Indirect T Cell Allorecognition of the Rt1.A* Mhc Class I Molecule

Total Page:16

File Type:pdf, Size:1020Kb

Indirect T Cell Allorecognition of the Rt1.A* Mhc Class I Molecule INDIRECT T CELL ALLORECOGNITION OF THE RT1.A* MHC CLASS I MOLECULE. by Emma Lovegrove A thesis submitted to the University of Glasgow in partial fulfilment for the degree of Doctor of Philosophy with the Faculty of Medicine. Transplantation Laboratories, Department of Surgery, 44, Church Street, Western Infirmary, Glasgow, G il 6NT. October 1999. ProQuest Number: 13818958 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13818958 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 G! ' 'COW L LftoiTY UE.'iAKY TtieSfV UI2>7 c o p 1-) [ ABSTRACT The extent to which the indirect pathway of T cell recognition contributes to graft rejection remains to be clarified, and this thesis examines its role in the antibody- mediated rejection of allografts in the MHC class I disparate rat strain combination, PVG-R8 (RTl.AaB/CuDu) to PVG-RT1U (RT1.AUB/CUDU). A series of overlapping 15-mer allopeptides (PI-PI8) derived from the donor Aa antigen, were used to map the immunogenic, dominant and sub-dominant epitopes of the Aa molecule. Analysis of the alloantibody response mounted to individual allopeptides following their subcutaneous administration suggested that the 15-mer peptides P7 and P I6, derived from the hypervariable regions of the a l and oc2 domains respectively, and the 24 amino acid a l peptide were immunogenic. The dominant T cell epitope was characterised by examination of the in vitro T cell proliferative responses to individual allopeptides by LNC from RT1U animals immunised with Aa-bearing R8 allografts. Proliferation focused upon those peptides derived from the hypervariable region of the a l domain, an area corresponding to P7 and P8. Analysis of the alloantibody response to the intact Aa molecule following peptide priming demonstrated the presence of two additional sub-dominant T cell epitopes located within PI and P9. These peptides derive from areas of the Aa molecule that are identical in amino acid sequence to the corresponding areas of the RT1U molecule, and are therefore, in effect, self-RTlu peptides. Priming with both dominant and sub-dominant epitopes accelerated the rejection of subsequent R8 cardiac allografts, suggesting that peptide priming is able to indirectly activate recipient T cells. It was examined whether the dominant and sub-dominant T cell epitopes could be used to favourably modulate the immune response to the intact Aa molecule by intravenous administration of high doses of P7 and PI to RT1U animals before challenge with an R8 blood transfusion. Downregulation of the cytotoxic and IgM alloantibody responses were observed and in addition, P7 was able to downregulate the IgG2b response. Slight downregulation of the cytotoxic alloantibody response to an R8 cardiac allograft was seen following immunisation with P7, but the IgM and IgG2b responses were unaltered. Prolonged allograft survival was not observed. These results suggest that the indirect response to an allogeneic MHC molecule may involve additional unexpected epitopes and consequently, that the success of peptide-based tolerogenic protocols requires a fuller understanding of this process. CONTENTS PAGE Title i Abstract ii Contents iv Illustrations and Tables vii Acknowledgements viii Declaration ix Abbreviations x Amino Acid Symbols xv Chapter 1: Introduction 1.1 The Major Histocompatibility Complex 3 1.2 Antigen Processing and Presentation 10 1.3 The T Cell Response 19 1.4 T Cell Development 26 1.5 B Cell Development 30 1.6 Transplantation Immunology 34 1.7 Allorecognition 36 1.8 The Role of Indirectly Activated T Cells in Effecting Allograft Rejection 42 1.9 Tolerance Induction 46 1.10 Aims 52 Chapter 2: Materials and Methods 2.1 Animals 57 2.2 Tissue Culture Media 57 2.3 Cell Preparations 58 2.4 Synthetic Allopeptides 59 - iv - CONTENTS fContinued"} PAGE 2.5 Injections 59 2.6 Skin Transplantation 61 2.7 Cardiac Transplantation 61 2.8 T Cell Proliferation Assays 62 2.9 Detection of Cytotoxic Alloantibody 63 2.10 Detection of Anti-Peptide Antibody 64 2.11 Determination of Class and Subclass of Anti-Aa Alloantibody 65 Chapter 3: The Immune Response to RTl .Aa-Derived Allopeptides in the RT1U Rat Strain 66 3.1 Introduction 67 3.2 The Immune Response Following Immunisation with Allopeptide 70 3.3 T Cell Proliferation Following Immunisation with the Intact RTl .Aa Class I Molecule 76 3.4 Discussion 81 Chapter 4: The Influence of Aa Allopeptide Immunisation on the Immune Response to the Intact Aa Class I Molecule 85 4.1 Introduction 86 4.2 The Immune Response to an R8 Blood Transfusion 91 4.3 The Immune Response to an R8 Cardiac Allograft 97 4.4 Discussion 104 - v - CONTENTS (Continued) PAGE Chapter 5: The Immune Response to the Intact Aa Molecule Following Intravenous Immunisation with Allopeptide 107 5.1 Introduction 108 5.2 The Immune Response to an R8 Blood Transfusion 111 5 .3 The Immune Response to an R8 Cardiac Allograft 116 5.4 Discussion 126 Chapter 6: Discussion 130 Chapter 7: References 141 - vi - ILLUSTRATIONS AND TABLES: PAGE Table 1.1 The Nomenclature of the MHC Class I and Class II Genes in the Human, Mouse and Rat 4 Figure 1.1 Genomic Organisation of the Human, Mouse and Rat MHC Regions 5 Figure 1.2 Schematic Representation of MHC Class I and Class II 7 Figure 1.3 The Crystal Structure of MHC Class I and Bound Peptide 9 Figure 1.4 Schematic Representation of the TCR Complex 20 Figure 1.5 Schematic Representation of the Initiating Events in T Cell Activation 25 Figure 1.6 Schematic Representations of the Pre-BCR and BCR Complexes 32 Figure 1.7 Schematic Representation of Direct and Indirect T Cell Allorecognition 38 Figure 1.8 Mechanisms of T-B Cell Collaboration for Alloantibody Production 44 Table 2.1 The Amino Acid Sequences of Synthetic Aa-Derived Allopeptides 60 Figure 3.1a The Nature of the Amino Acid Disparity Between the PVG-R8 and PVG-RT1U Rat Strains 68 Figure 3.1b The Linear Positions of the Synthetic Aa-Derived Allopeptides Used in This Study 68 Figure 3.5 Cognate T and B Cell Collaboration for the Production of Anti-Peptide Antibodies 74 Figure 4.1 The Mechanism by Which Aa Allopeptide Priming Accelerates the Alloantibody Response to the Intact Aa Molecule 90 - vii - ACKNOWLEDGEMENTS I would like to express my gratitude to the National Kidney Research Fund (NKRF), whose generous funding has allowed this research to take place. For their kind supervision and the opportunity they afforded me to study my Ph.D. in their laboratories, I would also like to thank Dr. Eleanor Bolton and Professor Andrew Bradley. I am very grateful to all the people that helped me with laboratory and animal handling techniques. In particular, I would like to thank Catherine MacDonald, Dr. Hilary Marshall, Dr. Alistair Gracie, Mr. John Casey and the staff of the CRF, Glasgow University, and the CBS, Cambridge University. I must also pass on my thanks to Alan MacIntyre and Dr. Gabsi Brons for their help with radioactive substances. My thanks are also extended to the Medical Illustration Department, Addenbrooke’s Hospital, for their help with photography. I would also like to say to all the lovely people that I have been so fortunate to meet and work with during my period of study, both in the Transplantation Laboratories in the Western Infirmary, Glasgow, and in the Department of Surgery, Addenbrooke’s Hospital, Cambridge, thank you for your kind friendship. In particular, Julie, without whose constant supply of e-mails, I think that I would have gone slowly, but surely, mad.... Thank you also to Vicky Lovegrove for her kind proofreading of this manuscript. Finally, I am indebted to Mr. Gavin Pettigrew, not only for the seemingly endless heart transplants that he performed for me, but also, more importantly, for the continual support, understanding and encouragement that he has given me over the past few months, thank you. DECLARATION I declare that the conceptual ideas and experimental design for the work presented in this thesis were conceived by the author, Miss Emma Lovegrove and Professor JA Bradley. The experimental procedures described in this thesis were undertaken solely by the author, with the exception of the rat cardiac allograft transplants, which were performed by Mr. Gavin Pettigrew. I confirm that all of the work presented in this thesis is original and has not been submitted for another degree at this or any other University. Some of the results described in Chapters 3 and 4 were presented orally at the British Transplantation Society’s Annual meeting in November 1997: “Analysis of Class I MHC Epitopes that Provide Cognate T Cell Help for Alloantibody-Mediated Graft Rejection.” E Lovegrove, G Pettigrew, EM Bolton, JA Bradley. Some of the results described in Chapters 4 and 5 were presented orally at the British Transplantation Society’s Annual meeting in April 1999: “The Manipulation of CD4-Dependant Alloantibody Responses to Class I MHC by Allopeptides.” E Lovegrove, G Pettigrew, EM Bolton, JA Bradley. In addition, some of the results described in Chapter 4 were used for publication: “Indirect T Cell Allorecognition and Alloantibody-Mediated Rejection of MHC Class I-Disparate Heart Grafts.” GJ Pettigrew, E.
Recommended publications
  • Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance As a Prognostic Biomarker in Ovarian
    cells Review Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance as a Prognostic Biomarker in Ovarian Cancer Patients Michal Kielbik *, Izabela Szulc-Kielbik and Magdalena Klink Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland; [email protected] (I.S.-K.); [email protected] (M.K.) * Correspondence: [email protected]; Tel.: +48-42-27-23-636 Abstract: Immunogenic cell death (ICD) is a type of death, which has the hallmarks of necroptosis and apoptosis, and is best characterized in malignant diseases. Chemotherapeutics, radiotherapy and photodynamic therapy induce intracellular stress response pathways in tumor cells, leading to a secretion of various factors belonging to a family of damage-associated molecular patterns molecules, capable of inducing the adaptive immune response. One of them is calreticulin (CRT), an endoplasmic reticulum-associated chaperone. Its presence on the surface of dying tumor cells serves as an “eat me” signal for antigen presenting cells (APC). Engulfment of tumor cells by APCs results in the presentation of tumor’s antigens to cytotoxic T-cells and production of cytokines/chemokines, which activate immune cells responsible for tumor cells killing. Thus, the development of ICD and the expression of CRT can help standard therapy to eradicate tumor cells. Here, we review the physiological functions of CRT and its involvement in the ICD appearance in malignant dis- ease. Moreover, we also focus on the ability of various anti-cancer drugs to induce expression of surface CRT on ovarian cancer cells. The second aim of this work is to discuss and summarize the prognostic/predictive value of CRT in ovarian cancer patients.
    [Show full text]
  • Immunopharmacology
    Institute of Pharmacology http://www.pki.unibe.ch/ PKI Immunopharmacology Prof. Dr. Stephan von Gunten MD PhD MME Lectures: Clinical Immunology Immunomodulation Endogenous or exogenous molecules that influence immune responses positively (immunostimulation) or negatively (immunoregulation) DC Based Vaccination Freund complete adjuvans (FCA) Freund incomplete adjuvans (FIA) (mycobacteria + mineral oils) (mineral oils, without mycobacteria) differential maturation alum (hydrated alumina) dendritic cell (DC) mycobacteria Toll-like Receptors alum, mineral NLR-Inflammasome oils in FCA/FIA Toll-Like Receptors PAMPs 2 major adapters: MyD88 and TRIF protein kinases transcription factor (NFkB, IRF-3/-7) [IRF: Interferon regulatory factor] gene transcription: inflammatory cytokines, IFNa/b, others BMSc Pharma Immuno Manicassamy S & Pulendran B, Seminars in Immunology 2009 (modified) TLR Agonists and Cancer Immunotherapy: BCG-CWS BCG: Bacillus Calmette-Guérin, attenuated form of Mycobacterium bovis CWS (cell-wall skeleton ): major adjuvant–active part of mycobacterial cells; contains muramyldipeptide (MDP) -> activation of TLR-2 and -4 and NOD2 BCG-CWS TLR-2 MyD88-pathway mDC cytokines CTL tumour cell killing Carbohydrate-based vaccines in development Infectious disease Infectious Cancer Astronomo RD & Burton DR Nat Rev Drug Discov 2016 (modified) Antibody repertoire: glycan immunogenicity linked to structure Schneider et al. Sci Transl Med 2015 Cancer Immunotherapy Galluzi L et al. Oncotarget 2014 Siglec expression on immune cells Jandus C et al. Biochem Pharmacol 2011 Illustration by Aldona von Gunten The sialoglycan shield Jandus C & Boligan KF et al. J Clin Invest. 2014 Siglecs on CD8 T cells? May 2019 Cover Story American Association of Cancer Research (AACR) Immunomodulation Endogenous or exogenous molecules that influence immune responses positively (immunostimulation) or negatively (immunoregulation) Antiinflammatory vs.
    [Show full text]
  • The Immunophilins, Fk506 Binding Protein and Cyclophilin, Are Discretely Localized in the Brain: Relationship to Calcineurin
    NeuroscienceVol. 62,NO. 2, pp. 569-580,1994 Elsevier Sctence Ltd Copyright 0 1994 IBRO Pergamon 0306-4522(94)E0182-4 Printed in Great Britain. All rights reserved 0306-4522194 $7.00 + 0.00 THE IMMUNOPHILINS, FK506 BINDING PROTEIN AND CYCLOPHILIN, ARE DISCRETELY LOCALIZED IN THE BRAIN: RELATIONSHIP TO CALCINEURIN T. M. DAWSON,*t J. P. STEINER,* W. E. LYONS,*11 M. FOTUHI,* M. BLUE? and S. H. SNYDER*f§l Departments of *Neuroscience, tNeurology, $Pharmacology and Molecular Sciences, and §Psychiatry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, U.S.A. (IDivision of Toxicological Science, Johns Hopkins University School of Hygiene and Public Health Abstract-The immunosuppressant drugs cyclosporin A and FK506 bind to small, predominantly soluble proteins cyclophilin and FK506 binding protein, respectively, to mediate their pharmacological actions. The immunosuppressant actions of these drugs occur through binding of cyclophilin-cyclosporinA and FK506 binding protein-FK506 complexes to the calcium-calmodulin-dependent protein phosphatase, calcineurin, inhibiting phosphatase activity, Utilizing immunohistcchemistry, in situ hybridization and autoradiography, we have localized protein and messenger RNA for FKS06 binding protein, cyclophilin and calcineurin. All three proteins and/or messages exhibit a heterogenous distribution through the brain and spinal cord, with the majority of the localizations being neuronal. We observe a striking co-localiz- ation of FK506 binding protein and calcineurin in most
    [Show full text]
  • TLR-Mediated Activation Pathways Calcineurin Negatively Regulates
    Calcineurin Negatively Regulates TLR-Mediated Activation Pathways Young Jun Kang, Brenda Kusler, Motoyuki Otsuka, Michael Hughes, Nobutaka Suzuki, Shinobu Suzuki, Wen-Chen Yeh, This information is current as Shizuo Akira, Jiahuai Han and Patricia P. Jones of September 26, 2021. J Immunol 2007; 179:4598-4607; ; doi: 10.4049/jimmunol.179.7.4598 http://www.jimmunol.org/content/179/7/4598 Downloaded from References This article cites 61 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/179/7/4598.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Calcineurin Negatively Regulates TLR-Mediated Activation Pathways1 Young Jun Kang,2,3* Brenda Kusler,* Motoyuki Otsuka,† Michael Hughes,* Nobutaka Suzuki,‡ Shinobu Suzuki,‡ Wen-Chen Yeh,‡ Shizuo Akira,§ Jiahuai Han,† and Patricia P.
    [Show full text]
  • How HIV-1 Gag Manipulates Its Host Cell Proteins: a Focus on Interactors of the Nucleocapsid Domain
    viruses Review How HIV-1 Gag Manipulates Its Host Cell Proteins: A Focus on Interactors of the Nucleocapsid Domain 1 2, 2, 2 1 Jéromine Klingler , Halina Anton y, Eléonore Réal y, Manon Zeiger , Christiane Moog , Yves Mély 2 and Emmanuel Boutant 2,* 1 INSERM UMR_S 1109, Centre de Recherche en Immunologie et Hématologie, Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France; [email protected] (J.K.); [email protected] (C.M.) 2 UMR 7021, CNRS, Laboratoire de Bioimagerie et Pathologies, Université de Strasbourg, Faculté de Pharmacie, 67400 Illkirch, France; [email protected] (H.A.); [email protected] (E.R.); [email protected] (M.Z.); [email protected] (Y.M.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 13 July 2020; Accepted: 10 August 2020; Published: 13 August 2020 Abstract: The human immunodeficiency virus (HIV-1) polyprotein Gag (Group-specific antigen) plays a central role in controlling the late phase of the viral lifecycle. Considered to be only a scaffolding protein for a long time, the structural protein Gag plays determinate and specific roles in HIV-1 replication. Indeed, via its different domains, Gag orchestrates the specific encapsidation of the genomic RNA, drives the formation of the viral particle by its auto-assembly (multimerization), binds multiple viral proteins, and interacts with a large number of cellular proteins that are needed for its functions from its translation location to the plasma membrane, where newly formed virions are released. Here, we review the interactions between HIV-1 Gag and 66 cellular proteins.
    [Show full text]
  • B-Cell Activation by Crosslinking of Surface Igm Or Ligation of CD40 Involves Alternative Signal Pathways and Results in Different B-Cell Phenotypes HENRY H
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 3348-3352, April 1995 Immunology B-cell activation by crosslinking of surface IgM or ligation of CD40 involves alternative signal pathways and results in different B-cell phenotypes HENRY H. WORTIS*t, MARK TEUTSCH*, MINDY HIGER*, JENNY ZHENG*, AND DAVID C. PARKERt§ *Department of Pathology, Tufts University School of Medicine, and Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111; and tDepartment of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655 Communicated by Salome G. Waelsch, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY December 7, 1994 ABSTRACT Treatment of small resting B cells with sol- direct contact with an activated T-helper cell such that the uble F(ab')2 fragments of anti-IgM, an analogue of T-inde- surface molecule gp39 [CD40 ligand (CD40L)] of the T cell pendent type 2 antigens, induced activation characterized by ligates the CD40 of the B cell (10). proliferation and the expression of surface CD5. In contrast, Our strategy to determine if minimal TD and TI-2 signals B cells induced to proliferate in response to thymus-dependent were sufficient to induce phenotypic differences in B cells was inductive signals provided by either fixed activated T-helper 2 to use an antigen that could be modified so as to initiate either cells or soluble CD40 ligand-CD8 (CD40L) recombinant pro- a TD or a TI-2 response. To produce a TD response we used tein displayed elevated levels of CD23 (FcJII receptor) and no monovalent Fab of rabbit anti-IgM and provided help in the surface CD5.
    [Show full text]
  • Immunotherapy in the Treatment of Human Solid Tumors: Basic and Translational Aspects
    Journal of Immunology Research Immunotherapy in the Treatment of Human Solid Tumors: Basic and Translational Aspects Guest Editors: Roberta Castriconi, Barbara Savoldo, Daniel Olive, and Fabio Pastorino Immunotherapy in the Treatment of Human Solid Tumors: Basic and Translational Aspects Journal of Immunology Research Immunotherapy in the Treatment of Human Solid Tumors: Basic and Translational Aspects Guest Editors: Roberta Castriconi, Barbara Savoldo, Daniel Olive, and Fabio Pastorino Copyright © 2016 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Journal of Immunology Research.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board B. D. Akanmori, Congo Eung-Jun Im, USA G. Opdenakker, Belgium Stuart Berzins, Australia Hidetoshi Inoko, Japan Luigina Romani, Italy Kurt Blaser, Switzerland Peirong Jiao, China Aurelia Rughetti, Italy Federico Bussolino, Italy Taro Kawai, Japan Takami Sato, USA N. G. Chakraborty, USA Hiroshi Kiyono, Japan Senthamil Selvan, USA Robert B. Clark, USA Shigeo Koido, Japan Naohiro Seo, Japan Mario Clerici, Italy Herbert K. Lyerly, USA Ethan M. Shevach, USA Nathalie Cools, Belgium Enrico Maggi, Italy George B. Stefano, USA Mark J. Dobrzanski, USA Mahboobeh Mahdavinia, USA T. J. Stewart, Australia Nejat K. Egilmez, USA Eiji Matsuura, Japan J. Tabarkiewicz, Poland Eyad Elkord, UK C. J. M. Melief, The Netherlands Ban-Hock Toh, Australia S. E. Finkelstein, USA Chikao Morimoto, Japan Joseph F. Urban, USA Luca Gattinoni, USA Hiroshi Nakajima, Japan Xiao-Feng Yang, USA David E. Gilham, UK Toshinori Nakayama, Japan Qiang Zhang, USA Douglas C.
    [Show full text]
  • Toll-Like Receptor–Mediated Induction of Type I Interferon in Plasmacytoid Dendritic Cells Requires the Rapamycin-Sensitive PI(3)K-Mtor-P70s6k Pathway
    ARTICLES Toll-like receptor–mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway Weiping Cao1, Santhakumar Manicassamy1, Hua Tang1, Sudhir Pai Kasturi1, Ali Pirani2, Niren Murthy3 & Bali Pulendran1,4 Robust production of type I interferon (IFN-a/b) in plasmacytoid dendritic cells (pDCs) is crucial for antiviral immunity. Here we show involvement of the mammalian target of rapamycin (mTOR) pathway in regulating interferon production by pDCs. Inhibition of mTOR or its ‘downstream’ mediators, the p70 ribosomal S6 protein kinases p70S6K1 and p70S6K2, during pDC activation http://www.nature.com/natureimmunology by Toll-like receptor 9 (TLR9) blocked the interaction of TLR9 with the adaptor MyD88 and subsequent activation of the interferon-regulatory factor IRF7, which resulted in impaired IFN-a/b production. Microarray analysis confirmed that inhibition of mTOR by the immunosuppressive drug rapamycin suppressed antiviral and anti-inflammatory gene expression. Consistent with this, targeting rapamycin-encapsulated microparticles to antigen-presenting cells in vivo resulted in less IFN-a/b production in response to CpG DNA or the yellow fever vaccine virus strain 17D. Thus, mTOR signaling is crucial in TLR-mediated IFN-a/b responses by pDCs. Plasmacytoid dendritic cells (pDCs) are specialized immune cells able or p70S6K by various approaches resulted in much less TLR-mediated to rapidly produce large amounts of type I interferon for antiviral production of interferon-a (IFN-a) by pDCs. The mechanism of this innate immunity1–3. Induction of the antiviral innate immune inhibition seemed to involve disruption of the TLR9-MyD88 complex Nature Publishing Group Group Nature Publishing 8 response depends on recognition of viral components by Toll-like and subsequent impairment of phosphorylation and nuclear translo- receptors (TLRs)4.
    [Show full text]
  • Two Distinct Signal Transmission Pathways in T Lymphocytes
    Proc. Natl. Acad. Sci. USA Vol. 87, pp. 9231-9235, December 1990 Immunology Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin (cyclosporin A/FK506 binding protein/rotamase) BARBARA E. BIERER*tf§, PETRI S. MATTILA¶, ROBERT F. STANDAERTII, LEONARD A. HERZENBERG$, STEVEN J. BURAKOFF*tt, GERALD CRABTREE¶, AND STUART L. SCHREIBERII *Division of Pediatric Oncology, Dana-Farber Cancer Institute; tHematology Division, Department of Medicine, Brigham & Women's Hospital; Departments of tMedicine and "tPediatrics, Harvard Medical School, Boston, MA 02115; TBeckman Center for Molecular and Genetic Medicine, Stanford University, Stanford, CA 94305; and I'Department of Chemistry, Harvard University, Cambridge, MA 02138 Communicated by Samuel J. Danishefsky, August 13, 1990 (received for review July 11, 1990) ABSTRACT Proliferation and immunologic function of T actions of these drugs. Our results suggest that a common lymphocytes are initiated by signals from the antigen receptor drug receptor binding site is involved in at least two distinct that are inhibited by the immunosuppressant FK506 but not by signaling pathways in the T-cell activation cascade. Both its structural analog, rapamycin. On the other hand, interleu- rapamycin (Kd = 0.2 nM) and FK506 (Kd = 0.4 nM) are kin 2 (IL-2)-induced signals are blocked by rapamycin but not shown to bind with high affinity to FKBP. Thus, FKBP is by FK506. Remarkably, these two drugs inhibit each other's possibly involved in one or both of the aforementioned actions, raising the possibility that both act by means of a pathways. In addition, both rapamycin (K, = 0.2 nM) and common immunophilin (immunosuppressant binding protein).
    [Show full text]
  • FKBP Family Proteins: Immunophilins with Versatile Biological Functions
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. FKBP family proteins : immunophilins with versatile biological functions Kang, Cong Bao; Ye, Hong; Dhe‑Paganon, Sirano; Yoon, Ho Sup 2008 Kang, C. B., Ye, H., Dhe‑Paganon, S., & Yoon, H. S. (2008). FKBP family proteins : immunophilins with versatile biological functions. Neurosignals, 16(4), 318–325. https://hdl.handle.net/10356/95238 https://doi.org/10.1159/000123041 © 2008 S. Karger AG, Basel. This is the author created version of a work that has been peer reviewed and accepted for publication by Neurosignals, S. Karger AG, Basel. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: http://dx.doi.org/10.1159/000123041. Downloaded on 28 Sep 2021 01:49:48 SGT FKBP Family Proteins: Immunophilins with Versatile Biological Functions Cong Bao Kang a, Hong Ye a, Sirano Dhe-Paganon b, Ho Sup Yoon a,* a School of Biological Science, Nanyang Technological University, Singapore , Singapore; b Structural Genomics Consortium and Physiology, Banting Institute, University of Toronto, Toronto, Ont. , Canada * Tel. +65 6316 2846, Fax +65 6791 3856, E-Mail [email protected] Key Words Immunophilin • FK506-binding protein • Peptidylprolyl cis/trans isomerase • Immunophilin ligand • Neuroprotection • FK506 • Rapamycin Abstract Immunophilins consist of a family of highly conserved proteins binding with immunosuppressive drugs such as FK506, rapamycin and cyclosporin A. FK506-binding protein (FKBP) is one of two major immunophilins and most of FKBP family members bind FK506 and show peptidylprolyl cis/trans isomerase (PPIase) activity.
    [Show full text]
  • HLA-Derived Peptides Which Inhibit T Cell Function Bind to Members of the Heat-Shock Protein 70 Family by Elfriede N613ner, Jodi E
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central HLA-derived Peptides which Inhibit T Cell Function Bind to Members of the Heat-Shock Protein 70 Family By Elfriede N613ner, Jodi E. Goldberg,* Clarissa Naftzger, Shu-Chen Lyu,* Carol Clayberger,* and Alan M. Krensky From the Division of Immunology and Transplantation Biology/Department of Pediatrics and the *Department of Cardiothoracic Surgery, Stanford University, Stanford, California 94305 Summary Synthetic peptides corresponding to sequences of HLA class I molecules have inhibitory effects on T cell function. The peptides investigated in this study have sequences corresponding to the relatively conserved region of the or1 helix of HLA class I molecules that overlaps the "public epitope" Bw4/Bw6. These HLA-derived peptides exhibit inhibitory effects on T lymphocytes and have beneficial effects on the survival ofallogeneic organ transplants in mice and rats. Pep- tides corresponding to the Bw4a epitope appear most potent as they inhibit the differentiation of T cell precursors into mature cytotoxic T lymphocytes (CTL) and target cell lysis by estab- lished CTL lines and clones. To elucidate the mechanism through which these peptides medi- ate their inhibitory effect on T lymphocytes, peptide binding proteins were isolated from T cell lysates. We show that the inhibitory Bw4a peptide binds two members of the heat-shock pro- tein (HSP) 70 family, constitutively expressed HSC70 and heat-inducible HSP70. Peptide binding to HSC/HSP70 is sequence specific and follows the rules defined by the HSC70 bind- ing motif. Most intriguing, however, is the strict correlation of peptide binding to HSC/ HSP70 and the functional effects such that only inhibitory peptides bind to HSC70 and HSP70 whereas noninhibitory peptides do not bind.
    [Show full text]
  • Transplantation David Straus, Ph.D
    Transplantation David Straus, Ph.D. OBJECTIVES Understand the following: 1. The types of graft rejection 2. What are alloantigens 3. Basis for alloreactivity 4. The classes of immunosuppressive agents and how they work 5. Why a bone marrow transplant might be done, and the importance of HLA matching 6. Basis for Graft vs. Host disease 7. Problems associated with xenotransplantation REFERENCES Parham, P. Chapter 12 p. 391 - 412, 417-420 ABBREVIATIONS Human Leukocyte Antigen: HLA Major Histocompatibility Complex: MHC (mouse equivalent of HLA) T cell antigen receptor: TCR Antigen-presenting cell: APC Nuclear factor of activated T cells: NFAT Interleukin –2: IL-2 Cyclosporin A: CsA ARTICLE Bluestone, et.al. CTLA4Ig: Bridging the Basic Commentary Immunology with Clinical Application. Immunity 24, 233–238, March 2006 ª2006 Elsevier Inc. I. Introduction Transplantation of organs or tissues, to replace diseased or non-functional counterparts, has been a longstanding medical goal. Unfortunately, the immune system of the recipient usually acts as a barrier to successful transplantation. The transplanted tissue is recognized as foreign and rejected. Immunosuppressive drugs have greatly improved the outcome of transplantation procedures, though the goal of inducing tolerance to the transplanted tissue remains. Bone marrow transplantation has unique requirements for compatibility of the donor and host, and unique problems associated with the transfer of immune cells. In addition to immunity, the availability of organs for transplantation is a severe limiting factor. For this reason xenotransplantation is being explored as an option. II. Graft Rejection: Early transplant studies clearly indicated the importance of the genetic relatedness of the graft and recipient.
    [Show full text]