continental Denmark, its movement was not so rapid (fig. 4; Dybbro 1976). In France, before 1950, the Black Woodpecker bred only in mountainous areas (fig. 5), reports of sporadic nesting elsewhere not being fully confirmed. From 1957 onwards, breeding was recorded in a growing number of regions, and today it has even reached several western departements (fig. 6; Cuisin 1967, 1973, 1980; Yeatman 1976). Perhaps because of lack of observations, a few gaps remain in some inland regions, but the Black Woodpecker can be said now to inhabit the whole eastern half of France and a notable part of the western half. In 1983, it nested in at least 53 departements. Lack of suitable woodland may have locally hampered its spread towards the Channel.
    [Show full text]
  • The 2008 IUCN Red Listings of the World's Small Carnivores
    The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals).
    [Show full text]
  • Monitoring of Forest Mammals Listed in the Annexes IV and V of the Habitat Directive (Except Bats)
    Monitoring biodiversity in Luxembourg: what is left to be done? 22 November 2017 Monitoring of forest mammals listed in the Annexes IV and V of the Habitat Directive (except bats) Distribution and evolution since 2010: Marc Moes GEODATA • Hazel dormouse, • Wildcat, Xavier Mestdagh • Pine marten, Lionel L’Hoste • Polecat. LIST Hazel Dormouse Muscardinus avellanarius 2 Hazel Dormouse Muscardinus avellanarius Methodology • Identification of “potentially” suitable habitats • Random and stratified sampling design 90 squares (1x1 Km) selected Looking for “summer” nest in 4 “favourable” sites/square during Oct/Nov Mainly brambles, shrub covered area and forest edge • Triennal sampling procedure 3 Hazel Dormouse Muscardinus avellanarius Results • Since 2010: 102 squares were surveyed • 2017 sampling is still in progress • From 2013 to 2015: repeated survey for some squares 1st passage: 1124 sites investigated so far! 4 Hazel Dormouse Muscardinus avellanarius Results: Sites level (1st passage) 1st passage 2010-2012 2013-2015 2016-2018 Number of sites 596 336 192 surveyed ( + + ) = 1124 sites Number of favourable sites 294 269 149 surveyed Number of favourable sites 108 169 83 with proof of presence Average= 51% 5 Hazel Dormouse Muscardinus avellanarius Results: Squares level - analysis based on the 1st passage 1st passage 2010-2012 2013-2015 2016-2018 2010/ 2013/ 2012 2015 Number of squares ✔ ✔ surveyed with at least one 96 78 28 favourable site ✔ ✘ Number of squares ✘ ✔ surveyed with at least one ✘ ✘ favourable site 70 66 26 AND with proof
    [Show full text]
  • Molecular Phylogeny and Taxonomy of the Genus Mustela
    Mammal Study 33: 25–33 (2008) © the Mammalogical Society of Japan Molecular phylogeny and taxonomy of the genus Mustela (Mustelidae, Carnivora), inferred from mitochondrial DNA sequences: New perspectives on phylogenetic status of the back-striped weasel and American mink Naoko Kurose1, Alexei V. Abramov2 and Ryuichi Masuda3,* 1 Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa 259-1293, Japan 2 Zoological Institute, Russian Academy of Sciences, Saint-Petersburg 199034, Russia 3 Creative Research Initiative “Sousei”, Hokkaido University, Sapporo 060-0810, Japan Abstract. To further understand the phylogenetic relationships among the mustelid genus Mustela, we newly determined nucleotide sequences of the mitochondrial 12S rRNA gene from 11 Eurasian species of Mustela, including the domestic ferret and the American mink. Phylogenetic relationships inferred from the 12S rRNA sequences were similar to those based on previously reported mitochondrial cytochrome b data. Combined analyses of the two genes demonstrated that species of Mustela were divided into two primary clades, named “the small weasel group” and “the large weasel group”, and others. The Japanese weasel (Mustela itatsi) formerly classified as a subspecies of the Siberian weasel (M. sibirica), was genetically well-differentiated from M. sibirica, and the two species clustered with each other. The European mink (M. lutreola) was closely related to “the ferret group” (M. furo, M. putorius, and M. eversmanii). Both the American mink of North America and the back-striped weasel (M. strigidorsa) of Southeast Asia were more closely related to each other than to other species of Mustela, indicating that M. strigidorsa originated from an independent lineage that differs from other Eurasian weasels.
    [Show full text]