Shape of Western Australian Dragon Lizards (Agamidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Agamid Lizards of the Genera Caimanops, Physignathus and Diporiphora in Western Australia and Northern Territory
Rec. West. Aust. Mus., 1974, 3 (2) AGAMID LIZARDS OF THE GENERA CAIMANOPS, PHYSIGNATHUS AND DIPORIPHORA IN WESTERN AUSTRALIA AND NORTHERN TERRITORY G.M. STORR [Received 11 February 1974. Accepted 15 February 1974] ABSTRACT Caimanopsgen. novo is proposed for Diporiphora amphiboluroides Lucas & Frost. The following species and subspecies ofPhysignathus and Diporiphora are studied: P. longirostris (Boulenger), P. temporalis (Giinther), P. g. gilberti (Gray), P. g. centralis Loveridge, D. convergens nov., D. a. albilabris nov., D. a. sobria nov., D. b. bennettii (GraY), D. b. arnhemica nov., D. magna nov., D. lalliae nov., D. reginae Glauert, D. winneckei Lucas & Frost, D. b. bilineata Gray, D. b. margaretae nov., and D. superba novo INTRODUCTION Recent collections have made it increasingly clear that there are many more species of Diporiphora in the far north of Western Australia than previously believed. The main purpose of this paper is to define these additional species of Diporiphora. Because juvenile Physignathus have often been mistaken for Diporiphora, that genus has been included in this study, and so too has Caimanops gen. nov., whose single species was long placed in Diporiphora. Generally Western Australian species of reptiles seldom extend further east than about longitude 140o E. Brief study of Queensland material showed that Diporiphora and Physignathus were not exceptional in this respect and that most, if not all, specimens belonged to different species or subspecies. It therefore seemed unnecessary to include the Eastern States species in this account of the Western species. The three species of Physignathus and single species of Caimanops are strongly characterized, and their identification should present students with no problems. -
Volume 86 Part 3
Journal of the Royal Society of Western Australia, 91: 207–208, 2008 Range extension of the Western relates to R. a. adelaidensis subspecies. This species was Heath Dragon, Rankinia formally placed in the genus Tympanocryptis adelaidensis (Gray 1841), while Melville et al. (2001) adelaidensis adelaidensis suggested that it should be placed in Ctenophorus. (Squamata: Agamidae) The habitat of R. a. adelaidensis was described by Bush et al. (1995; 2007) as low coastal vegetation on beaches and dunes, including heathlands and Banksia S A Thompson1, G G Thompson2 & J E Oates1 woodlands on the Swan Coastal Plain. 1 Coffey Environments, Dilhorn House, We report here two recent captures that are outside 2 Bulwer St, Perth 6000 the published geographical distribution for this dragon [email protected] but within known suitable habitat. [email protected] According to records in the Western Australian 2 Centre for Ecosystem Management, Edith Cowan Museum database, the previous most southerly records University, 100 Joondalup Drive, Joondalup, WA, 6027 of R. a. adelaidensis are from Jandakot (13 records), [email protected] Yangebup, Gosnells and a single record from Caddadup Reserve, Mandurah. There is also a 1957 record from the Manuscript received October 2007; accepted February 2008 south-west cape region at Deepdene in 1957 (R12427). Given the single record in 1957 and geographical isolation of the record, it is unknown whether it is a Abstract. Two recent captures and a sighting of Rankinia genuine record or an error in the database. Figure 1 adelaidensis increase its recorded geographical indicates the recorded locations of R. a. adelaidensis in distribution in a southerly direction. -
This Article Appeared in a Journal Published by Elsevier. the Attached Copy Is Furnished to the Author for Internal Non-Commerci
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's personal copy Molecular Phylogenetics and Evolution 71 (2014) 149–156 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multi-locus molecular phylogeny for Australia’s iconic Jacky Dragon (Agamidae: Amphibolurus muricatus): Phylogeographic structure along the Great Dividing Range of south-eastern Australia ⇑ Mitzy Pepper a, , Marco D. Barquero b, Martin J. Whiting b, J. Scott Keogh a a Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australia b Department of Biological Sciences, Macquarie University, Sydney, Australia article info abstract Article history: Jacky dragons (Amphibolurus muricatus) are ubiquitous in south-eastern Australia and were one of the Received 25 June 2013 -
Western Australian Naturalist 30
NOTES ON THE ECOLOGY AND NATURAL HISTORY OF CTENOPHORUS CAUDICINCTUS (AGAMIDAE) IN WESTERN AUSTRALIA By ERIC R. PIANKA Integrative Biology University of Texas at Austin Austin, Texas 78712 USA Email: [email protected] ABSTRACT Ecological data on the saxicolous agamid Ctenophorus caudicinctus are presented. These lizards never stray far from rocks. They forage on the ground but retreat to rock crevices when threatened. Most were above ground (mean = 83 cm, N = 41). Active early and late in the day during summer, they thermoregulate actively with an average body temperature of 37.2°C. They are dietary specialists eating mostly termites and ants, but also some vegetation. Clutch size varies from 3 to 7, averaging 5.36. Males are slightly larger than females. INTRODUCTION Strophurus wellingtonae, Rhynchoedura ornata and Varanus Ctenophorus caudicinctus is giganteus. These data were widespread in northern Western augmented with Ctenophorus Australia, the Northern Territory caudicinctus from a few other and eastern Queensland (Cogger localities. 2000, Storr 1967). During 1966– 1968, we sampled a population of these agamids on rock outcrops METHODS at a granitic tor area 71 km South of Wiluna on the west side of the We recorded air and body road to Sandstone (Lat. 27° 05' x temperatures, activity time, Long. 119° 37'). Ctenophorus microhabitat, fresh snout-vent caudicinctus was far and away the length (SVL), tail length, and most abundant species. Other weight for as many lizards as lizard species found at this site possible. Stomach contents were included Ctenophorus nuchalis, identified and prey volumes Ctenotus leonhardii, Ctenotus estimated for all lizards collected. -
Intelligence of Bearded Dragons Sydney Herndon
Murray State's Digital Commons Honors College Theses Honors College Spring 4-26-2021 Intelligence of Bearded Dragons sydney herndon Follow this and additional works at: https://digitalcommons.murraystate.edu/honorstheses Part of the Behavior and Behavior Mechanisms Commons Recommended Citation herndon, sydney, "Intelligence of Bearded Dragons" (2021). Honors College Theses. 67. https://digitalcommons.murraystate.edu/honorstheses/67 This Thesis is brought to you for free and open access by the Honors College at Murray State's Digital Commons. It has been accepted for inclusion in Honors College Theses by an authorized administrator of Murray State's Digital Commons. For more information, please contact [email protected]. Intelligence of Bearded Dragons Submitted in partial fulfillment of the requirements for the Murray State University Honors Diploma Sydney Herndon 04/2021 i Abstract The purpose of this thesis is to study and explain the intelligence of bearded dragons. Bearded dragons (Pogona spp.) are a species of reptile that have been popular in recent years as pets. Until recently, not much was known about their intelligence levels due to lack of appropriate research and studies on the species. Scientists have been studying the physical and social characteristics of bearded dragons to determine if they possess a higher intelligence than previously thought. One adaptation that makes bearded dragons unique is how they respond to heat. Bearded dragons optimize their metabolic functions through a narrow range of body temperatures that are maintained through thermoregulation. Many of their behaviors are temperature dependent, such as their speed when moving and their food response. When they are cold, these behaviors decrease due to their lower body temperature. -
One Year in the Life of Museum Victoria July 04 – June 05
11:15:01 11:15:11 11:15:16 11:15:18 11:15:20 11:15:22 11:15:40 11:16:11 11:16:41 11:17:16 11:17:22 11:17:23 11:17:25 11:17:27 11:17:30 11:17:42 11:17:48 11:17:52 11:17:56 11:18:10 11:18:16 11:18:18 11:18:20 11:18:22 11:18:24 11:18:28 11:18:30 11:18:32 11:19:04 11:19:36 11:19:38 11:19:40 11:19:42 11:19:44 11:19:47 11:19:49 Museums Board of Victoria Museums Board 14:19:52 14:19:57 14:19:58 14:20:01 14:20:03 14:20:05 14:20:08ONE14:20:09 YEAR14:20:13 IN14:20:15 THE14:20:17 LIFE14:20:19 Annual Report 2004/2005 OF MUSEUM VICTORIA 14:20:21 14:20:22 14:20:25 14:20:28 14:20:30 14:20:32 14:20:34 14:20:36 14:20:38 14:20:39 14:20:42 14:20:44 Museums Board of Victoria JULY 04 – JUNE 05 Annual Report 2004/2005 14:21:03 14:21:05 14:21:07 14:21:09 14:21:10 14:21:12 14:21:13 10:08:14 10:08:15 10:08:17 10:08:19 10:08:22 11:15:01 11:15:11 11:15:16 11:15:18 11:15:20 11:15:22 11:15:40 11:16:11 11:16:41 11:17:16 11:17:22 11:17:23 11:17:25 11:17:27 11:17:30 11:17:42 11:17:48 11:17:52 11:17:56 11:18:10 11:18:16 11:18:18 11:18:20 11:18:22 11:18:24 11:18:28 11:18:30 11:18:32 11:19:04 11:19:36 11:19:38 11:19:40 11:19:42 11:19:44 11:19:47 11:19:49 05:31:01 06:45:12 08:29:21 09:52:55 11:06:11 12:48:47 13:29:44 14:31:25 15:21:01 15:38:13 16:47:43 17:30:16 Museums Board of Victoria CONTENTS Annual Report 2004/2005 2 Introduction 16 Enhance Access, Visibility 26 Create and Deliver Great 44 Develop Partnerships that 56 Develop and Maximise 66 Manage our Resources 80 Financial Statements 98 Additional Information Profile of Museum Victoria and Community Engagement Experiences -
Niche Modeling for the Genus Pogona (Squamata: Agamidae) in Australia: Predicting Past (Late Quaternary) and Future (2070) Areas of Suitable Habitat
Niche modeling for the genus Pogona (Squamata: Agamidae) in Australia: predicting past (late Quaternary) and future (2070) areas of suitable habitat Julie E. Rej1,2 and T. Andrew Joyner2 1 Department of Wildlife Ecology, The Wilds, Cumberland, OH, USA 2 Department of Geosciences, East Tennessee State University, Johnson City, TN, USA ABSTRACT Background: As the climate warms, many species of reptiles are at risk of habitat loss and ultimately extinction. Locations of suitable habitat in the past, present, and future were modeled for several lizard species using MaxEnt, incorporating climatic variables related to temperature and precipitation. In this study, we predict where there is currently suitable habitat for the genus Pogona and potential shifts in habitat suitability in the past and future. Methods: Georeferenced occurrence records were obtained from the Global Biodiversity Information Facility, climate variables (describing temperature and precipitation) were obtained from WorldClim, and a vegetation index was obtained from AVHRR satellite data. Matching climate variables were downloaded for three different past time periods (mid-Holocene, Last Glacial Maximum, and Last Interglacial) and two different future projections representative concentration pathways (RCPs 2.6 and 8.5). MaxEnt produced accuracy metrics, response curves, and probability surfaces. For each species, parameters were adjusted for the best possible output that was biologically informative. Results: Model results predicted that in the past, there was little suitable habitat for P. henrylawsoni and P. microlepidota within the areas of their current range. Past areas of suitable habitat for P. barbata were predicted to be similar to the current 16 March 2018 Submitted prediction. Pogona minor and P. -
An Annotated Type Catalogue of the Dragon Lizards (Reptilia: Squamata: Agamidae) in the Collection of the Western Australian Museum Ryan J
RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 34 115–132 (2019) DOI: 10.18195/issn.0312-3162.34(2).2019.115-132 An annotated type catalogue of the dragon lizards (Reptilia: Squamata: Agamidae) in the collection of the Western Australian Museum Ryan J. Ellis Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. Biologic Environmental Survey, 24–26 Wickham St, East Perth, Western Australia 6004, Australia. Email: [email protected] ABSTRACT – The Western Australian Museum holds a vast collection of specimens representing a large portion of the 106 currently recognised taxa of dragon lizards (family Agamidae) known to occur across Australia. While the museum’s collection is dominated by Western Australian species, it also contains a selection of specimens from localities in other Australian states and a small selection from outside of Australia. Currently the museum’s collection contains 18,914 agamid specimens representing 89 of the 106 currently recognised taxa from across Australia and 27 from outside of Australia. This includes 824 type specimens representing 45 currently recognised taxa and three synonymised taxa, comprising 43 holotypes, three syntypes and 779 paratypes. Of the paratypes, a total of 43 specimens have been gifted to other collections, disposed or could not be located and are considered lost. An annotated catalogue is provided for all agamid type material currently and previously maintained in the herpetological collection of the Western Australian Museum. KEYWORDS: type specimens, holotype, syntype, paratype, dragon lizard, nomenclature. INTRODUCTION Australia was named by John Edward Gray in 1825, The Agamidae, commonly referred to as dragon Clamydosaurus kingii Gray, 1825 [now Chlamydosaurus lizards, comprises over 480 taxa worldwide, occurring kingii (Gray, 1825)]. -
Reproductive Ecology of the Mountain Dragon, Rankin/A (Tympanocryptis) Diemensis (Reptilia: Squamata: Agamidae) in Tasmania
Papers and Proceedings ofthe Royal Society of Tasmania, Volume 139, 2005 23 REPRODUCTIVE ECOLOGY OF THE MOUNTAIN DRAGON, RANKIN/A (TYMPANOCRYPTIS) DIEMENSIS (REPTILIA: SQUAMATA: AGAMIDAE) IN TASMANIA by Jemina Stuart-Smith, Roy Swain and Andrew Welling (with three tables and two text-figures) Stuart-Smith, J., Swain, R. & Welling, A. 2005 (16:xii): Reproductive ecology of the Mountain Dragon, Rankinia (Tympanocryptis) diemensis (Reptilia: Squamata: Agamidae) in Tasmania. Papers and Proceedings of the Royal Society of Tasmania 139: 23-28. https://doi.org/10.26749/rstpp.139.23 ISSN 0080-4703. School of Zoology, University of Tasmania, Private Bag 5, Tasmania, 7001 Australia.(J.S-S.*, R.S., AW). *Author for correspondence. The mountain dragon, Rankinia (Tympanocryptis) diemensis (Gray, 1841), is the only member of the Agamidae in Tasmania. It occurs in some of the coldest regions occupied by any dragon in Australia, and is found in a variety of habitats ranging from coastal heath to alpine scrub. This paper examines the reproductive ecology of R. diemensis in the most southerly range of its distribution, providing baseline data on timing of reproductive events, reproductive cycles, nesting behaviour and ovipositioning, clutch characteristics and incubation conditions. Winter torpor lasts approximately seven months with males emerging in early September and spermatogenesis occurring from September-November. Females emerge later, with vitcllogenesis occurring from September-December. Gravid females may be found between October and January, but females are non-vitcllogenic from late December until the following season. The firstclutch is typically laid from October-December, with a variable clutch size (2-11 eggs). Females store sperm and a second clutch may be laid fiveweeks after the first. -
Archived at the Flinders Academic Commons
Archived at the Flinders Academic Commons: http://dspace.flinders.edu.au/dspace/ This is the publisher’s version of an article published in The South Australian Naturalist. The original publication is available by subscription at: http://search.informit.com.au/ browseJournalTitle;res=IELHSS;issn=0038-2965 Please cite this article as: Smith AL, Bull CM and Driscoll DA (2013). Skeletochronological analysis of age in three “fire- specialist” lizard species. SA Naturalist 87, 6-17 Copyright (2013) the Field Naturalists Society of South Australia. Published version of the paper reproduced here with permission from the publisher. All rights reserved. Extract from The South Australian Naturalist 87(1): 6–17. SKELETOCHRONOLOGICAL ANALYSIS OF AGE IN THREE ‘FIRE-SPECIALIST’ LIZARD SPECIES Annabel L. Smith 1,2*, C. Michael Bull 2, Don A. Driscoll 1,2 1. ARC Centre of Excellence for Environmental Decisions and the NERP Environmental Decisions Hub, Fenner School of Environment and Society, Frank Fenner Building 141, Australian National University, Canberra ACT 0200, Australia. 2. School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001, Australia * Author for correspondence: Email: [email protected] Phone: +612 6125 9339, Fax: +612 6125 0757 ABSTRACT: Adverse fire regimes threaten the persistence of animals in many ecosystems. ‘Fire-specialist’ species, which specialise on a particular post-fire successional stage, are likely to be at greatest risk of decline under adverse fire regimes. Life history data on fire-specialists, including longevity, are needed to develop tools to assist fire management for conservation. We used skeletochronology to estimate the age of individuals of three South Australian fire-specialist lizard species: Amphibolurus norrisi (Agamidae), Ctenotus atlas (Scincidae) and Nephrurus stellatus (Gekkonidae). -
Biological Survey Part 2.Pdf
LEVEL 1 BIOLOGICAL ASSESSMENT OF RAVENSTHORPE GOLD PROJECT, WESTERN AUSTRALIA Page | 101 home ranges may overlap, there tends to be a smaller non-overlapping ‘core’ area defined by den locations. Core areas are approximately 4 km2 and 0.9 km2 for males and females, respectively (Serena & Soderquist, 1989). Females tend to be territorial, although some areas may be shared by a mother and her adult daughter (Serena & Soderquist, 1989). Male core areas are much larger and overlap broadly with other males as well as females. Both sexes occur at similar densities in the Jarrah forest. Home range size may be smaller in areas where foxes are effectively controlled, and where Chuditch population densities are higher (DEC, 2012b; Mathew, 1996). Chuditch are opportunistic feeders, foraging primarily on the ground at night. In the forest, insects and other large invertebrates comprise the bulk of their diet, though some mammals, birds and lizards are also included (DEC, 2012b; Serena et al., 1991). The Chuditch is primarily a nocturnal species, they may be diurnally active during the breeding season (April to July) or when cold, wet weather restricts nocturnal foraging (DEC, 2012b). The average life span of an established adult is two years, and wild Chuditch generally don’t live past four years (Soderquist, 1988). Factors contributing to Chuditch mortality include: ▪ Motor vehicle strike (Chuditch commonly forage along dirt roads and tracks making them more susceptible to this); ▪ Illegal shooting near roads; ▪ Predation by foxes, raptors and feral cats; ▪ Injury in rabbit traps; and ▪ Natural accidents and disease. The Chuditch has been recorded on camera within the Project Area during the two fauna surveys conducted by APM in 2016 and 2017. -
A New Species of Chameleon Dragon Chelosania Gray, 1845 from the Northern Territory, Australia
20 Australasian Journal of Herpetology Australasian Journal of Herpetology 39:20-22. Published 12 June 2019. ISSN 1836-5698 (Print) ISSN 1836-5779 (Online) A new species of Chameleon Dragon Chelosania Gray, 1845 from the Northern Territory, Australia. LSID urn:lsid:zoobank.org:pub:9D8A0752-C290-4FB8-BEDE-C60FB5819C65 RAYMOND T. HOSER 488 Park Road, Park Orchards, Victoria, 3134, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: snakeman (at) snakeman.com.au Received 21 December 2018, Accepted 6 January 2019, Published 12 June 2019. ABSTRACT The Chameleon Dragon, genus Chelosania Gray, 1845 has until now been treated as a single species throughout its known range across the dry tropics of Northern Australia. As part of an audit of the taxonomy and nomenclature of Australian agamids, it emerged that those specimens from the eastern sector of the Northern Territory (NT) are significantly different to the type race of Chelosania brunnea Gray, 1845, from Western Australia (WA) and separated by a well defined distribution gap in the western side of the Northern Territory. Other putative species also split across the same biogeographcal barrier, approximating the Daly River, have recently on the basis of morphological and molecular evidence been found to consist of multiple species. These include Odatria glauerti (Mertens, 1957) from WA, and O. hoserae Hoser, 2013 from the NT, or Cannia weigeli Wells and Wellington, 1987 from WA and Cannia burgessi (Hoser, 2001) from the NT). Therefore I have no hesitation at all in formally describing the eastern NT population of Chelosania as a new species, namely Chelosania neilsonnemanni sp.