Chemical Terror Threats—Are You Prepared?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pharmacotherapeutic Considerations for Individuals with Down Syndrome Erik Hefti
Harrisburg University of Science and Technology Digital Commons at Harrisburg University Harrisburg University Faculty Works 12-8-2016 Pharmacotherapeutic Considerations for Individuals with Down Syndrome Erik Hefti Follow this and additional works at: http://digitalcommons.harrisburgu.edu/faculty-works Part of the Congenital, Hereditary, and Neonatal Diseases and Abnormalities Commons, and the Medicinal and Pharmaceutical Chemistry Commons R EVIEW O F T HERAPEUTICS Pharmacotherapeutic Considerations for Individuals with Down Syndrome Erik Hefti,* and Javier G. Blanco* Department of Pharmaceutical Sciences, The School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York Down syndrome (DS; trisomy 21) is the most common survivable disorder due to aneuploidy. Individ- uals with DS may experience multiple comorbid health problems including congenital heart defects, endocrine abnormalities, skin and dental problems, seizure disorders, leukemia, dementia, and obesity. These associated conditions may necessitate pharmacotherapeutic management with various drugs. The complex pathobiology of DS may alter drug disposition and drug response in some individuals. For example, reports have documented increased rates of adverse drug reactions in patients with DS treated for leukemia and dementia. Intellectual disability resulting from DS may impact adherence to medication regimens. In this review, we highlight literature focused on pharmacotherapy for individu- als with DS. We discuss reports of altered drug disposition or response in patients with DS and explore social factors that may impact medication adherence in the DS setting. Enhanced monitoring during drug therapy in individuals with DS is justified based on reports of altered drug disposition, drug response, and other characteristics present in this population. -
Warfare Agents for Modeling Airborne Dispersion in and Around Buildings
LBNL-45475 ERNEST ORLANDO LAWRENCE BERKELEY NATIn NAL LABORATORY Databaseof Physical,Chemicaland ToxicologicalPropertiesof Chemical and Biological(CB)WarfitreAgentsfor ModelingAirborneDispersionIn and AroundBuildings TracyThatcher,RichSextro,andDonErmak Environmental Energy Technologies Division DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of Catifomia, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of anY information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommend at i on, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced -
DEMAND REDUCTION a Glossary of Terms
UNITED NATIONS PUBLICATION Sales No. E.00.XI.9 ISBN: 92-1-148129-5 ACKNOWLEDGEMENTS This document was prepared by the: United Nations International Drug Control Programme (UNDCP), Vienna, Austria, in consultation with the Commonwealth of Health and Aged Care, Australia, and the informal international reference group. ii Contents Page Foreword . xi Demand reduction: A glossary of terms . 1 Abstinence . 1 Abuse . 1 Abuse liability . 2 Action research . 2 Addiction, addict . 2 Administration (method of) . 3 Adverse drug reaction . 4 Advice services . 4 Advocacy . 4 Agonist . 4 AIDS . 5 Al-Anon . 5 Alcohol . 5 Alcoholics Anonymous (AA) . 6 Alternatives to drug use . 6 Amfetamine . 6 Amotivational syndrome . 6 Amphetamine . 6 Amyl nitrate . 8 Analgesic . 8 iii Page Antagonist . 8 Anti-anxiety drug . 8 Antidepressant . 8 Backloading . 9 Bad trip . 9 Barbiturate . 9 Benzodiazepine . 10 Blood-borne virus . 10 Brief intervention . 11 Buprenorphine . 11 Caffeine . 12 Cannabis . 12 Chasing . 13 Cocaine . 13 Coca leaves . 14 Coca paste . 14 Cold turkey . 14 Community empowerment . 15 Co-morbidity . 15 Comprehensive Multidisciplinary Outline of Future Activities in Drug Abuse Control (CMO) . 15 Controlled substance . 15 Counselling and psychotherapy . 16 Court diversion . 16 Crash . 16 Cross-dependence . 17 Cross-tolerance . 17 Custody diversion . 17 Dance drug . 18 Decriminalization or depenalization . 18 Demand . 18 iv Page Demand reduction . 19 Dependence, dependence syndrome . 19 Dependence liability . 20 Depressant . 20 Designer drug . 20 Detoxification . 20 Diacetylmorphine/Diamorphine . 21 Diuretic . 21 Drug . 21 Drug abuse . 22 Drug abuse-related harm . 22 Drug abuse-related problem . 22 Drug policy . 23 Drug seeking . 23 Drug substitution . 23 Drug testing . 24 Drug use . -
Effectiveness of Bronchodilator and Corticosteroid Treatment in Patients with Chronic Obstructive Pulmonary Disease (Copd)
Journal of Pharmaceutical Science and Application Volume 2, Issue 1, Page 17-22, June 2020 E-ISSN : 2301-7708 EFFECTIVENESS OF BRONCHODILATOR AND CORTICOSTEROID TREATMENT IN PATIENTS WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) Putu Rika Veryanti1*, Ainun Wulandari1 1Department of Pharmacy, Institut Sains dan Teknologi Nasional, Jakarta, Indonesia Corresponding author email: [email protected] ABSTRACT Background: Chronic Obstructive Pulmonary Disease (COPD) is a chronic airway disease which is characterized by progressive airway obstruction. Bronchodilators and corticosteroids are the first choices of therapy in COPD patients. The goal therapy of COPD patients is to prevent respiratory failure, which can impact on death. But nowadays, the mortality rate due to COPD continues to increase. WHO predicts mortality from COPD in the year 2030 will be ranked third in the world. This high mortality can be caused by the ineffectiveness of therapy given. Objective: The aim of this study is to find out the effectiveness of bronchodilator and corticosteroid treatments in COPD patients. Methods: An observational study conducted retrospectively in the 2018 period at Fatmawati Central General Hospital. The effectiveness of therapy was assessed from the patient's clinical condition, blood gas values (PaO2 & PaCO2) and the average length of stay (AvLOS). Results: COPD was mostly suffered by males (83,33%), and the highest age for COPD was in the range of 45 years and above (90%). Bronchodilator that commonly prescribed were albuterol (30.08%), ipratropium bromide (12.2%), fenoterol hydrobromide (10.57%), terbutaline sulfate (8.13%), theophylline (1.63%) and aminophylline (5.69%), while the corticosteroids were budesonide (17.07%), methylprednisolone (9.76%) and dexamethasone (4.88%). -
Dr. Duke's Phytochemical and Ethnobotanical Databases Biological Activities Found in Ammi Visnaga
Dr. Duke's Phytochemical and Ethnobotanical Databases Biological Activities found in Ammi visnaga Activity Chemical Count 11B-HSD-Inhibitor 2 5-Alpha-Reductase-Inhibitor 3 5-HT-Inhibitor 1 5-Lipoxygenase-Inhibitor 2 ACE-Inhibitor 3 Acetylcholinergic 1 Acidulant 1 Aldehyde-Oxidase-Inhibitor 2 Aldose-Reductase-Inhibitor 11 Allelochemic 5 Allelopathic 3 Allergenic 8 Alpha-Reductase-Inhibitor 1 Analgesic 5 Anemiagenic 1 Anesthetic 3 Anthelmintic 1 Antiacetylcholinesterase 2 Antiacne 3 AntiADD 1 Antiaflatoxin 6 Antiaggregant 5 Antiaging 1 Antiallergenic 1 Antiallergic 5 Antialopecic 2 Antialzheimeran 1 Activity Chemical Count Antianaphylactic 2 Antiandrogenic 3 Antianginal 1 Antiangiogenic 1 Antiapoplectic 1 Antiappetant 1 Antiarteriosclerotic 1 Antiarthritic 1 Antiasthmatic 4 Antiatherogenic 1 Antiatherosclerotic 3 Antibacterial 15 Antibrucellosic 1 Anticancer 6 Anticancer (Kidney) 1 Anticancer (Prostate) 1 Anticapillary-Fragility 1 Anticarcinomic (Breast) 1 Anticariogenic 2 Anticataract 2 Anticlastogen 1 Anticolitic 1 Anticomplementary 1 Anticonvulsant 3 AntiCrohn's 1 AntiCVI 1 Anticystitic 1 2 Activity Chemical Count Antidementia 1 Antidepressant 2 Antidermatitic 3 Antidiabetic 4 Antidiarrheic 1 Antidiuretic 1 Antidote (Camphor) 1 Antidote (Morphine) 1 Antidysenteric 1 Antiedemic 3 Antielastase 2 Antiemetic 1 Antiencephalitic 1 Antierythemic 1 Antiescherichic 2 Antiesherichic 1 Antiestrogenic 2 Antifeedant 7 Antifertility 1 Antifibrinolytic 1 Antifibrosarcomic 1 Antifibrositic 1 Antiflu 1 Antigastric 2 Antigingivitic 3 Antiglaucomic 1 Antigonadotrophic -
262 Part 341—Cold, Cough, Al- Lergy, Bronchodilator, And
Pt. 341 21 CFR Ch. I (4–1–18 Edition) section 502 of the Act relating to mis- treating concurrent symptoms (in either branding and the prohibition in section a single-ingredient or combination drug 301(d) of the Act against the introduc- product). tion or delivery for introduction into 341.72 Labeling of antihistamine drug prod- interstate commerce of unapproved ucts. 341.74 Labeling of antitussive drug prod- new drugs in violation of section 505(a) ucts. of the Act. 341.76 Labeling of bronchodilator drug prod- (c) Warnings. The labeling of the ucts. product contains the following warn- 341.78 Labeling of expectorant drug prod- ings under the heading ‘‘Warnings’’: ucts. (1) ‘‘The recommended dose of this 341.80 Labeling of nasal decongestant drug product contains about as much caf- products. feine as a cup of coffee. Limit the use 341.85 Labeling of permitted combinations of caffeine-containing medications, of active ingredients. foods, or beverages while taking this 341.90 Professional labeling. product because too much caffeine may AUTHORITY: 21 U.S.C. 321, 351, 352, 353, 355, cause nervousness, irritability, sleep- 360, 371. lessness, and, occasionally, rapid heart EDITORIAL NOTE: Nomenclature changes to beat.’’ part 341 appear at 69 FR 13717, Mar. 24, 2004. (2) ‘‘For occasional use only. Not in- tended for use as a substitute for sleep. Subpart A—General Provisions If fatigue or drowsiness persists or con- tinues to recur, consult a’’ (select one § 341.1 Scope. of the following: ‘‘physician’’ or ‘‘doc- tor’’). (a) An over-the-counter cold, cough, (3) ‘‘Do not give to children under 12 allergy, bronchodilator, or anti- years of age.’’ asthmatic drug product in a form suit- (d) Directions. -
Desoxyn (Methamphetamine Hydrochloride Tablets, USP)
® Desoxyn (methamphetamine hydrochloride tablets, USP) Rx only METHAMPHETAMINE HAS A HIGH POTENTIAL FOR ABUSE. IT SHOULD THUS BE TRIED ONLY IN WEIGHT REDUCTION PROGRAMS FOR PATIENTS IN WHOM ALTERNATIVE THERAPY HAS BEEN INEFFECTIVE. ADMINISTRATION OF METHAMPHETAMINE FOR PROLONGED PERIODS OF TIME IN OBESITY MAY LEAD TO DRUG DEPENDENCE AND MUST BE AVOIDED. PARTICULAR ATTENTION SHOULD BE PAID TO THE POSSIBILITY OF SUBJECTS OBTAINING METHAMPHETAMINE FOR NON-THERAPEUTIC USE OR DISTRIBUTION TO OTHERS, AND THE DRUG SHOULD BE PRESCRIBED OR DISPENSED SPARINGLY. MISUSE OF METHAMPHETAMINE MAY CAUSE SUDDEN DEATH AND SERIOUS CARDIOVASCULAR ADVERSE EVENTS. DESCRIPTION DESOXYN® (methamphetamine hydrochloride tablets, USP), chemically known as (S)-N,α-dimethylbenzeneethanamine hydrochloride, is a member of the amphetamine group of sympathomimetic amines. It has the following structural formula: DESOXYN tablets contain 5 mg of methamphetamine hydrochloride for oral administration. Inactive Ingredients: Corn starch, lactose, sodium paraminobenzoate, stearic acid and talc. CLINICAL PHARMACOLOGY Methamphetamine is a sympathomimetic amine with CNS stimulant activity. Peripheral actions include elevation of systolic and diastolic blood pressures and weak bronchodilator and respiratory stimulant action. Drugs of this class used in obesity are commonly known as “anorectics” or “anorexigenics”. It has not been established, however, that the action of such drugs in treating obesity is primarily one of appetite suppression. Other central nervous system actions, or metabolic effects, may be involved, for example. Reference ID: 3734642 Adult obese subjects instructed in dietary management and treated with “anorectic” drugs, lose more weight on the average than those treated with placebo and diet, as determined in relatively short-term clinical trials. The magnitude of increased weight loss of drug-treated patients over placebo-treated patients is only a fraction of a pound a week. -
Bronchodilator Therapy in Mechanically Ventilated Patients: Patient Selection and Clinical Outcomes
Editorials Bronchodilator Therapy in Mechanically Ventilated Patients: Patient Selection and Clinical Outcomes Bronchodilators are among the most commonly em- clinical outcomes did not improve with bronchodilator ther- ployed drugs in the intensive care unit. Inhaled broncho- apy. At the same time, bronchodilator treatment was safe and dilator therapy is preferred in modern practice because of was associated with a modest increase in the cost of treat- many advantages over systemic therapy.1 In patients with ment.11 This study is the first to address clinical outcomes airflow obstruction, inhaled bronchodilators improve with bronchodilator therapy in mechanically ventilated pa- wheezing2 and hemodynamics3 and reduce airway resis- tients. tance and intrinsic positive end-expiratory pressure.4,5 Only a few investigators have examined the role of bron- Bronchodilators also reduce the work of breathing,6 and chodilators in patients with no previous evidence of airflow they could reduce the sensation of dyspnea while improv- obstruction. Gay and colleagues found a reduction in airway ing patient-ventilator interaction. In addition, bronchodi- resistance among 13 mechanically ventilated patients, includ- lators could facilitate weaning in patients with limited car- ing those with and without airflow obstruction.12 Other work- 6  diopulmonary reserve. Combining 2 adrenergic and anti- ers have noted a reduction in airway resistance in patients cholinergic bronchodilators has a greater effect than therapy with acute respiratory distress syndrome.13,14 In such patients with either agent alone.7 bronchodilators not only reduce airway resistance, they also Generally, use of inhaled bronchodilators in mechani- enhance mucociliary clearance of secretions,15 and could in- cally ventilated patients is quite safe. -
Chemical Terrorism Poster
Chemical Terrorism Poster Produced by the MN Department of Health www.health.state.mn.us, the MN Laboratory System www.health.state.mn.us/mls, and The Poison Control Center www.mnpoison.org Blood Agents ▪ Symptoms Include: ▪ Vertigo ▪ Tachycardia ▪ Tachypnea ▪ Cyanosis ▪ Flu-like symptoms ▪ Nonspecific neurological symptoms ▪ Indicative Lab Tests: ▪ Increased anion gap ▪ Metabolic acidosis ▪ Narrow pO2 difference between arterial and venous samples ▪ Potential Agents: ▪ Hydrogen Cyanide ▪ Hydrogen Sulfide ▪ Carbon Monoxide ▪ Cyanogen Chloride Nerve Agents ▪ Symptoms Include: ▪ Diarrhea diaphoresis ▪ Urination ▪ Miosis ▪ Bradycardia bronchospasm, ▪ Emesis ▪ Lacrimation ▪ Salivation sweating ▪ Indicative Lab Tests: ▪ Decreased cholinesterase ▪ Increased anion gap ▪ Metabolic acidosis C H E M I C A L T E RRO RI S M P O S T E R Nerve Agents (cont.) ▪ Potential Agents: ▪ Sarin ▪ VX ▪ Tabun ▪ Soman Blister Agents ▪ Symptoms Include: ▪ Itching ▪ Erythema ▪ Yellowish blisters ▪ Flu-like symptoms ▪ Delayed eye irritation ▪ Indicative Lab Tests: ▪ Thiodyglycol present in urine ▪ Potential Agents: ▪ Sulfer Mustard ▪ Phosgene Oxime ▪ Nitrogen Mustard Choking Agents ▪ Symptoms Include: ▪ Upper respiratory tract irritation ▪ Rhinitis ▪ Coughing ▪ Choking ▪ Delayed pulmonary edema ▪ Indicative Lab Tests: ▪ Decreased pO2 ▪ Decreased pCO2 ▪ Potential Agents: ▪ Phosgene ▪ Diphosgene ▪ Chlorine Metal Agents ▪ Symptoms Include: ▪ Cough ▪ Metallic taste ▪ CNS effects ▪ Shortness of breath 2 C H E M I C A L T E RRO RI S M P O S T E R Metal Agents (cont.) ▪ Symptoms Include (cont.): ▪ Flu-like symptoms ▪ Visual disturbances ▪ Indicative Lab Tests: ▪ Proteinuria ▪ Blood mercury ▪ Urine mercury ▪ Potential Agents: ▪ Dimethylmercury ▪ Lead ▪ Copper ▪ Mercury ▪ Arsenic ▪ Copper ▪ Cadmium Call Poison Control 24/7 for Treatment Information 1-800-222-1222. Call the MDH Clinical Chemists for appropriate specimen collection, packaging and shipping information at 612-282- 3750 (After regular hours call MDH at 651-201-5414). -
Global Strategy for Asthma Management and Prevention, 2019. Available From
DISTRIBUTE OR COPY NOT DO MATERIAL- COPYRIGHTED ASTHMA MANAGEMENT AND PREVENTION GLOBAL STRATEGY FOR Updated 2019 9 Global Strategy for Asthma Management and Prevention (2019 update) DISTRIBUTE OR COPY NOT DO The reader acknowledges that this reportMATERIAL- is intended as an evidence-based asthma management strategy, for the use of health professionals and policy-makers. It is based, to the best of our knowledge, on current best evidence and medical knowledge and practice at the date of publication. When assessing and treating patients, health professionals are strongly advised to use their own professional judgment, and to take into account local or national regulations and guidelines. GINA cannot be held liable or responsible for inappropriate healthcare associated with the use of this document, including any use which is not in accordance with applicable local or national regulations or COPYRIGHTEDguidelines. This document should be cited as: Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2019. Available from: www.ginasthma.org 1 Table of contents Tables and figures ............................................................................................................................................................... 5 Preface ................................................................................................................................................................................. 7 Members of GINA committees (2018) ................................................................................................................................ -
Military Preventive Medicine: Mobilization and Deployment, Vol 1 Chapter 27 Chemical Warfare Agents
Chemical Warfare Agents Chapter 27 CHEMICAL WARFARE AGENTS FREDERICK R. SIDELL, MD INTRODUCTION CHEMICAL WARFARE AGENTS AND THEIR CLINICAL EFFECTS Nerve Agents Vesicants Cyanide Pulmonary Agents Incapacitating Agents Riot-Control Agents MANAGEMENT OF CHEMICAL AGENT CASUALTIES Nerve Agents Vesicants Cyanide Pulmonary Agents Incapacitating Agents Riot-Control Agents PERSONAL PROTECTION DECONTAMINATION FIELD MANAGEMENT The Service Member’s Role Echelons of Care At the Medical Facility SUMMARY 611 Military Preventive Medicine: Mobilization and Deployment, Volume 1 F. R. Sidell; Chemical Casualty Consultant, Bel Air, MD 21014; formerly, Chief, Chemical Casualty Care Office, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Md 612 Chemical Warfare Agents INTRODUCTION Chemical agents have been used in warfare since about a third of these were from mustard. ancient times. The first use of a chemical weapon, Between World War I and World War II, there which in a broad sense includes smoke and flame, were several instances in which chemicals were al- is generally considered to have been in 423 BC dur- legedly used, but although both sides had these ing the Peloponnesian War. Boeotians and their al- weapons during World War II, they were not used. lies attacked Delium and succeeded in taking this In more recent years, alleged uses of these materi- village by burning a mixture of coals, sulfur, and als against the Hmong in Laos, the Cambodian refu- pitch and sending the smoke and flame into the vil- gees, and the Afghans have not been proven. lage through a hollowed out log. The walls were Chemical agents—mostly nerve agents and mus- burned by the flame, the inhabitants were overcome tard—were widely used in the Iraq-Iran war (1980– by the smoke, and the village was captured.1 A thou- 1988). -
'Response to the Director-General's Request
OPCW Scientific Advisory Board Twenty-Fifth Session SAB-25/WP.1 27 – 31 March 2017 27 March 2017 ENGLISH only RESPONSE TO THE DIRECTOR-GENERAL'S REQUEST TO THE SCIENTIFIC ADVISORY BOARD TO PROVIDE CONSIDERATION ON WHICH RIOT CONTROL AGENTS ARE SUBJECT TO DECLARATION UNDER THE CHEMICAL WEAPONS CONVENTION 1. Response to the Director-General’s Request to the Scientific Advisory Board to Consider Which Riot Control Agents are Subject to Declaration Under the Chemical Weapons Convention (hereinafter “the Convention”). Annex: Response to the Director-General’s Request to the Scientific Advisory Board to Consider Which Riot Control Agents are Subject to Declaration Under the Chemical Weapons Convention. CS-2017-0268(E) distributed 27/03/2017 *CS-2017-0268.E* SAB-25/WP.1 Annex page 2 Annex RESPONSE TO THE DIRECTOR-GENERAL’S REQUEST TO THE SCIENTIFIC ADVISORY BOARD TO CONSIDER WHICH RIOT CONTROL AGENTS ARE SUBJECT TO DECLARATION UNDER THE CHEMICAL WEAPONS CONVENTION 1. EXECUTIVE SUMMARY 1.1 This report provides advice from the Scientific Advisory Board (SAB) on which riot control agents (RCAs) would be subject to declaration under the Convention in response to a request by the Director-General at the Board’s Twentieth Session in June 2013 [1]. The request appears in Appendix 1. 1.2 The SAB considered a list of 59 chemicals that included the 14 chemicals declared as RCAs since entry into force of the Convention; chemicals identified as potential RCAs from a list of “riot control agents and old/abandoned chemical weapons” to be considered for inclusion in the OPCW Chemical Agent Database (OCAD) that had been drafted by the SAB’s Temporary Working Group (TWG) on Analytical Procedures in 2001 (Appendix 2) [2]; an initial survey conducted by the Technical Secretariat in 2013 of RCAs that have been researched or are available for purchase, beyond those that are already declared; and 12 additional chemicals recognised by the SAB as having potential RCA applications.