Improving Antidepressant Drugs: Update on Recently Patented
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Homology Models of Melatonin Receptors: Challenges and Recent Advances
Int. J. Mol. Sci. 2013, 14, 8093-8121; doi:10.3390/ijms14048093 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Homology Models of Melatonin Receptors: Challenges and Recent Advances Daniele Pala 1, Alessio Lodola 1, Annalida Bedini 2, Gilberto Spadoni 2 and Silvia Rivara 1,* 1 Dipartimento di Farmacia, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; E-Mails: [email protected] (D.P.); [email protected] (A.L.) 2 Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy; E-Mails: [email protected] (A.B.); [email protected] (G.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-0521-905-061; Fax: +39-0521-905-006. Received: 7 March 2013; in revised form: 28 March 2013 / Accepted: 28 March 2013 / Published: 12 April 2013 Abstract: Melatonin exerts many of its actions through the activation of two G protein-coupled receptors (GPCRs), named MT1 and MT2. So far, a number of different MT1 and MT2 receptor homology models, built either from the prototypic structure of rhodopsin or from recently solved X-ray structures of druggable GPCRs, have been proposed. These receptor models differ in the binding modes hypothesized for melatonin and melatonergic ligands, with distinct patterns of ligand-receptor interactions and putative bioactive conformations of ligands. The receptor models will be described, and they will be discussed in light of the available information from mutagenesis experiments and ligand-based pharmacophore models. -
Dose-Related Effects of Chronic Antidepressants on Neuroprotective Proteins BDNF, Bcl-2 and Cu/Zn-SOD in Rat Hippocampus
Neuropsychopharmacology (2003) 28, 53–62 & 2003 Nature Publishing Group All rights reserved 0893-133X/03 $25.00 www.neuropsychopharmacology.org Dose-Related Effects of Chronic Antidepressants on Neuroprotective Proteins BDNF, Bcl-2 and Cu/Zn-SOD in Rat Hippocampus 1 1,2 ,1 Haiyun Xu , J Steven Richardson and Xin-Min Li* 1 2 Neuropsychiatric Research Unit, Department of Psychiatry, and Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada It has been proposed that antidepressants have neuroprotective effects on hippocampal neurons. To further test this hypothesis, brain- derived neurotrophic factor (BDNF), B cell lymphoma protein-2 (Bcl-2), and copper–zinc superoxide dismutase (Cu/Zn-SOD) were examined immunohistochemically in hippocampal neurons of Sprague–Dawley rats following daily treatment with 5 or 10 mg/kg of amitriptyline or venlafaxine for 21 days. At 5 mg/kg, both amitriptyline and venlafaxine increased the intensity of BDNF immunostaining in hippocampal pyramidal neurons, and the intensity of Bcl-2 immunostaining in hippocampal mossy fibers, but did not alter the Cu/Zn- SOD immunoreactivity. The high dose of venlafaxine, however, decreased the intensity of BDNF immunostaining in all subareas of the hippocampus and increased the intensity of Cu/Zn-SOD immunostaining in the dentate granular cell layer. The high dose of amitriptyline increased the intensity of Cu/Zn-SOD immunostaining, but did not affect the immunoreactivity of Bcl-2 or BDNF. These findings suggest that the chronic administration of amitriptyline or venlafaxine at 5 mg/kg, but not 10 mg/kg, may be neuroprotective to hippocampal neurons. These dose-related effects of antidepressant drugs on hippocampal neurons may have relevance to disparate findings in the field. -
ANTIDEPRESSANTS in USE in CLINICAL PRACTICE Mark Agius1 & Hannah Bonnici2 1Clare College, University of Cambridge, Cambridge, UK 2Hospital Pharmacy St
Psychiatria Danubina, 2017; Vol. 29, Suppl. 3, pp 667-671 Conference paper © Medicinska naklada - Zagreb, Croatia ANTIDEPRESSANTS IN USE IN CLINICAL PRACTICE Mark Agius1 & Hannah Bonnici2 1Clare College, University of Cambridge, Cambridge, UK 2Hospital Pharmacy St. James Hospital Malta, Malta SUMMARY The object of this paper, rather than producing new information, is to produce a useful vademecum for doctors prescribing antidepressants, with the information useful for their being prescribed. Antidepressants need to be seen as part of a package of treatment for the patient with depression which also includes psychological treatments and social interventions. Here the main Antidepressant groups, including the Selective Serotonin uptake inhibiters, the tricyclics and other classes are described, together with their mode of action, side effects, dosages. Usually antidepressants should be prescribed for six months to treat a patient with depression. The efficacy of anti-depressants is similar between classes, despite their different mechanisms of action. The choice is therefore based on the side-effects to be avoided. There is no one ideal drug capable of exerting its therapeutic effects without any adverse effects. Increasing knowledge of what exactly causes depression will enable researchers not only to create more effective antidepressants rationally but also to understand the limitations of existing drugs. Key words: antidepressants – depression - psychological therapies - social therapies * * * * * Introduction Monoamine oxidase (MAO) inhibitors í Non-selective Monoamine Oxidase Inhibitors Depression may be defined as a mood disorder that í Selective Monoamine Oxidase Type A inhibitors negatively and persistently affects the way a person feels, thinks and acts. Common signs include low mood, Atypical Anti-Depressants and other classes changes in appetite and sleep patterns and loss of inte- rest in activities that were once enjoyable. -
Tumour Microenvironment: Roles of the Aryl Hydrocarbon Receptor, O-Glcnacylation, Acetyl-Coa and Melatonergic Pathway in Regulat
International Journal of Molecular Sciences Review Tumour Microenvironment: Roles of the Aryl Hydrocarbon Receptor, O-GlcNAcylation, Acetyl-CoA and Melatonergic Pathway in Regulating Dynamic Metabolic Interactions across Cell Types—Tumour Microenvironment and Metabolism George Anderson Clinical Research Communications (CRC) Scotland & London, Eccleston Square, London SW1V 6UT, UK; [email protected] Abstract: This article reviews the dynamic interactions of the tumour microenvironment, highlight- ing the roles of acetyl-CoA and melatonergic pathway regulation in determining the interactions between oxidative phosphorylation (OXPHOS) and glycolysis across the array of cells forming the tumour microenvironment. Many of the factors associated with tumour progression and immune resistance, such as yin yang (YY)1 and glycogen synthase kinase (GSK)3β, regulate acetyl-CoA and the melatonergic pathway, thereby having significant impacts on the dynamic interactions of the different types of cells present in the tumour microenvironment. The association of the aryl hydrocarbon receptor (AhR) with immune suppression in the tumour microenvironment may be mediated by the AhR-induced cytochrome P450 (CYP)1b1-driven ‘backward’ conversion of mela- tonin to its immediate precursor N-acetylserotonin (NAS). NAS within tumours and released from tumour microenvironment cells activates the brain-derived neurotrophic factor (BDNF) receptor, TrkB, thereby increasing the survival and proliferation of cancer stem-like cells. Acetyl-CoA is a cru- Citation: -
Datasheet Inhibitors / Agonists / Screening Libraries a DRUG SCREENING EXPERT
Datasheet Inhibitors / Agonists / Screening Libraries A DRUG SCREENING EXPERT Product Name : Talipexole dihydrochloride Catalog Number : T14490 CAS Number : 36085-73-1 Molecular Formula : C10H17Cl2N3S Molecular Weight : 282.23 Description: Talipexole dihydrochloride (B-HT 920 dihydrochloride) is a dopamine D2 receptor agonist, α2-adrenoceptor agonist and 5-HT3 receptor antagonist. It displays antiParkinsonian activity. Storage: 2 years -80°C in solvent; 3 years -20°C powder; DMSO 28 mg/mL (99.21 mM), Need ultrasonic Solubility and warming ( < 1 mg/ml refers to the product slightly soluble or insoluble ) Receptor (IC50) Adrenergic receptor α-2, rat 25 nM In vivo Activity Vagally mediated reflex bradycardia elicited by angiotensin injection in beta-adrenoceptor-blocked dogs was facilitated by intracisternal injection of 10 micrograms/kg Talipexole dihydrochloride (B-HT 920). Intravenous injection of 30 micrograms/kg of Talipexole dihydrochloride (B-HT 920) into cats lead initially to an increase in blood pressure. Then to a long-lasting decrease in blood pressure and heart rate. Reference 1. Ricci and Taira Adrenoceptor involvement in the cardiovascular responses to B-HT 920 in sinoaortic denervated rats. Gen.Pharmacol. (1999)32 29. 2. Eur J Pharmacol. 1997 May 1;325(2-3):137-44. 3. Kohno Y, Fukuzaki K, Kitahara K, Koja T.Anti-tremor activity of talipexole produced by selective dopamine D2 receptor stimulation in cynomolgus monkeys with unilateral lesions in the ventromedial tegmentum.Eur J Pharmacol. 1997 Jan 29;319(2- 3):197-205. 4. Momiyama T, Sasa M, Takaori S.Inhibition by talipexole, a thiazolo-azepine derivative, of dopaminergic neurons in the ventral tegmental area.Life Sci. -
Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG . -
Novel Melatonin MT1 Receptor Agonists As Antidepressants
Novel melatonin MT1 receptor agonists as antidepressants: In vivo electrophysiological and behavioural characterization Ada R. Posner Degree of Master of Science Neurobiological Psychiatry Unit Department of Psychiatry Faculty of Medicine McGill University Montreal, Quebec, Canada April, 2015 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science in Psychiatry Copyright Ada R. Posner, 2015 Table of Contents Table of Contents ................................................................................................ 2 Abstract ............................................................................................................... 3 Résumé ............................................................................................................... 5 Acknowledgements ............................................................................................. 7 Preface & Contribution of Authors ...................................................................... 8 Abbreviations ...................................................................................................... 9 Introduction ....................................................................................................... 14 Melatonin ...................................................................................................... 14 Sites and mechanisms of melatonin action: receptors ................................. 17 Localization and distribution of melatonin receptors in the brain -
Dopaminergic Influences on Emotional Decision Making in Euthymic Bipolar Patients
Neuropsychopharmacology (2014) 39, 274–282 & 2014 American College of Neuropsychopharmacology. All rights reserved 0893-133X/14 www.neuropsychopharmacology.org Dopaminergic Influences on Emotional Decision Making in Euthymic Bipolar Patients ,1 2,3,4 5 2,3,4 Katherine E Burdick* , Raphael J Braga , Chaya B Gopin and Anil K Malhotra 1Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 2Department of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA; 3The Feinstein Institute for Medical 4 5 Research, Manhasset, NY, USA; Department of Psychiatry, Hofstra University School of Medicine, Hempstead, NY, USA; Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA We recently reported that the D2/D3 agonist pramipexole may have pro-cognitive effects in euthymic patients with bipolar disorder (BPD); however, the emergence of impulse-control disorders has been documented in Parkinson’s disease (PD) after pramipexole treatment. Performance on reward-based tasks is altered in healthy subjects after a single dose of pramipexole, but its potential to induce abnormalities in BPD patients is unknown. We assessed reward-dependent decision making in euthymic BPD patients pre- and post 8 weeks of treatment with pramipexole or placebo by using the Iowa Gambling Task (IGT). The IGT requires subjects to choose among four card decks (two risky and two conservative) and is designed to promote learning to make advantageous (conservative) choices over time. Thirty-four BPD patients completed both assessments (18 placebo and 16 pramipexole). Baseline performance did not differ by treatment group (F ¼ 0.63; p ¼ 0.64); however, at week 8, BPD patients on pramipexole demonstrated a significantly greater tendency to make increasingly high-risk, high-reward choices across the five blocks, whereas the placebo group’s pattern was similar to that reported in healthy individuals (treatment  time  block interaction, p 0.05). -
Methods for Treatment of Parkinson's Disease
(19) TZZ ZZ _T (11) EP 2 070 526 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 31/16 (2006.01) A61P 25/16 (2006.01) 26.02.2014 Bulletin 2014/09 (21) Application number: 09154864.4 (22) Date of filing: 08.04.2004 (54) Methods for treatment of Parkinson’s disease Verfahren zur Behandlung von Parkinson-Krankheit Procedes de traitment de la maladie de Parkinson (84) Designated Contracting States: • Benatti, Luca AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 20091 BRESSO (MI) (IT) HU IE IT LI LU MC NL PL PT RO SE SI SK TR (74) Representative: Minoja, Fabrizio (30) Priority: 11.04.2003 US 462205 P Bianchetti Bracco Minoja S.r.l. Via Plinio, 63 (43) Date of publication of application: 20129 Milano (IT) 17.06.2009 Bulletin 2009/25 (56) References cited: (62) Document number(s) of the earlier application(s) in EP-A- 0 400 495 US-A- 5 391 577 accordance with Art. 76 EPC: US-A- 5 945 454 04726590.5 / 1 613 296 • ANONYMOUS: "Newron Releases Positive (73) Proprietor: Newron Pharmaceuticals S.p.A. Preliminary Phase II Data for Salfinamide in 20091 Bresso (MI) (IT) Parkinson’s Disease" PRESS RELEASE OF 03.01.03, [Online] XP002290820 Retrieved from (72) Inventors: the Internet: URL:http://www.newron.com/ • Ruggero, Fariello press.asp?Action =news&intNewsID=1> 20091 BRESSO (MI) (IT) [retrieved on 2004-08-01] • Cattaneo, Carlo • BRUSA ET AL: "Pramipexole in comparison to L- 20091 BRESSO (MI) (IT) Dopa; a neuropsychological study.", • Salvati Patricia J.NEURAL.TRANSM., vol. -
Α2 Adrenergic Receptor Trafficking As a Therapeutic Target in Antidepressant Drug Action
CHAPTER NINE α2 Adrenergic Receptor Trafficking as a Therapeutic Target in Antidepressant Drug Action Christopher Cottingham*,1, Craig J. Ferryman*, Qin Wang†,1 *Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky, USA †Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA 1Corresponding authors: e-mail address: [email protected]; [email protected] Contents 1. Introduction 207 2. Physiological Basis for Studying α2AAR Trafficking in Depression 209 3. Arrestin-Biased Regulation of the α2AAR by the TCA Drug Class 211 4. Therapeutic Implications 216 References 219 Abstract Antidepressant drugs remain poorly understood, especially with respect to pharmaco- logical mechanisms of action. This lack of knowledge results from the extreme complex- ity inherent to psychopharmacology, as well as to a corresponding lack of knowledge regarding depressive disorder pathophysiology. While the final analysis is likely to be multifactorial and heterogeneous, compelling evidence exists for upregulation of brain α2 adrenergic receptors (ARs) in depressed patients. This evidence has sparked a line of research into actions of a particular antidepressant drug class, the tricyclic antidepres- sants (TCAs), as direct ligands at α2AARs. Our findings, as outlined herein, demonstrate that TCAs function as arrestin-biased ligands at α2AARs. Importantly, TCA-induced α2AAR/arrestin recruitment leads to receptor endocytosis and downregulation of α2AAR expression with prolonged exposure. These findings represent a novel mecha- nism linking α2AR trafficking with antidepressant pharmacology. 1. INTRODUCTION Psychopharmacology is an exceedingly intricate discipline, aiming as it does to modulate human emotion, behavior, and other complex cognitive processes. Although our understanding of brain–behavior relationships has # Progress in Molecular Biology and Translational Science, Volume 132 2015 Elsevier Inc. -
Pharmaceutical Composition and Dosage Forms for Administration of Hydrophobic Drugs
(19) & (11) EP 2 246 049 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 03.11.2010 Bulletin 2010/44 A61K 31/355 (2006.01) A61K 31/56 (2006.01) C07J 53/00 (2006.01) (21) Application number: 10173114.9 (22) Date of filing: 24.05.2004 (84) Designated Contracting States: • Fikstad, David T. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Salt Lake City, UT 84102 (US) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • Zhang, Huiping Salt Lake City, UT 844121 (US) (30) Priority: 22.05.2003 US 444935 • Giliyar, Chandrashekar Salt Lake City, UT 84102 (US) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: (74) Representative: Walker, Ross Thomson 04753162.9 / 1 624 855 Potts, Kerr & Co. 15 Hamilton Square (71) Applicant: Lipocine, Inc. Birkenhead Salt Lake City, UT 84103 (US) Merseyside CH41 6BR (GB) (72) Inventors: Remarks: • Chen, Feng-Jing This application was filed on 17-08-2010 as a Salt Lake City, UT 84111 (US) divisional application to the application mentioned • Patel, Mahesh V. under INID code 62. Salt Lake City, UT 84124 (US) (54) Pharmaceutical composition and dosage forms for administration of hydrophobic drugs (57) Pharmaceutical compositions and dosage tion with improved dispersion of both the active agent forms for administration of hydrophobic drugs, particu- and the solubilizer. As a result of the improved dispersion, larly steroids, are provided. The pharmaceutical compo- the pharmaceutical composition has improved bioavail- sitions include a therapeutically effective amount of a hy- ability upon administration. -
Serotonin 2C Receptor Antagonists Induce Fast-Onset Antidepressant Effects
Molecular Psychiatry (2013), 1–9 & 2013 Macmillan Publishers Limited All rights reserved 1359-4184/13 www.nature.com/mp ORIGINAL ARTICLE Serotonin 2C receptor antagonists induce fast-onset antidepressant effects MD Opal1,2, SC Klenotich1,2, M Morais3,4, J Bessa3,4, J Winkle2, D Doukas2,LJKay1,5,6, N Sousa3,4 and SM Dulawa1,2 Current antidepressants must be administered for several weeks to produce therapeutic effects. We show that selective serotonin 2C (5-HT2C) antagonists exert antidepressant actions with a faster-onset (5 days) than that of current antidepressants (14 days) in mice. Subchronic (5 days) treatment with 5-HT2C antagonists induced antidepressant behavioral effects in the chronic forced swim test (cFST), chronic mild stress (CMS) paradigm and olfactory bulbectomy paradigm. This treatment regimen also induced classical markers of antidepressant action: activation of cAMP response element-binding protein (CREB) and induction of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC). None of these effects were induced by subchronic treatment with citalopram, a prototypical selective serotonin reuptake inhibitor (SSRI). Local infusion of 5-HT2C antagonists into the ventral tegmental area was sufficient to induce BDNF in the mPFC, and dopamine D1 receptor antagonist treatment blocked the antidepressant behavioral effects of 5-HT2C antagonists. 5-HT2C antagonists also activated mammalian target of rapamycin (mTOR) and eukaryotic elongation factor 2 (eEF2) in the mPFC, effects recently linked to rapid antidepressant action. Furthermore, 5-HT2C antagonists reversed CMS-induced atrophy of mPFC pyramidal neurons. Subchronic SSRI treatment, which does not induce antidepressant behavioral effects, also activated mTOR and eEF2 and reversed CMS-induced neuronal atrophy, indicating that these effects are not sufficient for antidepressant onset.