Morphological Stasis in the Eurytemora Affinis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida)
Taxonomic Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler and Kenneth A. Krieger National Center for Water Quality Research Heidelberg University Tiffin, Ohio, USA 44883 August 2012 Atlas of the Copepods, (Class Crustacea: Subclass Copepoda) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio Acknowledgments The authors are grateful for the funding for this project provided by Dr. David Klarer, Old Woman Creek National Estuarine Research Reserve. We appreciate the critical reviews of a draft of this atlas provided by David Klarer and Dr. Janet Reid. This work was funded under contract to Heidelberg University by the Ohio Department of Natural Resources. This publication was supported in part by Grant Number H50/CCH524266 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Centers for Disease Control and Prevention. The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by Section 315 of the Coastal Zone Management Act, as amended. Additional information about the system can be obtained from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 1305 East West Highway – N/ORM5, Silver Spring, MD 20910. Financial support for this publication was provided by a grant under the Federal Coastal Zone Management Act, administered by the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, Silver Spring, MD. -
Detection of Cryptic Species Xa9846584
DETECTION OF CRYPTIC SPECIES XA9846584 A.F. COCKBURN, T. JENSEN, J.A. SEAWRIGHT United States Department of Agriculture, Agricultural Research Service, Medical and Veterinary Entomology Research Laboratory, Gainesville, Florida, USA Abstract Morphologically similar cryptic species are common in insects. In Anopheles mosquitoes, most morphologically described species are complexes of cryptic species. Cryptic species are of great practical importance for two reasons: first, one or more species of the complex might not be a pest and control efforts directed at the complex as a whole would therefore be partly wasted; and second, genetic (and perhaps biological) control strategies directed against one species of the complex would not affect other species of the complex. At least one SIT effort has failed because the released sterile insects were of a different species and therefore did not mate with the wild insects being targeted. We use a multidisciplinary approach for detection of cryptic species complexes, focusing first on identifying variability in wild populations using RFLPs of mitochondrial and ribosomal RNA genes (mtDNA and rDNA); followed by confirmation using a variety of other techniques. For rapid identification of wild individuals of field collections, we use a DNA dot blot assay. DNA probes can be isolated by differential screening, however we are currently focusing on the sequencing of the rDNA extragenic spacers. These regions are repeated several hundred times per genome in mosquitoes and evolve rapidly. Molecular drive tends to keep the individual genes homogeneous within a species. 1. INTRODUCTION Surprisingly, the problem of cryptic species has not received adequate attention in pest control. Two recent examples of important pests that are cryptic species are the silverleaf whitefly (originally thought to be the sweet potato whitefly), which has caused enormous economic damage in the US in the last few years, and was not described as a separate species until last year [1]; the fall armyworm, which was recently described as two species [2]. -
Local Adaptation Fuels Cryptic Speciation in Terrestrial Annelids’
bioRxiv preprint doi: https://doi.org/10.1101/872309; this version posted December 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: ‘Local adaptation fuels cryptic speciation in terrestrial annelids’ Running title: Local adaptation in cryptic terrestrial annelids Daniel Fernández Marchán1,2*, Marta Novo1, Nuria Sánchez1, Jorge Domínguez2, Darío J. Díaz Cosín1, Rosa Fernández3* 1 Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain. 2 Current address: Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, E-36310, Spain 3 Animal Biodiversity and Evolution Program, Institute of Evolutionary Biology (CSIC- UPF), Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain. * Corresponding authors: [email protected], [email protected] Abstract bioRxiv preprint doi: https://doi.org/10.1101/872309; this version posted December 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Uncovering the genetic and evolutionary basis of cryptic speciation is a major focus of evolutionary biology. Next Generation Sequencing (NGS) allows the identification of genome-wide local adaptation signatures, but has rarely been applied to cryptic complexes - particularly in the soil milieu - as is the case with integrative taxonomy. The earthworm genus Carpetania, comprising six previously suggested putative cryptic lineages, is a promising model to study the evolutionary phenomena shaping cryptic speciation in soil-dwelling lineages. Genotyping-By-Sequencing (GBS) was used to provide genome-wide information about genetic variability between seventeen populations, and geometric morphometrics analyses of genital chaetae were performed to investigate unexplored cryptic morphological evolution. -
(Danube-Drava National Park, Hungary): Rare and Alien Species
Opusc. Zool. Budapest, 2015, 46(2): 183–197 Microcrustacean diversity in the Gemenc-Béda-Karapancsa Floodplains (Danube-Drava National Park, Hungary): rare and alien species A. KISS, E. ÁGOSTON-SZABÓ, M. DINKA & Á. BERCZIK Anita Kiss, Edit Ágoston-Szabó, Mária Dinka & Árpád Berczik, Centre for Ecological Research of HAS Danube Research Institute, H-1113, Budapest, Karolina út 29. Hungary, [email protected], agoston- [email protected], [email protected], [email protected] Abstract. The composition of microcrustacean fauna was investigated in different water bodies of Gemenc-Béda-Karapancsa Floodplains with special regard to the distribution of alien and rare taxa. Between 2002 and 2013 101 taxa (57 Cladocera, 27 Copepoda, 17 Ostracoda,) were recorded from the water bodies with differing degrees of connectivity to the main river (eu-, para-, plesio- and paleopotamon). 18 species are reported for the first time from the area of Danube-Drava National Park and among them Daphnia ambigua, Pleuroxus denticulatus and Eurytemora velox are allochtonous species in Hungary. E. velox and P. denticulatus have persistent populations in the area, but their contribution to floodplain biodiversity is still not significant. Daphnia ambigua has only local and temporal populations and its presence is confined to the disconnected side of the floodplain. The abundance of thirty species was very low and their distribution pattern in the floodplain is different. The microcrustacean diversity of the plesiopotamal side arms is remarkable, particularly in the Nyéki-Holt-Danube. Keywords. Alien species, Cladocera, Copepoda, Ostracoda, species richness, Gemenc-Béda-Karapancsa Floodplains. INTRODUCTION form an UNESCO Biosphere Reserve. -
Species of the Genera Temora and Tortanus from Indonesian Coastal Waters
Berk. Penel. Hayati: 14 (125–135), 2009 SPECIES OF THE GENERA TEMORA AND TORTANUS FROM INDONESIAN COASTAL WATERS Mulyadi Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences Jl. Raya Bogor Km. 46 Cibinong 16911, Indonesia E-mail: [email protected] ABSTRACT During taxonomic studies on the pelagic copepods of Indonesian waters, three species of Temora, T. discaudata Giesbrecht, 1882, T. discaudata n. var. and T. turbinata (Dana, 1849), and three species of Tortanus, T. (Tortanus) barbatus, T. (Tortanus) forcipatus and T. (Tortanus) gracilis were described and figured on specimens collected from 8 sites along Indonesian coastal waters. Descriptions, measurements and figures are given for those species, along with a review of their distribution over the world oceans, and with taxonomic remarks, ecological notes, and restricted synonymies. Key words: taxonomy, Temora, Tortanus, Indonesian waters INTRODUCTION MATERIALS AND METHODS Family Temoridae Giesbrecht, 1893 comprises of The present plankton samples were obtained from 8 35 species from four genera, Epischura Forbes, 1882; sites during 1994–2007 (Figure 1). Sampling was done Eurytemora Giesbrecht, 1881; Heterocope Sars, 1863; and by surface and vertical hauls (10 m and 20 m depth to the Temora Baird, 1850. The genus Temora presently comprises surface) with plankton net (0.33 mm mesh size, 0.45 m of five species (Boxshall & Halsey, 2004). Among them two mouth diameter). The samples were fixed and preserved species, T. discaudata Giesbrecht, 1882 and T. turbinata in 5% buffered formaldehyde/sea water solution. As far (Dana, 1849) have been reported from Indonesian waters as possible, the specimens were identified to species level. -
Kenai National Wildlife Refuge Species List, Version 2018-07-24
Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying -
Conference Booklet.Pdf
International Scientific Conference Book of Abstracts Use of molecular-genetic and morphological methods to study the taxonomy, phylogeny, biogeography, and ecology ofEurytemora species International Scientific Conference May 13–17, 2019. Saint Petersburg, Russia Мероприятие проводится при финансовой поддержке The eventРоссийского is sponsored фонда by фундаментальныхRussian Foundation исследований for Basic Research projectпроект № 19-04-2004819-04-20048 Programme Monday, May 13. Arrival and Welcome Party Tuesday, May 14 10.00 Registration 11.00 Opening ceremony Speech by the Director of ZIN RAS Sergei Sinev Session 1: Phylogeny (Chairs: Carol Eunmi Lee, Victor Alekseev) 11.20 Carol Eunmi Lee. “Species” concepts in the Eurytemora affinis species complex 12.00 Coffee break 12.20 Vjacheslav Ivanenko, Korzhavina O.A., Nikinin M.A. Integrative taxonomy and phylogeny of copepods 13.00 Natalia I. Abramson. Genome — wide association studies: new challenge in ecological and evolutionary studies 13.40 Lunch 14.40 Tour of the Zoological Museum 15.30 Natalia Sukhikh, Carol Eunmi Lee, Ekaterina Abramova, Vincent Castric, Elena Fefilova, Sami Souissi, Victor Alekseev. A comparative analysis of genetic differentiation of Eurytemora species using CO1, ITS and 18SrRNA genes with an emphasis on E.affinis species complex 15.50 Imran Parvez, Md. Ashraful Alam. Phylogenetic relationships of cyprinid fishes (Cyprinidae) inferred from morphological traits and mitochondrial gene cytochrome b in Bangladesh 16.10 Coffee break Session 2: Biogeography (Chairs: Jiang-Shiou Hwang, Elena Kochanova) 16.30 Victor Alekseev. Cosmopolite species versus cryptic species two paradigms in copepod biogeography in molecular-genetic epoch and the future of morphological taxonomy 2 17.10 Elena Kochanova, Natalia Sukhikh, Victor Alekseev. -
Temora Baird, 1850
Temora Baird, 1850 Iole Di Capua Leaflet No. 195 I April 2021 ICES IDENTIFICATION LEAFLETS FOR PLANKTON FICHES D’IDENTIFICATION DU ZOOPLANCTON ICES INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA CIEM CONSEIL INTERNATIONAL POUR L’EXPLORATION DE LA MER International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Series editor: Antonina dos Santos and Lidia Yebra Prepared under the auspices of the ICES Working Group on Zooplankton Ecology (WGZE) This leaflet has undergone a formal external peer-review process Recommended format for purpose of citation: Di Capua, I. 2021. Temora Baird, 1850. ICES Identification Leaflets for Plankton No. 195. 17 pp. http://doi.org/10.17895/ices.pub.7719 ISBN number: 978-87-7482-580-7 ISSN number: 2707-675X Cover Image: Inês M. Dias and Lígia F. de Sousa for ICES ID Plankton Leaflets This document has been produced under the auspices of an ICES Expert Group. The contents therein do not necessarily represent the view of the Council. © 2021 International Council for the Exploration of the Sea. This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For citation of datasets or conditions for use of data to be included in other databases, please refer to ICES data policy. i | ICES Identification Leaflets for Plankton 195 Contents 1 Summary ......................................................................................................................... 1 2 Introduction .................................................................................................................... 1 3 Distribution .................................................................................................................... -
The Evolution of Ancestral and Species-Specific Adaptations in Snowfinches at the Qinghai–Tibet Plateau
The evolution of ancestral and species-specific adaptations in snowfinches at the Qinghai–Tibet Plateau Yanhua Qua,1,2, Chunhai Chenb,1, Xiumin Chena,1, Yan Haoa,c,1, Huishang Shea,c, Mengxia Wanga,c, Per G. P. Ericsond, Haiyan Lina, Tianlong Caia, Gang Songa, Chenxi Jiaa, Chunyan Chena, Hailin Zhangb, Jiang Lib, Liping Liangb, Tianyu Wub, Jinyang Zhaob, Qiang Gaob, Guojie Zhange,f,g,h, Weiwei Zhaia,g, Chi Zhangb,2, Yong E. Zhanga,c,g,i,2, and Fumin Leia,c,g,2 aKey Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China; bBGI Genomics, BGI-Shenzhen, 518084 Shenzhen, China; cCollege of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China; dDepartment of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden; eBGI-Shenzhen, 518083 Shenzhen, China; fState Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223 Kunming, China; gCenter for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, China; hSection for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; and iChinese Institute for Brain Research, 102206 Beijing, China Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved February 24, 2021 (received for review June 16, 2020) Species in a shared environment tend to evolve similar adapta- one of the few avian clades that have experienced an “in situ” tions under the influence of their phylogenetic context. Using radiation in extreme high-elevation environments, i.e., higher snowfinches, a monophyletic group of passerine birds (Passer- than 3,500 m above sea level (m a.s.l.) (17, 18). -
Production of the Copepod Eurytemora Affinis in the Bristol Channel
Vol. 7: 21-31, 1982 MARINE ECOLOGY - PROGRESS SERIES Published January 1 Mar. Ecol. Prog. Ser. I I Production of the Copepod Eurytemora affinis in the Bristol Channel P. H. Burkill and T. F. Kendall Natural Environment Research Council, Institute for Marine Environmental Research. Prospect Place, Plymouth PL1 3DH. United Kingdom ABSTRACT: A shipboard method for determining development rates of copepods under prevailing conditions of food and temperature in situ is described. Abundance and development rates of Eurytemora affinis were determined at a site towards the seaward edge of its range in the Bristol Channel during 3 seasons of the year. Production of E. affinisvaried between 0.05 and 0.61 pg dry weight m-3 d-' in January and May when the numbers of this copepod were, respectively, 1.42 and 4.83 rnJ. Population P/B quotients varied between 0.03 and 0.13 d-' giving an annual P/B of 33 yr-l. For the later developmental stages, the proportion of animals moulting daily varied between 4 % and 33 %, depending on stage and season. The results are discussed In relation to the factors influencing population production at this site in the estuary; it is suggested that food and predation pressures may influence production more than salinity or estuarine flushing. When compared with published rates for this species fed ad-libiturn on algae in the laboratory, development rates of E. affinisin the field were only 10 %-82 %, suggesting that extrapolation of laboratory results to the field to estimated production should only be carried out with care. INTRODUCTION one order of magnitude higher than those which might be expected in the open sea (Harris and Paffenhofer, During the past half century, many efforts were 1976a). -
AGUIDE to Frle DEVELOPMENTAL STAGES of COMMON COASTAL
A GUIDE TO frlE DEVELOPMENTAL STAGES OF COMMON COASTAL, GeORGES BANK AND GULF OF MAINE COPEPODS BY Janet A. Murphy and Rosalind E. Cohen National Marine Fisheries Service Northeast Fisheries Center Woods Hole Laboratory Woods Hole, MA 02543 Laboratory Reference No. 78-53 Table of Contents List of Plates i,,;i,i;i Introduction '. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1 Acarti a cl aus; .. 2 Aca rtia ton sa .. 3 Aca rtia danae .. 4 Acartia long; rem; s co e"" 5 Aetidi us artllatus .. 6 A1teutha depr-e-s-s-a· .. 7 Calanu5 finmarchicus .............•............................ 8 Calanus helgolandicus ~ 9 Calanus hyperboreus 10 Calanus tenuicornis .......................•................... 11 Cal oca 1anus pavo .....................•....•....•.............. 12 Candaci a armata Ii II .. .. .. .. .. .. .. .. .. .. 13 Centropages bradyi............................................ 14 Centropages hama tus .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 15 ~ Centropages typi cus " .. " 0 16 Clausocalanus arcuicornis ..............................•..•... 17 Clytemnestra rostra~ta ................................•.•........ 18 Corycaeus speciosus........................................... 19 Eucalanus elongatu5 20 Euchaeta mar; na " . 21 Euchaeta norveg; ca III co .. 22 Euchirel1a rostrata . 23 Eurytemora ameri cana .......................................•.. 24 Eurytemora herdmani , . 25 Eurytemora hi rundoi des . 26 Halithalestris croni ..................•...................... -
S41598-020-66730-2.Pdf
www.nature.com/scientificreports OPEN Passenger for millenniums: association between stenothermic microcrustacean and suctorian epibiont - the case of Eurytemora lacustris and Tokophyra sp Łukasz Sługocki1,2 ✉ , Maciej Karpowicz3, Agnieszka Kaczmarczyk-Ziemba4, Joanna Kozłowska3, Ingvar Spikkeland5 & Jens Petter Nilssen6 Epibionts often colonize the exoskeleton of crustaceans, which sometimes results in the development of a long-term relationship between them. Our present work confrmed that a specifc epibiont is closely associated with the pelagic calanoid copepod Eurytemora lacustris, regardless of the region, which suggests a preserved interaction between these species. Molecular analyses revealed that the epibiont belongs to the genus Tokophrya. We also found that the level of basibiont colonization is related to its size and identifed that the most intensely inhabited body parts are those located near the center of the copepod body. We hypothesize that the relationship between Eurytemora (basibiont) and Tokophrya (epibiont) was established during the Quaternary period, following which these two populations were fragmented into lakes where they survived in close interaction. In addition, we suppose that the close relationship between the two species indicates the coevolution of stenotherms. Further studies on the interactions between Eurytemora lacustris and Tokophrya are required in order to gain insight into the long-term relationship between the copepods and the epibionts. Protozoan epibionts have ofen been reported to colonize the exoskeleton of crustaceans1,2. In addition, epibi- onts can afect the host communities by modulating the interaction between a host and the environment3. Te colonization of a basibiont by an epibiont also leads to a signifcant change in the body surface of the former.