THE MAGNETIC PROPERTIES of METATORBERNITE JOSE M. DIAZ Depaftonento De Fisica, Universidad Nacional, Bogota, Colombia HORACIO A

Total Page:16

File Type:pdf, Size:1020Kb

THE MAGNETIC PROPERTIES of METATORBERNITE JOSE M. DIAZ Depaftonento De Fisica, Universidad Nacional, Bogota, Colombia HORACIO A Canad.ion Mineralo gist Vol.23, pp. 643-646(198s) THE MAGNETIC PROPERTIES OF METATORBERNITE JOSE M. DIAZ Depaftonentode Fisica,Universidad Nacional, Bogota, Colombia HORACIO A. FARACH AND CHARLES P. POOLE, JR. Departmentof Physicsand Astronomy, Universityof South Carolina,Columbio, South Carolina29208, U.S.A. AssrRAcr with the chemical formula Cu(UOTPO)r.8HrO and the structure sketchedon Figure 1, crystallizesin the The electron-spin-resonancespectra arising from the tetragonal syslem, space group PL/nmm (Doo7), IICu in metatorbernite exhibit strongly anisotropiq g- with two formula units per cell. Its crystal structure factors and linewidths. The anisotropy is explarnedin terms (Frondelet al. 1956,Ross & Evans1964, 1965, Ross of the magnetic interactions, which are stong within the et al. 1964, Makarov & Tobelko 1960) has IICu planes containing the copper atoms and waker between enclosedin a squareplanar configuration, wilh HrO planes. the qroleculesproviding very short Cu-O distances(1.91 presenceof Keywords: metatorbernite,g-factor anisotropy, electron- A). these qhort distancesindicate the spin resonance,magnetic interactions. very strong covalent bonds bdtweenthe copper and oxygen atoms. We selectedfor study large, well-formed crystals SoMNa.a,rns of metatorbernite on display at the McKissick . Museum of The University of South Carolina. They Les spectresde r6sonnancede spin dlectronique prove- weretaken from the Wisemanmine in SprucePine' IICu nant du de la mdtatorbernite se caract€risentpar des Mitchell Co., North Carolina in June 1932. facteurs-g et des largeurs de raie fortement anisofiopes. structuresoftorbernite and metatorberniteare par The L'anisotropie s'explique les interactions magudtiques: mainly in the number of water les plans qui les de very similar, differing fortes dans contiennent atomes cuivre, number of water faible entre ces plans. molecules. In the latter the moleculesvaries between8 and 12. In order to deter- (Traduit par la R6daction) mine whether our samplesare torbernite or metator- bernite, we carried out a X-ray-diffraction exami- Motsdds: m&atorbemite, facteur-ganisotrope, r€sonnance nation (powder pattern). The resultswere compared de spin 6lectronique,interactions magn6tiques. with the data of Frondel et al, (1956)and Ross e/ ql. (1964). INTRODUCTIoN ESR Rnsulrs Metatorbernite contains uranium, copper and phosphorus. The copper is divalent and hence para- In this section we present the linewidth and magnetic. This property means that metatorbernite gyromagnetic ratio obtained at room temperature can be studied by electron-spin resonance (ESR). In with a Varian Model 4502ESR spectrometeroper- this article we present the results of such a study and ating at a frequencyof 92.2'0MHzusing a power level interpret these in terms of the crystal structure. The of 250 mW with 100 kHz modulation. green color of this mineral arises mainly from the A typical ESR spectrum for metatorbernite (Diaz presence of divalent copper. l98l) is presentedin Figure 2. The peak-to-peak linewidth dependson the orientation of the crystal, and varies between0.02 and 0.034 Tesla. Such an Srnucrunn aNt X-Ray Rssurrs effect is not unexpectedfor a layered structure of this type (Cheung& Soos1978, Huang & Soos1974). Metatorberiite belongs to the torbernite group of The calculated linewidth can be estimated from the minerals, which is characterized by the formula expressionof Anderson & Weiss (1953): A,+ (JO/YO)2.aH2O), where,4 represents a cation andXis arsenic or phosphorus. This group contains AH=2.3 G Fd I S(S+ l) l% x lo-e (l) phosphates and arsenates of uranium arranged in a laminar structure AOfiOq)"u. Metatorbernite, where 8 :9.27 x t0-24JlTeslais the Bohr magne- 643 644 THE CANADIAN MINERALOGIST which is significantly larger than the experimental 000 ~ 000 ~ values. This fact, together with the angular depen- dence of the linewidth and the layered structure of Z/e ~ 000 ~ 00 the mineral, suggests that we are dealing with a two- dimensional magnetic system, as will be explained 3/4 .0 .~.o in the next section. 0" The g factor is anisotropic and varies with the u orientation of the crY.$tal,between the values of 2.06 p for g perpendicular to the c axis and 2.38 for g along 1/2 oO~ ~ @ the c axis, as shown on Figure 3. Values of g in this o~o 0" o 0 0, range are typical of those reported by various inves- H20 tigators for divalent copper (Diaz et al. 1971). A 1/4 Cu crystal-field-theory calculation (Poole & Farach 1972) made by us gave gn 2.16 and g.L = 2.03, ~ ~ ~ 0, = ~@ which differ considerably from the respective 000 ~ o 00 experimentally observed limiting values of 2.38 and @ 000 ~ 000 2.06. This discrepancy may be explained by the I r I I I I strongly covalent character of the copper-oxygen o 1/2 3/2 2 bonds. y/b FIG. 1. Sketch of the locations of the various atoms in the crystal structure of metatorbernite. Projected in the yz LINEWIDTHS OF Two-DIMENSIONAL plane, the copper atoms in the interplanar layers are MAGNETIC SYSTEMS shown located within distorted octahedra formed by square planar array of oxygen atoms from water As mentioned above, each lICU is centred inside molecules in the xy plane and oxygen above and below a square of water molecules with very short Cu-o along the z direction. Two unit cells are shown. distances. These distances are so short that the copper-oxygen bonds are strongly covalent and the water molecules are highly polarized. The uranium atoms lie along the c axis directly ton, g = 2.2, S = 'h and p is the density of above and below the copper atoms, as indicated on spins/m3. Estimating p from the molecular weight Figure 1. As a result, there are nearby UOz groups (938) and the mass density 3.70 g/cm3, that provide possible paths for superexchange inter- actions between the copper atoms. This causes the lines to be narrowed in accordance with the follow- LlH= 96 x 10-4Tesla (2) ing expression (3) where J is the exchange-interaction frequency and LlHois the linewidth in the absence of exchange nar- rowing. More importantly, we can also see from Figure 1 of Ross et al. (1964) that the copper atoms lie in planes with alternate interplanar separations of 6.58 and 10.73 A. The four nearest-neighbor copper ~ atoms all lie in the same plane. This causes the dipo- 25 G lar and exchange interaction to be dominated by the planar structure. Each copper ion is square planar co-ordinated with four oxygen atoms, thereby providing paths for the superexchange interactions, which narrow the lines. It therefore seems reasona- FIG. 2. Electron-spin-resonance spectrum produced by the ble for the magnetic interactions to resemble those lICu atoms in metatorbernite, where 10 = 10-4 T. of a two-dimensional spin system. MAGNETIC PROPERTIES OF METATORBERNITE 645 2.40 . 2.36 . 2.32 . 2.28 9 2.24 . 2.20 . 2.16 . 2.12 . 2.08 . 2.04 0 10 20 30 40 50 60 70 80 90 100 110 ANGLE,DEGREE g FIG. 3. Dependence of the factor of IICu in metatorbernite on the angle if; relative to the c axis. Following Cheung & Soos (1978) we can make use 40 of the following expression for the linewidth of a 38 two-dimensional system 36 34 . CJJ- f.H(¥"T) = 32 . peT) (3 cos2¥,_l)2_Q(T) cos2¥,+ R(T) (4) CJJ :J 30 . <t 28 . is the angle between the direction of the where ¥' ~~26 . external magnetic field and the plane containing the :J: 24 IICUatoms, and the temperature-dependent coeffi- <3 . cients peT) and Q(T) are determined experimentally. 22 . At ambient temperature we evaluated these coeffi- 20 . cients from measurements made at three different 18 angles, ~nd this provided the following expression .. 16 0 10 20 30 40 50 60 70 80 90 100 110 ANGLE,DEGREE f.H = [-5.94 (3 cos2¥,-1)2 + 20.12 cos2¥, + 25.64] x 10-4 (5) FIG. 4. Dependence of the linewidth AH or distance between the two peaks of the line ESR spectrum of IICu in metatorbernite on the angle if;relative to the c This expression provided a good fit to the axis, where 10 10-4 T. experimentally measured angular variation of the = linewidth, shown on Figure 4; the experimental error in the measured linewidths is about 5070. nar distances. This provides the possibility that the copper atoms form a two-dimension magnetic sys- DISCUSSION tem that is exchanged-narrowed within the planes. Our experimental results demonstrate that this is the The structure of metatorbernite shows that the case. The narrowing of a line due to the exchange IICU atoms are located fairly close together in interaction has been. observed and discussed by planes that are separated by relatively large interpla- Huang & Soos (1974). 646 THE CANADIAN MINERALOGIST AcKNowLEDGEIvtENTS Huaxc, T.Z. & Soos,Z.G. (1974):Interchain exchange in nearly one-dimensionalCu(NH)aftCla. Phys, Two of us (HAF and CPP) thank the National Rev.R9, 49814984. Grant ISP-80-11451,for par- ScienceFoundation, Mexer.ov,E.S. & Tonsr,ro,K.I. (1960):The crystal tial support of this work. structure of metatorbernite. Sov. Phys. Dokl. 5, 221-223. Poor-p,C.P. & Faneqr, I{.A. (1972):The Theoryof REFERENcES MagneticResonazce. Wiley-Interscience, New York. ANpsRsor.r,P.W. & Wuss,P.R. (1953):Exchange nar- Ross.M. & EveNs,H.T., Jn.(1964): Studies of the tor- rowingin paramagneticresonance. Rev. Mod, Phys. bernite minerals I. The crystal structure of aber- 25,269-n6. nathyite and the structurally related compounds NH4(UO2AsOf.3H2O and K(HTOXUO2ASO)2. CsruNc, T.T.P. & Soos,Z.G. (1978):Theory of 6H"O. Amer. Mineral. 49, 1578-1602.
Recommended publications
  • Significance of Mineralogy in the Development of Flowsheets for Processing Uranium Ores
    JfipwK LEACHING TIME REAGENTS TEMPERATURE FLOCCULANT CLARITY AREA COUNTER CURRENT DECANTATION It 21 21 J^^LJt TECHNICAL REPORTS SERIES No.19 6 Significance of Mineralogy in the Development of Flowsheets for Processing Uranium Ores \W# INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1980 SIGNIFICANCE OF MINERALOGY IN THE DEVELOPMENT OF FLOWSHEETS FOR PROCESSING URANIUM ORES The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HOLY SEE PHILIPPINES ALBANIA HUNGARY POLAND ALGERIA ICELAND PORTUGAL ARGENTINA INDIA QATAR AUSTRALIA INDONESIA ROMANIA AUSTRIA IRAN SAUDI ARABIA BANGLADESH IRAQ SENEGAL BELGIUM IRELAND SIERRA LEONE BOLIVIA ISRAEL SINGAPORE BRAZIL ITALY SOUTH AFRICA BULGARIA IVORY COAST SPAIN BURMA JAMAICA SRI LANKA BYELORUSSIAN SOVIET JAPAN SUDAN SOCIALIST REPUBLIC JORDAN SWEDEN CANADA KENYA SWITZERLAND CHILE KOREA, REPUBLIC OF SYRIAN ARAB REPUBLIC COLOMBIA KUWAIT THAILAND COSTA RICA LEBANON TUNISIA CUBA LIBERIA TURKEY CYPRUS LIBYAN ARAB JAMAHIRIYA UGANDA CZECHOSLOVAKIA LIECHTENSTEIN UKRAINIAN SOVIET SOCIALIST DEMOCRATIC KAMPUCHEA LUXEMBOURG REPUBLIC DEMOCRATIC PEOPLE'S MADAGASCAR UNION OF SOVIET SOCIALIST REPUBLIC OF KOREA MALAYSIA REPUBLICS DENMARK MALI UNITED ARAB EMIRATES DOMINICAN REPUBLIC MAURITIUS UNITED KINGDOM OF GREAT ECUADOR MEXICO BRITAIN AND NORTHERN EGYPT MONACO IRELAND EL SALVADOR MONGOLIA UNITED REPUBLIC OF ETHIOPIA MOROCCO CAMEROON FINLAND NETHERLANDS UNITED REPUBLIC OF FRANCE NEW ZEALAND TANZANIA GABON NICARAGUA UNITED STATES OF AMERICA GERMAN DEMOCRATIC REPUBLIC NIGER URUGUAY GERMANY, FEDERAL REPUBLIC OF NIGERIA VENEZUELA GHANA NORWAY VIET NAM GREECE PAKISTAN YUGOSLAVIA GUATEMALA PANAMA ZAIRE HAITI PARAGUAY ZAMBIA PERU The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957.
    [Show full text]
  • Lord Hill Quarry Town: Stoneham, Ox Ford County Base Map: Cen Ter Lovell 7.5’ Quadran Gle Con Tour in Ter Val: 20 Feet
    Lord Hill Quarry Town: Stoneham, Ox ford County Base map: Cen ter Lovell 7.5’ quadran gle Con tour in ter val: 20 feet Type of de posit: Gran ite peg matite. strunzite, to paz, torbernite/metatorbernite, triphylite(?), triplite, uraninite, uranophane, vivian it e, zircon (var. cyrtolite). Col lect ing sta tus: Locat ed in the White Mountai n Nati onal Forest . No perm ission is needed to collec t miner als here. How- Com ments: Lord Hill is one of the fa vor ite col lect ing sites in ever, collec ting must be non com mercia l, done with hand tools, Maine, offer ing a va riety of miner als and White Mountai n scen - and not greatly disturb the mine area. ery. The best-known finds from this local ity in clude large crys- tals of white topaz, and smoky quartz crystal s encrust ed by many Min er als ob served: albit e, almandine (garnet) , autun- small phenakite crys tals. Most col lect ing ac tiv ity ap pears to ite/meta-autun ite, beraunite, bermanite, beryllonite, bertrandite, have oc curred in the larger of the two quarry pits, al though a ma- beryl, bi o tite, bis muth, bis muthi nite, bismutite, cas sit er ite, jor pocket contai n ing smoky quartz and fluorapatite crystal s was columbite, cryptomelane, damourite, elbaite (tour maline) , opened in the floor of the smaller pit in 1991. The pieces of topaz eosphorite, fluorapatite, fluo rite, gahnite, goethite com monly found here are disti n guished by their bluish-whi te (pseudomorphic after pyrit e), goyazite, heterosite, hureaulite, color (es pe cially when wet), sin gle cleav age di rec tion, and hydroxylapatite, hydroxyl-herderite, microcline, microlite, higher den sity than sim i lar-look ing peg ma tite min er als.
    [Show full text]
  • Uranium Mineralization at Lagoa Real, Ba-Brazil: the Role of Fluids in Its Genesis
    2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009 Associação Brasileira de Energia Nuclear - ABEN ISBN: 978-85-99141-03-8 URANIUM MINERALIZATION AT LAGOA REAL, BA-BRAZIL: THE ROLE OF FLUIDS IN ITS GENESIS Sônia Pinto Prates, José Marques Correia Neves and Kazuo Fuzikawa Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG) Av. Antonio Carlos 6627 – Campus UFMG - Pampulha 30270-901 Belo Horizonte, MG [email protected] ABSTRACT The Lagoa Real uranium province is situated in the central-south of Bahia state – Brazil and it is presently by far the most important and best known uranium occurrence in Brazil. Nowadays 34 anomalies are known in a 30 Km long and 5 km wide area. An open pit mine was open in Cachoeira Mine, in the north portion of the area, and it is the only uranium mine in operation in Brazil and even in South America as well. The uranium mineralization in the Lagoa Real uranium province occurs in metamorphic rocks named albitites, due to their albite content (over 70%). Uraninite is the main uranium mineral, followed by pechblende, uranophane, torbernite and other uranyl minerals. Uraninite occurs as tiny round and irregular crystals (20 a 30 μm) included or associated to mafic minerals, mainly pyroxene and garnet, and also to amphibole and biotite and sometimes to albite. Some secondary minerals such as, for instance, uranophane, torbernite and tyuyamunite are also found. The main albitites minerals from the Cachoeira mine (plagioclase, garnet, biotite, pyroxene, amphibole and titanite) were studied by means of Infrared Spectroscopy Techniques.
    [Show full text]
  • Iidentilica2tion and Occurrence of Uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
    IIdentilica2tion and occurrence of uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals From the Colorado Plateaus c By A. D. WEEKS and M. E. THOMPSON A CONTRIBUTION TO THE GEOLOGY OF URANIUM GEOLOGICAL S U R V E Y BULL E TIN 1009-B For jeld geologists and others having few laboratory facilities.- This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission. UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE- INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan. Director Reprint, 1957 For sale by the Superintendent of Documents, U. S. Government Printing Ofice Washington 25, D. C. - Price 25 cents (paper cover) CONTENTS Page 13 13 13 14 14 14 15 15 15 15 16 16 17 17 17 18 18 19 20 21 21 22 23 24 25 25 26 27 28 29 29 30 30 31 32 33 33 34 35 36 37 38 39 , 40 41 42 42 1v CONTENTS Page 46 47 48 49 50 50 51 52 53 54 54 55 56 56 57 58 58 59 62 TABLES TABLE1. Optical properties of uranium minerals ______________________ 44 2. List of mine and mining district names showing county and State________________________________________---------- 60 IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM THE COLORADO PLATEAUS By A. D. WEEKSand M. E. THOMPSON ABSTRACT This report, designed to make available to field geologists and others informa- tion obtained in recent investigations by the Geological Survey on identification and occurrence of uranium minerals of the Colorado Plateaus, contains descrip- tions of the physical properties, X-ray data, and in some instances results of chem- ical and spectrographic analysis of 48 uranium arid vanadium minerals.
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • Al~Hy and Dehydration of Torbernite
    326 The crystallog?.al~hy and dehydration of Torbernite. By A. F. HA~,~.IMOND, ~I.A., F.G.S. Assistant Curator, Museum of Practical Geology, London. [Read November 9, 1915.] I. CRYSTALLOGRAPHY. EASUREMENTS for torbernite have been given by numerous M observers; the results are, however, of rather early date, and althoug h the values for the ratio a:c are generally in fair agreement with the results here stated, the degree of accuracy of these measure- ments is not always indicated. Moreover, sevelml minor difficulties arise, add it has been suggested that some of the early descriptions refer to the allied species, zeunerite ; both species are optically uniaxial and possess almost the same axial ratios; they can, however, be dis- tinguished by means of their refractive indices. The ordinary index of all the specimens here described has been determined by the Becke method ; that for torbernite is 1.591, for the zeunerite from Schneeberg, approximately 1.62. A few torbernites possess a slightly higher index which may be due to the presence of zeunerite in isomorphous mixture, as is suggested by the presence of arsenic in some analyses. It has been possible to examine much of the original material described by L~vy in his catalogue of the Heuland-Turner Collection (3). ]3cfore the early measurements are discussed, an account will be given of measurements made on three well-crystallized specimens of torbernite, with the object of detelunining more closely the crystalline form of this mineral. The Axial Ratio of Torbernite. 3Tecimen No. 11 (fig. 1).--The locality of this specimen is not recorded.
    [Show full text]
  • UNITED STATES DEPARTMENT of the INTERIOR GEOLOGICAL SURVEY PRELIMINARY DEPOSIT-TYPE MAP of NORTHWESTERN MEXICO by Kenneth R
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY PRELIMINARY DEPOSIT-TYPE MAP OF NORTHWESTERN MEXICO By Kenneth R. Leonard U.S. Geological Survey Open-File Report 89-158 This report is preliminary and has not been reviewed for conformity with Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade, product, firm, or industry names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Menlo Park, CA 1989 Table of Contents Page Introduction..................................................................................................... i Explanation of Data Fields.......................................................................... i-vi Table 1 Size Categories for Deposits....................................................................... vii References.................................................................................................... viii-xx Site Descriptions........................................................................................... 1-330 Appendix I List of Deposits Sorted by Deposit Type.............................................. A-1 to A-22 Appendix n Site Name Index...................................................................................... B-1 to B-10 Plate 1 Distribution of Mineral Deposits in Northwestern Mexico Insets: Figure 1. Los Gavilanes Tungsten District Figure 2. El Antimonio District Figure 3. Magdalena District Figure 4. Cananea District Preliminary Deposit-Type Map of
    [Show full text]
  • Thermal Decomposition of Metatorbernite – a Controlled Rate Thermal Analysis Study
    Journal of Thermal Analysis and Calorimetry, Vol. 79 (2005) 721–725 THERMAL DECOMPOSITION OF METATORBERNITE – A CONTROLLED RATE THERMAL ANALYSIS STUDY R. L. Frost1*, J. Kristóf 2, M. L. Weier1, W. N. Martens1 and Erzsébet Horváth3 1Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia 2Department of Analytical Chemistry, University of Veszprém, 8201 Veszprém, P.O. Box 158, Hungary 3Department of Environmental Engineering and Chemical Technology, University of Veszprém, 8201 Veszprém, P.O. Box 158, Hungary The mineral metatorbernite, Cu[(UO2)2(PO4)]2·8H2O, has been studied using a combination of energy dispersive X-ray analysis, X-ray diffraction, dynamic and controlled rate thermal analysis techniques. X-ray diffraction shows that the starting material in the thermal decomposition is metatorbernite and the product of the thermal treatment is copper uranyl phosphate. Three steps are ob- served for the dehydration of metatorbernite. These occur at 138ºC with the loss of 1.5 moles of water, 155°C with the loss of 4.5 moles of water, 291°C with the loss of an additional 2 moles of water. These mass losses result in the formation of four phases namely meta(II)torbernite, meta(III)torbernite, meta(IV)torbernite and anhydrous hydrogen uranium copper pyrophosphate. The use of a combination of dynamic and controlled rate thermal analysis techniques enabled a definitive study of the thermal decompo- sition of metatorbernite. While the temperature ranges and the mass losses vary from author to author due to the different experi- mental conditions, the results of the CRTA analysis should be considered as standard data due to the quasi-equilibrium nature of the thermal decomposition process.
    [Show full text]
  • A Solid Solution Series Between Xenotime (Ytp04) and Chernovite (Ytaso0
    MINERALOGICAL MAGAZINE, JUNE I973, VOL. 39, 1'I'. I45--5I A solid solution series between xenotime (YtP04) and chernovite (YtAsO0 STEFAN GRAESER Department of Mineralogy, Natural History Museum, Basel, and Mineralogical Institute, University of Basel, Switzerland HANS SCHWANDER Mineralogical Institute, University of Basel HANS A. STALDER Natural History Museum, Bern, Switzerland "SUMMARY. The mineral chernovite, described as a new mineral from the Urals by Russian minera- logists in I967 (Goldin et aL, 1967), has been found at three different localities in mineral fissures in the Binnatal, Switzerland, and a little to the south, in Italy. The mineral occurs in greenish-yellow bipyramidal crystals up to about t mm. A detailed single-crystal study of several specimens showed that the lattice constants vary considerably on either side of those published for the original cherno- vite. The refractive indices, too, display some variation. Microprobe analyses of this material, and of xenotime specimens from the same region, revealed that there exists at least partial solution between chernovite and xenotime. The three chernovite samples have molar percentages of 63"z, 73'2, and 82.o % YtAsO4 (the Urals chernovite has about 95"2 %). These studies prove the existence of an fisomorphous series between xenotime and chernovite, at least in the As-rich portion. D U RI N G the summer of I966 the mineral collector Fritz Stettler of Berne found some mineral specimens in the southern part of Binnatal that were unknown to him; he sent them to the Natural History Museum in Berne for identification. One of us (H. A. St.) studied the minerals by Debye-Scherrer diagrams and optical methods.
    [Show full text]
  • Synthesis, Characterisation and Dissolution of Brannerite. a Uranium Titanate Mineral
    Synthesis, Characterisation and Dissolution of Brannerite. A Uranium Titanate Mineral. A thesis submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY Fiona Anne Charalambous Bachelor of Science (Applied Chemistry) (Honours) School of Applied Sciences RMIT UNIVERSITY APRIL 2013 Declaration of Authenticity I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is a result of work which has been carried out since the official commencement date of the approved research program; and, any editorial work, paid or unpaid, carried out by a third party is acknowledged. Fiona Anne Charalambous April 2013 ii Acknowledgments I am grateful to many people for their support during the course of my thesis. Firstly I would like to thank my primary supervisor, Prof. Suresh K. Bhargava; whose patience, kindness, limitless support and academic and industrial experience have been irreplaceable to me. I would like to thank Dr. James Tardio. There are no words to describe the amount of effort you have put into my research project. Your continuous guidance as well as your persevering understanding throughout my PhD has been a pillar of strength (even if you are a bombers supporter!). I really am appreciative of your patience, and the knowledge you have given me to mature into a researcher is unspoken. A thank you must go to Dr. Mark Pownceby from CSIRO. Your approach and knowledge on mineralogy has been indispensable during my PhD.
    [Show full text]
  • Cation Substitution in Uranyl Phosphates of the Autunite Group: Equilibrium Relations and Crystallization Between Metatorbernite and Metauranocircite
    Versão online: http://www.lneg.pt/iedt/unidades/16/paginas/26/30/208 Comunicações Geológicas (2015) 102, Especial I, 27-30 ISSN: 0873-948X; e-ISSN: 1647-581X Cation substitution in uranyl phosphates of the autunite group: equilibrium relations and crystallization between metatorbernite and metauranocircite Substituição catiónica em fosfatos de uranilo do grupo da autunite: relações de equilíbrio e cristalização entre metatorbernite e metauranocircite M. Andrade1, J. Duarte1, I. Martins 1, J. Reis 1, J. Mirão3, M. A. Gonçalves1,2* Artigo original Original article © 2015 LNEG – Laboratório Nacional de Geologia e Energia IP Abstract: Uranyl phosphate minerals play an important role in the 1. Introduction uranium immobilization within weathering and supergene enrichment profiles. This work consists on the morphological, structural and Uranyl phosphate minerals are major constituents in weathered U chemical characterization of natural and synthetic minerals of Cu and Ba deposits and can display a multi-stage evolving history in the – metatorbernite and metauranocircite, respectively. SEM imaging has environment they crystalize. Their importance is two-fold: as revealed an extended range of morphologies, from tabular to rosette-like main U-bearing phases in weathering profiles with potential crystals, with the presence of epitaxial growths. These studies have also economic value (as in Nisa and Tarabau, where natural uranyl revealed natural heterogeneities affected by cationic substitution along phosphates of Cu and Ba were identified; Pinto et al., 2012; preferred crystallographic directions. The experimental results suggest Prazeres, 2011) and as fixing phases of U limiting its long-term, that the precipitation of metatorbernite is easier than metauranocircite. Simulations of the chemical system show that precipitation depends on million-year scale, dispersion in the oxidized surface supersaturation evolution, which in turn in a function of aqueous complex environment.
    [Show full text]
  • Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
    SpColl £2' 1 Energy I TEl 334 Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus ~ By A. D. Weeks and M. E. Thompson ~ I"\ ~ ~ Trace Elements Investigations Report 334 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY IN REPLY REFER TO: UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY WASHINGTON 25, D. C. AUG 12 1953 Dr. PhilUp L. Merritt, Assistant Director Division of Ra1'r Materials U. S. AtoTILic Energy Commission. P. 0. Box 30, Ansonia Station New· York 23, Nei< York Dear Phil~ Transmitted herewith are six copies oi' TEI-334, "Identification and occurrence oi' uranium and vanadium minerals i'rom the Colorado Plateaus," by A , D. Weeks and M. E. Thompson, April 1953 • We are asking !41'. Hosted to approve our plan to publish this re:por t as a C.i.rcular .. Sincerely yours, Ak~f777.~ W. H. ~radley Chief' Geologist UNCLASSIFIED Geology and Mineralogy This document consists or 69 pages. Series A. UNITED STATES DEPARTMENT OF TEE INTERIOR GEOLOGICAL SURVEY IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM TEE COLORADO PLATEAUS* By A• D. Weeks and M. E. Thompson April 1953 Trace Elements Investigations Report 334 This preliminary report is distributed without editorial and technical review for conformity with ofricial standards and nomenclature. It is not for public inspection or guotation. *This report concerns work done on behalf of the Division of Raw Materials of the u. s. Atomic Energy Commission 2 USGS GEOLOGY AllU MINEFALOGY Distribution (Series A) No. of copies American Cyanamid Company, Winchester 1 Argulllle National La:boratory ., ., .......
    [Show full text]