Bronchodilator Therapy in COPD: Physiological Effects

Total Page:16

File Type:pdf, Size:1020Kb

Bronchodilator Therapy in COPD: Physiological Effects Breathe review bronch therapy.qxd 21/05/2008 16:19 Page 2 This article has been adapted from an ERS Research Seminar held in Como, Italy in 2007. The original slides and other material can be found at www.ers-education.org D.E. O'Donnell Bronchodilator therapy in Professor of Medicine and Physiology COPD: physiological effects Division of Respiratory and Critical Care Medicine Queen's University Richardson House 102 Stuart Street K7L 2V6 Kingston, ON Canada Fax: 1 6135491459 Email: [email protected] Competing interests The author has served on advisory boards, accepted speaker’s fees and received research funding from GlaxoSmithKline, Pfizer and Boehringer Ingelheim. Provenance Adapted from an ERS Research Seminar Educational aims k To review current concepts of the mechanisms of symptom relief and improved exercise tolerance following pharmacological treatment in chronic obstructive pulmonary disease (COPD). k To examine the relative responsiveness of new physiological outcome parameters in clinical trials. Summary Bronchodilator therapy is the first step in improving dyspnoea and exercise endurance in patients with COPD. Recent studies have challenged the long-held view that airway obstruc- tion in COPD is irreversible. We now know that even in the setting of minor or no change in traditional spirometry, bronchodilator therapy is associated with consistent, and often impressive, reduction in lung hyperinflation. This pharmacological lung volume reduction is linked to improved inspiratory muscle function and enhanced neuro- mechanical coupling of the respiratory system during activity, even in those with advanced disease. Moreover, these improvements in dynamic mechanics provide a sound physiological rationale for observed bronchodilator-induced improvements in the important patient-centred outcomes of reduced dyspnoea and activity limitation. 342 Breathe | December 2005 | Volume 2 | No 2 Breathe review bronch therapy.qxd 21/05/2008 16:19 Page 3 COPD feature: Bronchodilator therapy in COPD: physiological effects as measured by "trough", or morning, pre-bron- Figure 1 Flow–volume curves pre- and post- Vmax chodilator EELV or IC [1, 2, 7, 14] Combined long- acting bronchodilators have additive effects on bronchodilator. V’max: maximal lung volume deflation [14]. flow; BD: bronchodilator. A recent mechanical study on the mecha- nisms of dyspnoea relief following therapy with Flow the long-acting bronchodilator tiotropium Volume showed that release of cholinergic tone was IC pre-BD associated with improved airway conductance at IC post-BD all lung volumes from total lung capacity to resid- ual volume (RV). Static elastic recoil of the lung was unchanged after acutely administered Educational questions tiotropium, and expiratory timing during sponta- 1. How do you explain the clin- neous resting breathing was unaffected. Lung Bronchodilator therapy ical observation that bron- deflation, therefore, primarily reflected improve- chodilator therapy can relieve Recent international guidelines have correctly ments in the mechanical time constants for lung highlighted dyspnoea alleviation and improve- emptying (i.e. reduced airway resistance). The dyspnoea in COPD in the ment in exercise tolerance as among the most main impact of bronchodilator therapy is, there- absence of an associated important management goals in COPD. fore, on the dynamically determined resting EELV change in FEV1? All classes of bronchodilators act by relaxing through pharmacological manipulation of airway 2. How do you explain the find- airway smooth muscle tone. Improvements in resistance. ing that following bronchodila- forced expiratory volume in one second (FEV1; Improvements in resting IC, which indirectly tor therapy in COPD, breathing beyond the natural variability of the measure- signify reduced EELV, have been shown to occur pattern during exercise ment) after inhaled bronchodilators signify as a result of treatment with all classes of bron- becomes slower and deeper? reduced resistance in the larger airways, as well chodilators (figure 2) [1–14]. A bronchodilator- as in alveolar units, with rapid time constants for induced increase in the resting IC (indicating lung emptying. In more advanced COPD (in con- reduced lung hyperinflation), in the order of 0.3 L trast to asthma), post-bronchodilator increases in or ~10–15% predicted (or 15–17% of baseline FEV1 mainly occur as a result of lung volume value), appears to be clinically meaningful and recruitment: the ratio of FEV1 to forced vital corresponds with important improvements in capacity is unaltered or may actually decrease in exertional dyspnoea, and exercise endurance response to bronchodilators [1–14]. Recent stud- measured during constant work-rate cycle exer- ies have shown that substantial reductions cise at 60–75% of the patients' pre-determined (>0.5 L) in end-expiratory lung volume (EELV) and maximal work rate [1–3]. improvements in inspiratory capacity (IC) can A number of studies have shown that bron- occur after acute short- and long-acting bron- chodilator therapy, alone or in combination with chodilator treatment in the presence of only mod- inhaled corticosteroids, does not alter the rate of est improvements in FEV1 (figure 1). Long-acting dynamic hyperinflation (or air trapping) during bronchodilators have been shown to be exercise [1–3]. In fact, the magnitude of the rest- associated with sustained lung volume reduction to-peak exercise reduction in IC may actually Figure 2 [6] SABD SABD Responses to bronchodilators in COPD. SABD: short-acting bron- [4] SABD SABD chodilator; LABA: long-acting β- agonist; LAAC: long-acting anti- [10] LABA LABA cholinergic; ICS: inhaled corticos- teroid. : crossover study; : parallel group study. [Ref] [1] LAAC LAAC [2] LAAC LAAC [13] ICS/LABA ICS/LABA 0 0.1 0.2 0.3 0.4 0.5 0 30 60 90 120 150 180 Change in IC L Change in endurance time s Breathe | June 2008 | Volume 4 | No 4 343 Breathe review bronch therapy.qxd 21/05/2008 16:19 Page 4 COPD feature: Bronchodilator therapy in COPD: physiological effects Suggested answers Bronchodilator responses in COPD 1: Bronchodilator therapy • Volume (functional residual capacity, RV) and flow responses (FEV1) to bronchodilators are independent [5] facilitates lung emptying • Bronchodilators often do not abolish expiratory flow limitation [9–13] and reduces air trapping. • IC responses are more likely in patients with resting expiratory flow limitation (IC <80% pred) [6] The resultant improvement • IC responses are more pronounced in those with expiratory flow limitation and severe resting hyperinflation [5, 6] in inspiratory muscle func- • Changes in IC correlate better with improved outcomes than changes in FEV1 [1, 4, 13] tion and neuromechanical coupling of the respiratory increase as a result of the higher levels of ventila- elastic loading of the inspiratory muscles, which system contribute to dysp- tion permitted by bronchodilator therapy. resulted in a reduced work and oxygen cost of noea relief. This pharmaco- However, because of recruitment of the IC at rest, breathing, compared with placebo [3]. A reduced logical lung volume reduc- the dynamic EELV at peak exercise is lower, in inspiratory threshold load, reflecting reduced intrinsic positive end-expiratory pressure, would tion can occur in the absolute terms, than the value obtained at the break-point of exercise during the placebo arm of be expected to enhance neuromechanical cou- absence of change in FEV1, the treatment. In other words, bronchodilator pling of the respiratory system during exercise. particularly in advanced treatment (compared with placebo) is associated The strongest correlate of improved exercise COPD. with a parallel downward shift in the EELV over endurance in a number of bronchodilator trials 2: In COPD, IC represents the course of the exercise test. has been reduced exertional dyspnoea intensity the true operating limits for Improvements in the resting IC (as % pred) [9–13]. Several bronchodilator studies have tidal volume expansion dur- following bronchodilator therapy has been shown shown that reduced dyspnoea ratings at a stan- ing exercise. Recruitment of to correlate well with: 1) improved peak symptom- dard exercise time correlated well with reduced IC (which reflects reduced limited oxygen uptake; 2) increased peak tidal operating lung volumes (reduced EELV and an air trapping) following bron- volume; 3) reduced dyspnoea ratings; and 4) increased inspiratory reserve volume) and chodilatation allows for increased endurance time during constant work- improved breathing pattern (increased tidal vol- greater tidal volume expan- rate cycle exercise testing in moderate-to-severe ume and reduced breathing frequency) [1, 4, 13]. sion during exercise, with COPD patients [1, 4, 13]. In all of the studies, The emerging evidence supports the idea that consequent reduced breath- increased resting IC permitted greater tidal vol- the beneficial effects of bronchodilators on respi- ing frequency. ume expansion with reduced breathing frequency ratory sensation in COPD patients are ultimately throughout exercise [9–13]. Moreover, in a recent related to enhanced neuromechanical coupling mechanical study, tiotropium was found to be of the respiratory system as a result of improved associated with reduced airways resistance and dynamic ventilatory mechanics. References 1. O'Donnell DE, Flüge T, Gerken F, et al. Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD. Eur Respir J 2004; 23: 832–840. 2. Maltais
Recommended publications
  • Correlation Between Tidal Volume Measured by Spirometry and Impedance Pneumography
    New Jersey Institute of Technology Digital Commons @ NJIT Theses Electronic Theses and Dissertations Fall 10-31-1994 Correlation between tidal volume measured by spirometry and impedance pneumography Krithika Seshadri New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/theses Part of the Biomedical Engineering and Bioengineering Commons Recommended Citation Seshadri, Krithika, "Correlation between tidal volume measured by spirometry and impedance pneumography" (1994). Theses. 1696. https://digitalcommons.njit.edu/theses/1696 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to
    [Show full text]
  • Pharmacotherapeutic Considerations for Individuals with Down Syndrome Erik Hefti
    Harrisburg University of Science and Technology Digital Commons at Harrisburg University Harrisburg University Faculty Works 12-8-2016 Pharmacotherapeutic Considerations for Individuals with Down Syndrome Erik Hefti Follow this and additional works at: http://digitalcommons.harrisburgu.edu/faculty-works Part of the Congenital, Hereditary, and Neonatal Diseases and Abnormalities Commons, and the Medicinal and Pharmaceutical Chemistry Commons R EVIEW O F T HERAPEUTICS Pharmacotherapeutic Considerations for Individuals with Down Syndrome Erik Hefti,* and Javier G. Blanco* Department of Pharmaceutical Sciences, The School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York Down syndrome (DS; trisomy 21) is the most common survivable disorder due to aneuploidy. Individ- uals with DS may experience multiple comorbid health problems including congenital heart defects, endocrine abnormalities, skin and dental problems, seizure disorders, leukemia, dementia, and obesity. These associated conditions may necessitate pharmacotherapeutic management with various drugs. The complex pathobiology of DS may alter drug disposition and drug response in some individuals. For example, reports have documented increased rates of adverse drug reactions in patients with DS treated for leukemia and dementia. Intellectual disability resulting from DS may impact adherence to medication regimens. In this review, we highlight literature focused on pharmacotherapy for individu- als with DS. We discuss reports of altered drug disposition or response in patients with DS and explore social factors that may impact medication adherence in the DS setting. Enhanced monitoring during drug therapy in individuals with DS is justified based on reports of altered drug disposition, drug response, and other characteristics present in this population.
    [Show full text]
  • DEMAND REDUCTION a Glossary of Terms
    UNITED NATIONS PUBLICATION Sales No. E.00.XI.9 ISBN: 92-1-148129-5 ACKNOWLEDGEMENTS This document was prepared by the: United Nations International Drug Control Programme (UNDCP), Vienna, Austria, in consultation with the Commonwealth of Health and Aged Care, Australia, and the informal international reference group. ii Contents Page Foreword . xi Demand reduction: A glossary of terms . 1 Abstinence . 1 Abuse . 1 Abuse liability . 2 Action research . 2 Addiction, addict . 2 Administration (method of) . 3 Adverse drug reaction . 4 Advice services . 4 Advocacy . 4 Agonist . 4 AIDS . 5 Al-Anon . 5 Alcohol . 5 Alcoholics Anonymous (AA) . 6 Alternatives to drug use . 6 Amfetamine . 6 Amotivational syndrome . 6 Amphetamine . 6 Amyl nitrate . 8 Analgesic . 8 iii Page Antagonist . 8 Anti-anxiety drug . 8 Antidepressant . 8 Backloading . 9 Bad trip . 9 Barbiturate . 9 Benzodiazepine . 10 Blood-borne virus . 10 Brief intervention . 11 Buprenorphine . 11 Caffeine . 12 Cannabis . 12 Chasing . 13 Cocaine . 13 Coca leaves . 14 Coca paste . 14 Cold turkey . 14 Community empowerment . 15 Co-morbidity . 15 Comprehensive Multidisciplinary Outline of Future Activities in Drug Abuse Control (CMO) . 15 Controlled substance . 15 Counselling and psychotherapy . 16 Court diversion . 16 Crash . 16 Cross-dependence . 17 Cross-tolerance . 17 Custody diversion . 17 Dance drug . 18 Decriminalization or depenalization . 18 Demand . 18 iv Page Demand reduction . 19 Dependence, dependence syndrome . 19 Dependence liability . 20 Depressant . 20 Designer drug . 20 Detoxification . 20 Diacetylmorphine/Diamorphine . 21 Diuretic . 21 Drug . 21 Drug abuse . 22 Drug abuse-related harm . 22 Drug abuse-related problem . 22 Drug policy . 23 Drug seeking . 23 Drug substitution . 23 Drug testing . 24 Drug use .
    [Show full text]
  • Pressure-Controlled Ventilation in Children with Severe Status Asthmaticus*
    Feature Articles Pressure-controlled ventilation in children with severe status asthmaticus* Ashok P. Sarnaik, MD, FAAP, FCCM; Kshama M. Daphtary, MD; Kathleen L. Meert, MD, FAAP; Mary W. Lieh-Lai, MD, FAAP; Sabrina M. Heidemann, MD, FAAP Objective: The optimum strategy for mechanical ventilation in trolled ventilation, median pH increased to 7.31 (6.98–7.45, p < a child with status asthmaticus is not established. Volume-con- .005), and PCO2 decreased to 41 torr (21–118 torr, p < .005). For trolled ventilation continues to be the traditional approach in such patients with respiratory acidosis (PCO2 >45 torr) within 1 hr of children. Pressure-controlled ventilation may be theoretically starting pressure-controlled ventilation, the median length of time more advantageous in allowing for more uniform ventilation. We until PCO2 decreased to <45 torr was 5 hrs (1–51 hrs). Oxygen describe our experience with pressure-controlled ventilation in saturation was maintained >95% in all patients. Two patients had children with severe respiratory failure from status asthmaticus. pneumomediastinum before pressure-controlled ventilation. One Design: Retrospective review. patient each developed pneumothorax and subcutaneous emphy- Setting: Pediatric intensive care unit in a university-affiliated sema after initiation of pressure-controlled ventilation. All pa- children’s hospital. tients survived without any neurologic morbidity. Median duration Patients: All patients who received mechanical ventilation for of mechanical ventilation was 29 hrs (4–107 hrs), intensive care status asthmaticus. stay was 56 hrs (17–183 hrs), and hospitalization was 5 days Interventions: Pressure-controlled ventilation was used as the (2–20 days). initial ventilatory strategy. The optimum pressure control, rate, Conclusions: Based on this retrospective study, we suggest and inspiratory and expiratory time were determined based on that pressure-controlled ventilation is an effective ventilatory blood gas values, flow waveform, and exhaled tidal volume.
    [Show full text]
  • Effectiveness of Bronchodilator and Corticosteroid Treatment in Patients with Chronic Obstructive Pulmonary Disease (Copd)
    Journal of Pharmaceutical Science and Application Volume 2, Issue 1, Page 17-22, June 2020 E-ISSN : 2301-7708 EFFECTIVENESS OF BRONCHODILATOR AND CORTICOSTEROID TREATMENT IN PATIENTS WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) Putu Rika Veryanti1*, Ainun Wulandari1 1Department of Pharmacy, Institut Sains dan Teknologi Nasional, Jakarta, Indonesia Corresponding author email: [email protected] ABSTRACT Background: Chronic Obstructive Pulmonary Disease (COPD) is a chronic airway disease which is characterized by progressive airway obstruction. Bronchodilators and corticosteroids are the first choices of therapy in COPD patients. The goal therapy of COPD patients is to prevent respiratory failure, which can impact on death. But nowadays, the mortality rate due to COPD continues to increase. WHO predicts mortality from COPD in the year 2030 will be ranked third in the world. This high mortality can be caused by the ineffectiveness of therapy given. Objective: The aim of this study is to find out the effectiveness of bronchodilator and corticosteroid treatments in COPD patients. Methods: An observational study conducted retrospectively in the 2018 period at Fatmawati Central General Hospital. The effectiveness of therapy was assessed from the patient's clinical condition, blood gas values (PaO2 & PaCO2) and the average length of stay (AvLOS). Results: COPD was mostly suffered by males (83,33%), and the highest age for COPD was in the range of 45 years and above (90%). Bronchodilator that commonly prescribed were albuterol (30.08%), ipratropium bromide (12.2%), fenoterol hydrobromide (10.57%), terbutaline sulfate (8.13%), theophylline (1.63%) and aminophylline (5.69%), while the corticosteroids were budesonide (17.07%), methylprednisolone (9.76%) and dexamethasone (4.88%).
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases Biological Activities Found in Ammi Visnaga
    Dr. Duke's Phytochemical and Ethnobotanical Databases Biological Activities found in Ammi visnaga Activity Chemical Count 11B-HSD-Inhibitor 2 5-Alpha-Reductase-Inhibitor 3 5-HT-Inhibitor 1 5-Lipoxygenase-Inhibitor 2 ACE-Inhibitor 3 Acetylcholinergic 1 Acidulant 1 Aldehyde-Oxidase-Inhibitor 2 Aldose-Reductase-Inhibitor 11 Allelochemic 5 Allelopathic 3 Allergenic 8 Alpha-Reductase-Inhibitor 1 Analgesic 5 Anemiagenic 1 Anesthetic 3 Anthelmintic 1 Antiacetylcholinesterase 2 Antiacne 3 AntiADD 1 Antiaflatoxin 6 Antiaggregant 5 Antiaging 1 Antiallergenic 1 Antiallergic 5 Antialopecic 2 Antialzheimeran 1 Activity Chemical Count Antianaphylactic 2 Antiandrogenic 3 Antianginal 1 Antiangiogenic 1 Antiapoplectic 1 Antiappetant 1 Antiarteriosclerotic 1 Antiarthritic 1 Antiasthmatic 4 Antiatherogenic 1 Antiatherosclerotic 3 Antibacterial 15 Antibrucellosic 1 Anticancer 6 Anticancer (Kidney) 1 Anticancer (Prostate) 1 Anticapillary-Fragility 1 Anticarcinomic (Breast) 1 Anticariogenic 2 Anticataract 2 Anticlastogen 1 Anticolitic 1 Anticomplementary 1 Anticonvulsant 3 AntiCrohn's 1 AntiCVI 1 Anticystitic 1 2 Activity Chemical Count Antidementia 1 Antidepressant 2 Antidermatitic 3 Antidiabetic 4 Antidiarrheic 1 Antidiuretic 1 Antidote (Camphor) 1 Antidote (Morphine) 1 Antidysenteric 1 Antiedemic 3 Antielastase 2 Antiemetic 1 Antiencephalitic 1 Antierythemic 1 Antiescherichic 2 Antiesherichic 1 Antiestrogenic 2 Antifeedant 7 Antifertility 1 Antifibrinolytic 1 Antifibrosarcomic 1 Antifibrositic 1 Antiflu 1 Antigastric 2 Antigingivitic 3 Antiglaucomic 1 Antigonadotrophic
    [Show full text]
  • 262 Part 341—Cold, Cough, Al- Lergy, Bronchodilator, And
    Pt. 341 21 CFR Ch. I (4–1–18 Edition) section 502 of the Act relating to mis- treating concurrent symptoms (in either branding and the prohibition in section a single-ingredient or combination drug 301(d) of the Act against the introduc- product). tion or delivery for introduction into 341.72 Labeling of antihistamine drug prod- interstate commerce of unapproved ucts. 341.74 Labeling of antitussive drug prod- new drugs in violation of section 505(a) ucts. of the Act. 341.76 Labeling of bronchodilator drug prod- (c) Warnings. The labeling of the ucts. product contains the following warn- 341.78 Labeling of expectorant drug prod- ings under the heading ‘‘Warnings’’: ucts. (1) ‘‘The recommended dose of this 341.80 Labeling of nasal decongestant drug product contains about as much caf- products. feine as a cup of coffee. Limit the use 341.85 Labeling of permitted combinations of caffeine-containing medications, of active ingredients. foods, or beverages while taking this 341.90 Professional labeling. product because too much caffeine may AUTHORITY: 21 U.S.C. 321, 351, 352, 353, 355, cause nervousness, irritability, sleep- 360, 371. lessness, and, occasionally, rapid heart EDITORIAL NOTE: Nomenclature changes to beat.’’ part 341 appear at 69 FR 13717, Mar. 24, 2004. (2) ‘‘For occasional use only. Not in- tended for use as a substitute for sleep. Subpart A—General Provisions If fatigue or drowsiness persists or con- tinues to recur, consult a’’ (select one § 341.1 Scope. of the following: ‘‘physician’’ or ‘‘doc- tor’’). (a) An over-the-counter cold, cough, (3) ‘‘Do not give to children under 12 allergy, bronchodilator, or anti- years of age.’’ asthmatic drug product in a form suit- (d) Directions.
    [Show full text]
  • Desoxyn (Methamphetamine Hydrochloride Tablets, USP)
    ® Desoxyn (methamphetamine hydrochloride tablets, USP) Rx only METHAMPHETAMINE HAS A HIGH POTENTIAL FOR ABUSE. IT SHOULD THUS BE TRIED ONLY IN WEIGHT REDUCTION PROGRAMS FOR PATIENTS IN WHOM ALTERNATIVE THERAPY HAS BEEN INEFFECTIVE. ADMINISTRATION OF METHAMPHETAMINE FOR PROLONGED PERIODS OF TIME IN OBESITY MAY LEAD TO DRUG DEPENDENCE AND MUST BE AVOIDED. PARTICULAR ATTENTION SHOULD BE PAID TO THE POSSIBILITY OF SUBJECTS OBTAINING METHAMPHETAMINE FOR NON-THERAPEUTIC USE OR DISTRIBUTION TO OTHERS, AND THE DRUG SHOULD BE PRESCRIBED OR DISPENSED SPARINGLY. MISUSE OF METHAMPHETAMINE MAY CAUSE SUDDEN DEATH AND SERIOUS CARDIOVASCULAR ADVERSE EVENTS. DESCRIPTION DESOXYN® (methamphetamine hydrochloride tablets, USP), chemically known as (S)-N,α-dimethylbenzeneethanamine hydrochloride, is a member of the amphetamine group of sympathomimetic amines. It has the following structural formula: DESOXYN tablets contain 5 mg of methamphetamine hydrochloride for oral administration. Inactive Ingredients: Corn starch, lactose, sodium paraminobenzoate, stearic acid and talc. CLINICAL PHARMACOLOGY Methamphetamine is a sympathomimetic amine with CNS stimulant activity. Peripheral actions include elevation of systolic and diastolic blood pressures and weak bronchodilator and respiratory stimulant action. Drugs of this class used in obesity are commonly known as “anorectics” or “anorexigenics”. It has not been established, however, that the action of such drugs in treating obesity is primarily one of appetite suppression. Other central nervous system actions, or metabolic effects, may be involved, for example. Reference ID: 3734642 Adult obese subjects instructed in dietary management and treated with “anorectic” drugs, lose more weight on the average than those treated with placebo and diet, as determined in relatively short-term clinical trials. The magnitude of increased weight loss of drug-treated patients over placebo-treated patients is only a fraction of a pound a week.
    [Show full text]
  • Bronchodilator Therapy in Mechanically Ventilated Patients: Patient Selection and Clinical Outcomes
    Editorials Bronchodilator Therapy in Mechanically Ventilated Patients: Patient Selection and Clinical Outcomes Bronchodilators are among the most commonly em- clinical outcomes did not improve with bronchodilator ther- ployed drugs in the intensive care unit. Inhaled broncho- apy. At the same time, bronchodilator treatment was safe and dilator therapy is preferred in modern practice because of was associated with a modest increase in the cost of treat- many advantages over systemic therapy.1 In patients with ment.11 This study is the first to address clinical outcomes airflow obstruction, inhaled bronchodilators improve with bronchodilator therapy in mechanically ventilated pa- wheezing2 and hemodynamics3 and reduce airway resis- tients. tance and intrinsic positive end-expiratory pressure.4,5 Only a few investigators have examined the role of bron- Bronchodilators also reduce the work of breathing,6 and chodilators in patients with no previous evidence of airflow they could reduce the sensation of dyspnea while improv- obstruction. Gay and colleagues found a reduction in airway ing patient-ventilator interaction. In addition, bronchodi- resistance among 13 mechanically ventilated patients, includ- lators could facilitate weaning in patients with limited car- ing those with and without airflow obstruction.12 Other work- 6 ␤ diopulmonary reserve. Combining 2 adrenergic and anti- ers have noted a reduction in airway resistance in patients cholinergic bronchodilators has a greater effect than therapy with acute respiratory distress syndrome.13,14 In such patients with either agent alone.7 bronchodilators not only reduce airway resistance, they also Generally, use of inhaled bronchodilators in mechani- enhance mucociliary clearance of secretions,15 and could in- cally ventilated patients is quite safe.
    [Show full text]
  • Global Strategy for Asthma Management and Prevention, 2019. Available From
    DISTRIBUTE OR COPY NOT DO MATERIAL- COPYRIGHTED ASTHMA MANAGEMENT AND PREVENTION GLOBAL STRATEGY FOR Updated 2019 9 Global Strategy for Asthma Management and Prevention (2019 update) DISTRIBUTE OR COPY NOT DO The reader acknowledges that this reportMATERIAL- is intended as an evidence-based asthma management strategy, for the use of health professionals and policy-makers. It is based, to the best of our knowledge, on current best evidence and medical knowledge and practice at the date of publication. When assessing and treating patients, health professionals are strongly advised to use their own professional judgment, and to take into account local or national regulations and guidelines. GINA cannot be held liable or responsible for inappropriate healthcare associated with the use of this document, including any use which is not in accordance with applicable local or national regulations or COPYRIGHTEDguidelines. This document should be cited as: Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2019. Available from: www.ginasthma.org 1 Table of contents Tables and figures ............................................................................................................................................................... 5 Preface ................................................................................................................................................................................. 7 Members of GINA committees (2018) ................................................................................................................................
    [Show full text]
  • Lung Volume Kit Be-Lungkit
    LUNG VOLUME KIT BE-LUNGKIT Lung Volume is a broad term that actually refers to several different respiratory measurements: Tidal Volume - volume of air that is exhaled when breathing out normally. Expiratory Reserve - volume of air that that can still be exhaled after having breathed out normally. Inspiratory Reserve - additional volume of air that is available for strenuous activity. This is the volume of air that can still enter your lungs after taking a normal breath. Vital Capacity - total useable volume of air. Residual Volume - unusable volume of air. (Residual volume cannot be measured with this kit.) Assembly You can measure the lung volumes of an individual using this kit. To assemble it, please follow these instructions: 1. Insert the mouthpiece halfway through the opening of the volume bag. Secure the mouthpiece with the rubber bands. 2. While sitting, hold the bag on your knee and press a paper towel against it to force the air out of the bag. Start with the sealed end and push the air out toward the mouthpiece. Measure Tidal Volume 1. Wipe the mouthpiece with a cotton ball dipped in alcohol to clean it. 2. Take a normal breath in, hold your nose and take a normal breath out into the lung volume bag mouthpiece. Slide a paper towel along the bag to push all the air to the lower end and measure the volume of air it contains. (The bag has liter and 1/10 liter graduations.) Record this as tidal volume. 3. Remove all the air from the lung volume bag by sliding the paper towel along its length.
    [Show full text]
  • Effects of Intrapulmonary Percussive Ventilation on Airway Mucus Clearance: a Bench Model 11/2/17, 722 AM
    Effects of intrapulmonary percussive ventilation on airway mucus clearance: A bench model 11/2/17, 7'22 AM World J Crit Care Med. 2017 Aug 4; 6(3): 164–171. PMCID: PMC5547430 Published online 2017 Aug 4. doi: 10.5492/wjccm.v6.i3.164 Effects of intrapulmonary percussive ventilation on airway mucus clearance: A bench model Lorena Fernandez-Restrepo, Lauren Shaffer, Bravein Amalakuhan, Marcos I Restrepo, Jay Peters, and Ruben Restrepo Lorena Fernandez-Restrepo, Lauren Shaffer, Bravein Amalakuhan, Marcos I Restrepo, Jay Peters, Ruben Restrepo, Division of Pediatric Critical Care, Division of Pulmonary and Critical Care, and Department of Respiratory Care, University of Texas Health Science Center and the South Texas Veterans Health Care System, San Antonio, TX 78240, United States Author contributions: All authors contributed equally to the literature search, data collection, study design and analysis, manuscript preparation and final review. Correspondence to: Dr. Bravein Amalakuhan, MD, Division of Pediatric Critical Care, Division of Pulmonary and Critical Care, and Department of Respiratory Care, University of Texas Health Science Center and the South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, TX 78240, United States. [email protected] Telephone: +1-210-5675792 Fax: +1-210-9493006 Received 2017 May 7; Revised 2017 Jun 1; Accepted 2017 Jun 30. Copyright ©The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved. Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.
    [Show full text]