Marcus Rossberg Phd Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Marcus Rossberg Phd Thesis CORE Metadata, citation and similar papers at core.ac.uk Provided by St Andrews Research Repository SECOND-ORDER LOGIC: ONTOLOGICAL AND EPISTEMOLOGICAL PROBLEMS Marcus Rossberg A Thesis Submitted for the Degree of PhD at the University of St Andrews 2006 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/6407 This item is protected by original copyright Second-Order Logic: Ontological and Epistemological Problems Marcus Rossberg Submission for a PhD in Philosophy at the University of St Andrews Supervisor: Professor Crispin Wright Second supervisor: Professor Stewart Shapiro Date of submission: January 5th, 2006 Date of final examination: March 4th, 2006 Examiners: Dr Peter Clark Professor Ian Rumfitt i F¨urmeine Eltern, Irene und Wolfgang Rossberg, meine Großm¨utter, Hedwig Grosche und Ilse Rossberg, und gewidmet dem Andenken an meinen Großvater Paul Rossberg (1920 { 2004) For my parents, Irene and Wolfgang Rossberg, my grandmothers, Hedwig Grosche and Ilse Rossberg, and dedictated to the memory of my grandfather Paul Rossberg (1920 { 2004) ii Abstract In this thesis I provide a survey over different approaches to second-order logic and its interpretation, and introduce a novel approach. Of special interest are the questions whether (a particular form of) second-order logic can count as logic in some (further to be specified) proper sense of logic, and what epistemic status it occupies. More specifically, second-order logic is sometimes taken to be mathematical, a mere notational variant of some fragment of set theory. If this is the case, it might be argued that it does not have the \epistemic innocence" which would be needed for, e.g., foundational programmes in (the philosophy of) mathematics for which second-order logic is sometimes used. I suggest a Deductivist conception of logic, that characterises logical consequence by means of inference rules, and argue that on this conception second-order logic should count as logic in the proper sense. iii Acknowledgements My primary thanks go to my supervisors. Crispin Wright provided comments, crit- icism, discussion, support, and more criticism whenever I wanted or needed it. His dedication to my supervision, in particular in the final months, was beyond the call of duty. I also greatly benefitted from the comments and criticism I got from Stew- art Shapiro during his annual visits to St Andrews and when I went to visit him in Columbus in Spring 2004. Both my supervisors let me run with my own ideas when I needed the space to develop them, and demanded rigour and \tidying up" once I had run far enough. I am also indebted to my shadow supervisors Fraser MacBride and Roy Cook. The feedback I got from them, in particular in the the first couple of years, was invaluable. I was lucky enough to be able to write this thesis as a member of the Arch´e research centre. The active and collaborative atmosphere here creates what is prob- ably a unique environment for philosophical research. First and foremost amongst my fellows here I want to thank Philip \Kollege" Ebert and Nikolaj Jang Peder- sen who together with me were the first generation of Arch´e postgraduate students. We were soon joined by the next two \Arch´e Beavers", Ross Cameron and Robbie Williams. One cannot hope for better fellow Ph.D. students. Thanks guys! The thanks extends to the other members of Arch´e: Sama Agahi, Bob Hale, Paul Mc- Callion, Darren McDonald, Sean Morris, Agust´ınRayo, Andrea Sereni, and Chiara Tabet in the Neo-Fregean project, and my other colleagues in the centre, Elizabeth Barnes, Eline Busck, Richard Dietz, Patrick Greenough, Aviv Hoffmann, Carrie Jenkins, Dan L´opez de Sa, Sebastiano Moruzzi, Josh Parsons, Graham Priest, Anna Sherratt, S´oniaRoca, and Elia Zardini. The friendly, collaborative, but also philosophically intense atmosphere was not restricted to Arch´e, however; it is a also a characteristic mark of the whole postgrad- uate community in St Andrews. The Friday Seminar, which we all lived through together, provided an excellent training ground in all respects, philosophical and social (the latter in particular following the seminar, in the pub). Many of my fellow students here and friends outwith St Andrews stood by me while I was working on this thesis, and not only provided me with moral support, but also with philosophical input. Daniel Cohnitz has filled this role ever since we were undergraduate students together at the University of D¨usseldorf.The others, I hope, will forgive me if I just list their names here without further explanation: Ais- linn Batstone, Brandon Cooke, Joseph Diekemper, Iwao Hirose, Sune Holm, Amy Hughes, Kent Hurtig, Chris Kelp, Anne Manolakas, Brian McElwee, Aidan McG- lynn, Anneli Mottweiler, Cyrus Panjvani, Carlotta Pavese, Simon Robertson, Raf- faele Rodogno, Enzo Rossi, Markus Schlosser, Mog Stapleton, Dave Ward, Michael Weh, and, of course, the person I surely and inexcusably have forgotten to include in this list. A special thank-you goes to Linds Duffield for her fantastic support iv during the very stressful last few weeks before the submission of this thesis { weeks that did not seem to end. Much of the material in this thesis was first tested in the Friday seminar as well as the Arch´eresearch seminar. I am grateful for the many comments and criti- cisms I received. Earlier versions of some of the chapters were presented at various conferences, workshops and seminars all over Europe, including the Universities of D¨usseldorf,Helsinki, and Stockholm, the Ockham Society in Oxford, the SPPA con- ference in Stirling, the GAP.5 in Bielefeld, the LMPS03 in Oviedo, the FOL'75 in Berlin, and the ECAP5 in Lisbon. Many thanks to the audiences there. Chapter 5 profited greatly from a discussion with Kit Fine to whom I am indebted for his comments and suggestions. I am grateful for the financial support I received: for my tuition fees from the Arts and Humanties Research Board (AHRB { now AHRC), a full maintenance scholarship from the Studienstiftung des Deutschen Volkes [German National Aca- demic Foundation] from my second year on, and a travel award from the Russell Trust for a visiting scholarship at the Ohio State University at Columbus. I could not have written this thesis without the support of my family. There are no words for my gratitude towards my parents, Irene and Wolfgang Rossberg, and my grandparents, Hedwig Grosche and Ilse and Paul Rossberg. My grandfather Paul Rossberg sadly did not live to see the completion of my postgraduate studies. This thesis is for them. v Notational Conventions For the benefit of a consistent use of the logical symbols I have tacitly changed the symbols other authors use into the ones preferred here. Boolos' `!' and `$', for example, are replaced by `⊃' and `≡', respectively. Likewise, Quine's `(x)', for example, is replaced by `8x', and his notation using `.', `:', `.:', etc., as both symbols for conjunction and for scope distinctions is abandoned in favour of the nowadays more common use of `^' (for conjunction) and the use of parentheses (for scope distincitons). I use single quotations marks for mentioning an expression, and double quota- tions marks where the quoted expression is used; the latter case almost exclusively occurs for verbatim quotations from the literature and the use of a word in a non- literal sense or in a sense that I explicitly do not agree with. It should in all cases be clear from the context in which of these senses I uses the double quotation marks. I tacitly changed the quotations marks in verbatim quotations from the literature to accord to this rule where authors followed different conventions. (Quine and Boolos, for example, sometimes use double quotation marks for mentioning expressions.) Where longer passages are quoted verbatim from the literature, the quotation is separated from the main text by an extra wide margin, and quotation marks are omitted. Corner quotes, `p' and `q', are used as devices for quasi-quotation, as introduced in (Quine, 1955), x6. vi Contents 1 Introduction 1 1.1 The Project . 1 1.2 Outline of the Thesis . 5 2 The Formal System of Second-Order Logic 9 2.1 Preliminaries . 9 2.2 Language . 9 2.3 Deductive Systems . 11 2.3.1 Axiomatic System . 11 2.3.2 Natural Deduction . 14 2.4 Semantics . 16 2.4.1 Semantics for First-Order Logic . 16 2.4.2 Standard Semantics for Second-Order Logic . 17 2.4.3 Henkin Semantics . 18 2.5 Some Meta-Theoretic Results . 19 2.5.1 Standard and Henkin Semantics . 20 2.5.2 First-Order Logic . 20 2.5.3 Second-Order Logic with Standard Semantics . 22 2.5.4 Second-Order Logic with Henkin Semantics . 24 3 On Quine 26 3.1 Introduction . 26 3.2 Incompleteness and Branching Quantifiers . 29 3.3 Incoherence and Unintelligibility . 35 3.3.1 Russell's Paradox . 35 3.3.2 No Entity Without Identity . 39 3.4 Dishonesty: The Hidden Staggering Ontology . 42 4 Plurals 52 4.1 Some Critics . 52 4.2 The Plural Interpretation . 62 vii 4.3 Polyadic Predicates . 68 4.4 Still Wild . 75 4.5 Summary . 86 5 Ontological Commitment 89 5.1 Quine's Criterion . 89 5.2 Universals . 94 5.3 Second-Order Quantification . 95 5.4 Polyadic Predicates Again . 100 5.5 A New Criterion . 105 6 Semantic Incompleteness∗ 112 6.1 Introduction . 112 6.2 Logical Consequence . 114 6.3 Refining the Picture . 120 6.4 Some Arguments for Completeness . 127 6.5 Conclusion . 143 7 The Semantic Conception 145 7.1 Introduction .
Recommended publications
  • First-Order Logic
    INF5390 – Kunstig intelligens First-Order Logic Roar Fjellheim Outline Logical commitments First-order logic First-order inference Resolution rule Reasoning systems Summary Extracts from AIMA Chapter 8: First-Order Logic Chapter 9: Inference in First-Order Logic INF5390-AI-05 First-Order Logic 2 From propositonal to first-order logic Features of propositional logic: + Declarative + Compositional + ”Possible-world” semantics - Lacks expressiveness First-order logic: Extends propositional logic Keeps good features Adds expressiveness INF5390-AI-05 First-Order Logic 3 First-order logic First-order logic is based on “common sense” or linguistic concepts: Objects: people, houses, numbers, .. Properties: tall, red, .. Relations: brother, bigger than, .. Functions: father of, roof of, .. Variables: x, y, .. (takes objects as values) First-order logic is the most important and best understood logic in philosophy, mathematics, and AI INF5390-AI-05 First-Order Logic 4 Logic “commitments” Ontological commitment Ontology - in philosophy, the study of “what is” What are the underlying assumptions of the logic with respect to the nature of reality Epistemological commitment Epistemology - in philosophy, the study of “what can be known” What are the underlying assumptions of the logic with respect to the nature of what the agent can know INF5390-AI-05 First-Order Logic 5 Commitments of some logic languages Language Ontological Epistemological Commitment Commitment Propositional logic Facts True/false/unknown First-order logic
    [Show full text]
  • Forcopy-Editing Only
    i i “Abstractionism_OUP_for_copyediting” — 2016/4/20 — 11:40 — page 1 — #10 i i 1 Introduction to Abstractionism Philip A. Ebert and Marcus Rossberg 1.1 WHAT IS ABSTRACTIONISM? Abstractionism in philosophy of mathematics has its origins in Gottlob Frege’s logicism—a position Frege developed in the late nineteenth and early twenti- eth century. Frege’s main aim wasfor to reduce copy-editing arithmetic and analysis to only logic in order to provide a secure foundation for mathematical knowledge. As is well known, Frege’s development of logicism failed. The infamous Basic Law V— one of the six basic laws of logic— Frege proposed in his magnum opus Grund- gesetze der Arithmetik—is subject to Russell’s Paradox. The striking feature of Frege’s Basic Law V is that it takes the form of an abstraction principle. The general form of an abstraction principle can by symbolised like this:1 ↵ = β ↵ β §( ) §( ) $ ⇠ where ‘ ’ is a term-forming operator applicable to expression of the type of ↵ § and β, and is an equivalence relation on entities denoted by expressions of ⇠ that type. Accordingly, abstraction principles are biconditionals that feature an equivalence relation on the right-hand side and an identity statement on the left-hand side. The abstracta denoted by the terms featuring in the identity statement on the left are taken to be introduced, in some sense, by the ab- straction principle, giving the equivalence on the right-hand side conceptual priority over them. More on this below. Frege’s ill-fated Basic Law V, involves co-extentionality (of functions) as the relevant equivalence relation on the right-hand side, introducing, what Frege – termed value-ranges, "' " , on the left:2 ( ) 1Here and below, we will omit prefixed universal quantifiers in abstraction principles.
    [Show full text]
  • Ontological Commitment of Natural Language Semantics
    Ontological Commitment of Natural Language Semantics MSc Thesis (Afstudeerscriptie) written by Viktoriia Denisova (born July, 23d 1986 in Kustanay, Kazakhstan) under the supervision of Prof. Dr. Martin Stokhof, and submitted to the Board of Examiners in partial fulfillment of the requirements for the degree of MSc in Logic at the Universiteit van Amsterdam. Date of the public defense: Members of the Thesis Committee: March, 23d 2012 Prof. Dr. Martin Stokhof Prof. Dr. Frank Veltman Dr. Paul Dekker Contents Acknowledgments v Abstract vi Introduction 1 1 Quine's Ontological Criterion 5 1.1 Why do we need to define the criterion of ontological commitment? 5 1.2 Why do we operate on the semantic level when talking about on- tology? . 13 1.3 What does Quine's ontological criterion bring to semantics? . 15 1.4 What is the role of logic in determination of the ontological com- mitment? . 17 1.5 Concluding remarks . 19 2 Critique of the Ontological Criterion 21 2.1 Hodges on the philosophical importance of ontological commitment 21 2.2 Evaluation of Hodges's exposition . 25 2.3 Beyond the semantics of standard first-order logic . 27 2.3.1 The difficulties concerning first-order regimentation . 27 2.3.2 Regimentation of the sentences that contain plurals . 30 2.3.3 Regimentation of modals . 31 2.4 Evaluation of Rayo's exposition . 33 3 Ontological commitment within possible worlds semantics 35 3.1 The reasons to consider ontological commitment in intensional lan- guage . 35 3.2 Ontological commitment for proper names . 37 3.3 Natural kind terms .
    [Show full text]
  • The Logic of Provability
    The Logic of Provability Notes by R.J. Buehler Based on The Logic of Provability by George Boolos September 16, 2014 ii Contents Preface v 1 GL and Modal Logic1 1.1 Introduction..........................................1 1.2 Natural Deduction......................................2 1.2.1 ...........................................2 1.2.2 3 ...........................................2 1.3 Definitions and Terms....................................3 1.4 Normality...........................................4 1.5 Refining The System.....................................6 2 Peano Arithmetic 9 2.1 Introduction..........................................9 2.2 Basic Model Theory..................................... 10 2.3 The Theorems of PA..................................... 10 2.3.1 P-Terms........................................ 10 2.3.2Σ,Π, and∆ Formulas................................ 11 2.3.3 G¨odelNumbering................................... 12 2.3.4 Bew(x)........................................ 12 2.4 On the Choice of PA..................................... 13 3 The Box as Bew(x) 15 3.1 Realizations and Translations................................ 15 3.2 The Generalized Diagonal Lemma............................. 16 3.3 L¨ob'sTheorem........................................ 17 3.4 K4LR............................................. 19 3.5 The Box as Provability.................................... 20 3.6 GLS.............................................. 21 4 Model Theory for GL 23 5 Completeness & Decidability of GL 25 6 Canonical Models 27 7 On
    [Show full text]
  • Yesterday's Algorithm: Penrose on the Gödel Argument
    Yesterday’s Algorithm: Penrose and the Gödel Argument §1. The Gödel Argument. Roger Penrose is justly famous for his work in physics and mathematics but he is notorious for his endorsement of the Gödel argument (see his 1989, 1994, 1997). This argument, first advanced by J. R. Lucas (in 1961), attempts to show that Gödel’s (first) incompleteness theorem can be seen to reveal that the human mind transcends all algorithmic models of it1. Penrose's version of the argument has been seen to fall victim to the original objections raised against Lucas (see Boolos (1990) and for a particularly intemperate review, Putnam (1994)). Yet I believe that more can and should be said about the argument. Only a brief review is necessary here although I wish to present the argument in a somewhat peculiar form. Let us suppose that the human cognitive abilities that underlie our propensities to acquire mathematical beliefs on the basis of what we call proofs can be given a classical cognitive psychological or computational explanation (henceforth I will often use ‘belief’ as short for ‘belief on the basis of proof’). These propensities are of at least two types: the ability to appreciate chains of logical reasoning but also the ability to recognise ‘elementary proofs’ or, it would perhaps be better to say, elementary truths, such as if a = b and b = c then a = c, without any need or, often, any possibility of proof in the first sense. On this supposition, these propensities are the realization of a certain definite algorithm or program somehow implemented by the neural hardware of the brain.
    [Show full text]
  • First Order Logic and Nonstandard Analysis
    First Order Logic and Nonstandard Analysis Julian Hartman September 4, 2010 Abstract This paper is intended as an exploration of nonstandard analysis, and the rigorous use of infinitesimals and infinite elements to explore properties of the real numbers. I first define and explore first order logic, and model theory. Then, I prove the compact- ness theorem, and use this to form a nonstandard structure of the real numbers. Using this nonstandard structure, it it easy to to various proofs without the use of limits that would otherwise require their use. Contents 1 Introduction 2 2 An Introduction to First Order Logic 2 2.1 Propositional Logic . 2 2.2 Logical Symbols . 2 2.3 Predicates, Constants and Functions . 2 2.4 Well-Formed Formulas . 3 3 Models 3 3.1 Structure . 3 3.2 Truth . 4 3.2.1 Satisfaction . 5 4 The Compactness Theorem 6 4.1 Soundness and Completeness . 6 5 Nonstandard Analysis 7 5.1 Making a Nonstandard Structure . 7 5.2 Applications of a Nonstandard Structure . 9 6 Sources 10 1 1 Introduction The founders of modern calculus had a less than perfect understanding of the nuts and bolts of what made it work. Both Newton and Leibniz used the notion of infinitesimal, without a rigorous understanding of what they were. Infinitely small real numbers that were still not zero was a hard thing for mathematicians to accept, and with the rigorous development of limits by the likes of Cauchy and Weierstrass, the discussion of infinitesimals subsided. Now, using first order logic for nonstandard analysis, it is possible to create a model of the real numbers that has the same properties as the traditional conception of the real numbers, but also has rigorously defined infinite and infinitesimal elements.
    [Show full text]
  • CHAPTER 14 Hilbert System for Predicate Logic 1 Completeness
    CHAPTER 14 Hilbert System for Predicate Logic 1 Completeness Theorem for First Order Logic There are many proofs of the Completeness Theorem for First Order Logic. We follow here a version of Henkin's proof, as presented in the Handbook of Mathe- matical Logic. It contains a method for reducing certain problems of first-order logic back to problems about propositional logic. We give independent proof of Compactness Theorem for propositional logic. The Compactness Theorem for first-order logic and L¨owenheim-Skolem Theorems and the G¨odelCompleteness Theorem fall out of the Henkin method. 1.1 Compactness Theorem for Propositional Logic Let L = L(P; F; C) be a first order language with equality. We assume that the sets P, F, C are infinitely enumerable. We define a propositional logic within it as follows. Prime formulas We consider a subset P of the set F of all formulas of L. Intuitively these are formulas of L which are not direct propositional com- bination of simpler formulas, that is, atomic formulas (AF) and formulas beginning with quantifiers. Formally, we have that P = fA 2 F : A 2 AF or A = 8xB; A = 9xB for B 2 Fg: Example 1.1 The following are primitive formulas. R(t1; t2); 8x(A(x) ):A(x)); (c = c); 9x(Q(x; y) \ 8yA(y)). The following are not primitive formulas. (R(t1; t2) ) (c = c)); (R(t1; t2) [ 8x(A(x) ):A(x)). Given a set P of primitive formulas we define in a standard way the set P F of propositional formulas as follows.
    [Show full text]
  • Foundations of Mathematics
    Foundations of Mathematics November 27, 2017 ii Contents 1 Introduction 1 2 Foundations of Geometry 3 2.1 Introduction . .3 2.2 Axioms of plane geometry . .3 2.3 Non-Euclidean models . .4 2.4 Finite geometries . .5 2.5 Exercises . .6 3 Propositional Logic 9 3.1 The basic definitions . .9 3.2 Disjunctive Normal Form Theorem . 11 3.3 Proofs . 12 3.4 The Soundness Theorem . 19 3.5 The Completeness Theorem . 20 3.6 Completeness, Consistency and Independence . 22 4 Predicate Logic 25 4.1 The Language of Predicate Logic . 25 4.2 Models and Interpretations . 27 4.3 The Deductive Calculus . 29 4.4 Soundness Theorem for Predicate Logic . 33 5 Models for Predicate Logic 37 5.1 Models . 37 5.2 The Completeness Theorem for Predicate Logic . 37 5.3 Consequences of the completeness theorem . 41 5.4 Isomorphism and elementary equivalence . 43 5.5 Axioms and Theories . 47 5.6 Exercises . 48 6 Computability Theory 51 6.1 Introduction and Examples . 51 6.2 Finite State Automata . 52 6.3 Exercises . 55 6.4 Turing Machines . 56 6.5 Recursive Functions . 61 6.6 Exercises . 67 iii iv CONTENTS 7 Decidable and Undecidable Theories 69 7.1 Introduction . 69 7.1.1 Gödel numbering . 69 7.2 Decidable vs. Undecidable Logical Systems . 70 7.3 Decidable Theories . 71 7.4 Gödel’s Incompleteness Theorems . 74 7.5 Exercises . 81 8 Computable Mathematics 83 8.1 Computable Combinatorics . 83 8.2 Computable Analysis . 85 8.2.1 Computable Real Numbers . 85 8.2.2 Computable Real Functions .
    [Show full text]
  • Shelah's Singular Compactness Theorem 0
    SHELAH’S SINGULAR COMPACTNESS THEOREM PAUL C. EKLOF Abstract. We present Shelah’s famous theorem in a version for modules, together with a self-contained proof and some ex- amples. This exposition is based on lectures given at CRM in October 2006. 0. Introduction The Singular Compactness Theorem is about an abstract notion of “free”. The general form of the theorem is as follows: If λ is a singular cardinal and M is a λ-generated module such that enough < κ-generated submodules are “free” for sufficiently many regular κ < λ, then M is “free”. Of course, for this to have any chance to be a theorem (of ZFC) there need to be assumptions on the notion of “free”. These are detailed in the next section along with a precise statement of the theorem (Theorem 1.4), including a precise definition of “enough”. Another version of the Singular Compactness Theorem—with a dif- ferent definition of “enough”—is given at the start of section 3. The proof of Theorem 1.4 is given in sections 3 and 4; some examples and applications are given in sections 2 and 5. First a few words about the history of the theorem. 0.1 History. In 1973 Saharon Shelah proved that the Whitehead problem for abelian groups of cardinality ℵ1 is undecidable in ZFC; in particular he showed under the assumption of the Axiom of Con- structibility, V = L, that all Whitehead groups of cardinality ℵ1 are free (see [13]). His argument easily extended, by induction, to prove that for all n ∈ ω, Whitehead groups of cardinality ℵn are free.
    [Show full text]
  • Modal Realism and Metaphysical Nihilism Gonzalo Rodriguez-Pereyra
    Mind, 2004, 113 (452), pp. 683-704. Modal Realism and Metaphysical Nihilism Gonzalo Rodriguez-Pereyra 1. Modal Realism is an ontological doctrine whose most characteristic thesis is that there exist non-actual possible individuals which are of a kind with actual individuals. That is, there are non-actual chairs, tables, donkeys, people and stars. As developed by David Lewis, Modal Realism is accompanied by a cluster of theses, for instance that all possible worlds (i.e. actual and non-actual possible worlds) exist, that all possible worlds are of a kind, that possible worlds are maximal sums of spatiotemporally related objects, and that a sentence like ‘it is possible that p’ is true just in case there is a possible world where p. Modal Realism has, among its theoretical benefits, a reductive account, within limits, of modality. Among its costs, it counts clashing with several intuitive views. One of these is the view that it is possible that nothing exists, that is, that there could have been nothing. Lewis saw that his Modal Realism is incompatible with this view (Lewis 1986, p. 73 and Lewis 1991, p. 13, footnote 6). Another closely related intuitive view with which Lewis’s Modal Realism is incompatible is what has recently been called Metaphysical Nihilism, namely that it is possible that nothing concrete exists, that is, that there could have been nothing concrete. Metaphysical Nihilism is not only intuitive, there are persuasive arguments in its favour. So, other things being equal, to be compatible with Metaphysical Nihilism is a theoretical virtue. In this paper I shall argue that Modal Realism can be modified so as to be compatible with Metaphysical Nihilism.
    [Show full text]
  • Sometime a Paradox, Now Proof: Non-First-Order-Izability of Yablo's
    Sometime a Paradox, Now Proof: Non-First-Order-izability of Yablo’s Paradox Saeed Salehi, Research Institute for Fundamental Sciences (RIFS), University of Tabriz, P.O.Box 51666-16471, Tabriz, Iran. School of Mathematics, Institute for Research in Fundamental Sciences, P.O.Box 19395–5746, Tehran, Iran. E-mail: [email protected] Abstract Paradoxes are interesting puzzles in philosophy and mathematics, and they could be even more fascinating when turned into proofs and theorems. For example, Liar’s paradox can be translated into a propositional tautology, and Barber’s paradox turns into a first-order tautology. Russell’s paradox, which collapsed Frege’s foundational framework, is now a classical theorem in set theory, implying that no set of all sets can exist. Paradoxes can be used in proofs of some other theorems; Liar’s paradox has been used in the classical proof of Tarski’s theorem on the undefinability of truth in sufficiently rich languages. This paradox (and also Richard’s paradox) appears implicitly in G¨odel’s proof of his celebrated first incompleteness theorem. In this paper, we study Yablo’s paradox from the viewpoint of first and second order logics. We prove that a formalization of Yablo’s paradox (which is second-order in nature) is non-first-order-izable in the sense of George Boolos (1984). 2010 AMS Subject Classification: 03B05 · 03B10 · 03C07. Keywords: Yablo’s Paradox · Non-first-orderizability. This was sometime a paradox, but now the time gives it proof. — William Shakespeare (Hamlet, Act 3, Scene 1). 1 Introduction If mathematicians and philosophers have come to the conclusion that some (if not almost all) of the paradoxes cannot be (re)solved, or as Priest [10, p.
    [Show full text]
  • A Logical Framework†
    Revista del Instituto de Filosofía, Universidad de Valparaíso, Año 1, N° 1. Junio 2013. Pags. 35 – 40 A logical framework† Göran Sundholm Resumen El artículo presenta un marco de distinciones para la filosofía de la lógica en la que las interrelaciones entre algunas nociones lógicas centrales, como la de declaración, juicio (el acto), juicio, (el resultado de juzgar), proposición (contenido), consecuencia e inferencia, se detallan. PALABRAS CLAVE: Declaración, juicio, proposición, consecuencia, inferencia. Abstract The paper presents a framework of distinctions for the philosophy of logic in which the interrelations between some central logical notions, such as statement, judgement (-act), judgement (made), proposition (al content), consequence, and inference are spelled out. KEY WORDS: Statement, judgement, proposition, consequence, inference. 1. Hilary Putnam, and, following him, George Boolos, have, on different occasions, taken exception to Quine's dictum that "Logic is an old subject, and since 1879 it has been a great one", with which he opened the first editions of his Methods of Logic.1 In their opinion, Quine's implicit preference for Frege's Begriffsschrift does an injustice to Boole (Boolos and Putnam) and the Booleans, of whom Peirce in particular (Putnam). Ten years ago, in an inaugural lecture at Leyden, also I argued that Quine presented too narrow a view of logic, and, that as far as the nineteenth century was concerned, the crucial date in the development of logical doctrine is not 1879 (nor 1847, I would add today, disagreeing
    [Show full text]