Energy-Aware Lossless Data Compression

Total Page:16

File Type:pdf, Size:1020Kb

Energy-Aware Lossless Data Compression Energy-Aware Lossless Data Compression KENNETH C. BARR and KRSTE ASANOVIC´ MIT Computer Science and Artificial Intelligence Laboratory Wireless transmission of a single bit can require over 1000 times more energy than a single 32-bit computation. It can therefore be beneficial to perform additional computation to reduce the number of bits transmitted. If the energy required to compress data is less than the energy required to send it, there is a net energy savings and an increase in battery life for portable computers. This article presents a study of the energy savings possible by losslessly compressing data prior to transmission. A variety of algorithms were measured on a StrongARM SA-110 processor. This work demonstrates that, with several typical compression algorithms, there is a actually a net energy increase when compression is applied before transmission. Reasons for this increase are explained and suggestions are made to avoid it. One such energy-aware suggestion is asymmetric compression, the use of one compression algorithm on the transmit side and a different algorithm for the receive path. By choosing the lowest-energy compressor and decompressor on the test platform, overall energy to send and receive data can be reduced by 11% compared with a well-chosen symmetric pair, or up to 57% over the default symmetric zlib scheme. Categories and Subject Descriptors: C.4 [Performance of Systems]—Performance attributes General Terms: Algorithms, Measurement, Performance Additional Key Words and Phrases: Compression, energy-aware, lossless, low-power, power-aware 1. INTRODUCTION Wireless communication is an essential component of mobile computing, but the energy required for transmission of a single bit has been measured to be over 1000 times greater than for a single 32-bit computation. Thus, if 1000 computa- tion operations can compress data by even 1 bit, energy should be saved. Com- pression algorithms which once seemed too resource- or time-intensive might be valuable for saving energy.Implementations which made concessions in com- pression ratio to improve performance might be modified to provide an overall energy savings. Ideally, the effort exerted to compress data should be variable to allow a flexible tradeoff between speed and energy. Earlier work has considered lossy compression techniques which sacrifice the quality of compressed audio This work was supported by MIT Project Oxygen, DARPA PAC/C award F30602-00-2-0562, NSF CAREER award CCR-0093354, and an equipment grant from Intel. Authors’ addresses: The Stata Center, Building 32-G776, 32 Vassar Street, Cambridge, MA 02139; email: {kbarr,krste}@mit.edu. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or [email protected]. C 2006 ACM 0734-2071/06/0800-0250 $5.00 ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006, Pages 250–291. Energy-Aware Lossless Data Compression • 251 or video data streams to reduce the bit rate and energy required [Flinn 2001; Sinha et al. 2000; Taylor and Dey 2001; Noble and Satyanarayanan 1999]. In this work, we consider the challenge of reducing wireless communication energy for data that must be transmitted faithfully. We provide an in-depth examination of the energy requirements of several lossless data compression schemes. We take energy measurements using the StrongARM-based Skiff platform developed by Compaq Cambridge Research Labs, which allows energy consumption of the CPU, memory, network card, and peripherals to be measured separately. The platform is similar to the popular iPAQ handheld computer, so the results are relevant to designers of embedded and mobile systems. Several families of compression algorithms are analyzed and characterized, and it is shown that compression prior to transmission may actually cause an overall energy increase. We highlight behaviors and resource- usage patterns which allow for energy-efficient lossless compression of data. Finally, a new energy-aware data compression scheme composed of these be- haviors is presented and measured. Section 2 contains a brief overview of important lossless compression con- cepts, algorithms, and the implementations that we study. Section 3 describes the experimental setup including benchmark selection and methodology. Section 4 begins with the measurement of an encouraging communication- computation gap, but shows that modern compression tools do not exploit the the low relative energy of computation versus communication. Factors which limit energy reduction are presented. Section 5 applies an understanding of these factors to reduce overall energy of transmission though hardware- conscious optimizations and asymmetric compression choices. Section 6 discusses related work, and Section 7 concludes the article. 2. LOSSLESS COMPRESSION OVERVIEW In this section, we review the concepts and terminology of data compression to provide background for our discussion on what constitutes energy-aware loss- less data compression. The descriptions in this section are simplified versions of those that appear in Lelewer and Hirschberg [1987] and Sayood [2002], each of which contains bibliographic references to seminal articles. Particular im- plementations of algorithms will be discussed as each algorithm is introduced in Section 2.3. 2.1 Terminology In applications where some loss or degradation of data can be tolerated (such as the transmission of images or sounds) much work has been done to exploit this tolerance in order to reap higher lossy compression ratios. When transmitting text or a binary executable, one must be able to reconstruct every bit perfectly— hence the need for lossless data compression. Compression is usually broken into two steps: modeling and coding. With a perfect, concise model that describes the generation of the input source which is to be compressed, one could reproduce the data without transmitting the source data. (i.e., if the sequence 1 1 2 3 5 ···6765 were to be transmitted, one ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006. 252 • K. C. Barr and K. Asanovi´c could express it with a “model” of Fibonacci numbers). In practice, one must approximate and construct an approximate mathematical model for the data. In English text, for example, one can model the probability of a letter occurring as a probability conditioned on letters that have already been transmitted. This probabilistic model is transmitted with a description of how the data differs from the model. In a coding step, information is mapped to compact codewords. Obviously, a codeword must decode to a unique value so there can be no doubt of the original message. Prefix codes are used so that no codeword is the prefix of any other codeword. It has been proved [McEliece 1977] that, for any nonprefix code that may be uniquely decoded, a prefix code can be found with the same codeword lengths. Often the modeling and coding steps are tightly coupled. For instance, Lempel-Ziv codes can be constructed as an input source is parsed into a “dictionary” model. When it is difficult to extricate the coding from the modeling, the two will be discussed together. 2.2 Coding Methods Coding maps symbols from the input alphabet into compact binary sequences. Discussion in this section is based on an alphabet made up of the set of 256 symbols that can be represented in an 8-bit byte. Though many coding schemes exist, we focus on the most popular schemes for data compression tools. 2.2.1 Huffman Coding. If the probability of each source symbol is known a priori (perhaps by scanning through the source), a procedure known as static Huffman coding can be used to build an optimal code in which the most fre- quently occurring symbols are given the shortest codewords. Huffman codes are established by storing the symbols of the alphabet in a binary tree according to their probability. As the tree is traversed from root to leaf, the code grows in length. When visiting the right child, a 0 is appended to the code. When visit- ing the left child,a1isappended. Thus, symbols which occur frequently are stored near the root of the tree and have the shortest codes. Since data com- pression tools rarely have the luxury of a priori knowledge and cannot afford two passes through the data source, variants of the Huffman algorithm have been developed that work dynamically and update the tree as source symbols are encountered. 2.2.2 Arithmetic Coding. Optimal compression ratio for a data source is traditionally described with respect to Claude Shannon’s definition of source entropy [Shannon 1948]: a measure of the source’s information and therefore the average number of bits required to represent it. Sometimes the most frequently occurring symbol can contain so little information that it would be ideal to represent it with less than 1 bit. Huffman codes are restricted to using an integral number of bits per symbol, increasing the coding overhead. Arithmetic codes have been designed to support a fractional number of bits per symbol to bring the average length of a codeword much closer to the optimal. Knowing the probability of occurrence for each symbol, a unique identifier can be established for a series of symbols. This identifier is a binary fraction in ACM Transactions on Computer Systems, Vol.
Recommended publications
  • Word-Based Text Compression
    WORD-BASED TEXT COMPRESSION Jan Platoš, Jiří Dvorský Department of Computer Science VŠB – Technical University of Ostrava, Czech Republic {jan.platos.fei, jiri.dvorsky}@vsb.cz ABSTRACT Today there are many universal compression algorithms, but in most cases is for specific data better using specific algorithm - JPEG for images, MPEG for movies, etc. For textual documents there are special methods based on PPM algorithm or methods with non-character access, e.g. word-based compression. In the past, several papers describing variants of word- based compression using Huffman encoding or LZW method were published. The subject of this paper is the description of a word-based compression variant based on the LZ77 algorithm. The LZ77 algorithm and its modifications are described in this paper. Moreover, various ways of sliding window implementation and various possibilities of output encoding are described, as well. This paper also includes the implementation of an experimental application, testing of its efficiency and finding the best combination of all parts of the LZ77 coder. This is done to achieve the best compression ratio. In conclusion there is comparison of this implemented application with other word-based compression programs and with other commonly used compression programs. Key Words: LZ77, word-based compression, text compression 1. Introduction Data compression is used more and more the text compression. In the past, word- in these days, because larger amount of based compression methods based on data require to be transferred or backed-up Huffman encoding, LZW or BWT were and capacity of media or speed of network tested. This paper describes word-based lines increase slowly.
    [Show full text]
  • The Basic Principles of Data Compression
    The Basic Principles of Data Compression Author: Conrad Chung, 2BrightSparks Introduction Internet users who download or upload files from/to the web, or use email to send or receive attachments will most likely have encountered files in compressed format. In this topic we will cover how compression works, the advantages and disadvantages of compression, as well as types of compression. What is Compression? Compression is the process of encoding data more efficiently to achieve a reduction in file size. One type of compression available is referred to as lossless compression. This means the compressed file will be restored exactly to its original state with no loss of data during the decompression process. This is essential to data compression as the file would be corrupted and unusable should data be lost. Another compression category which will not be covered in this article is “lossy” compression often used in multimedia files for music and images and where data is discarded. Lossless compression algorithms use statistic modeling techniques to reduce repetitive information in a file. Some of the methods may include removal of spacing characters, representing a string of repeated characters with a single character or replacing recurring characters with smaller bit sequences. Advantages/Disadvantages of Compression Compression of files offer many advantages. When compressed, the quantity of bits used to store the information is reduced. Files that are smaller in size will result in shorter transmission times when they are transferred on the Internet. Compressed files also take up less storage space. File compression can zip up several small files into a single file for more convenient email transmission.
    [Show full text]
  • Dictionary Based Compression for Images
    INTERNATIONAL JOURNAL OF COMPUTERS Issue 3, Volume 6, 2012 Dictionary Based Compression for Images Bruno Carpentieri Ziv and Lempel in [1]. Abstract—Lempel-Ziv methods were original introduced to By limiting what could enter the dictionary, LZ2 assures compress one-dimensional data (text, object codes, etc.) but recently that there is at most one instance for each possible pattern in they have been successfully used in image compression. the dictionary. Constantinescu and Storer in [6] introduced a single-pass vector Initially the dictionary is empty. The coding pass consists of quantization algorithm that, with no training or previous knowledge of the digital data was able to achieve better compression results with searching the dictionary for the longest entry that is a prefix of respect to the JPEG standard and had also important computational a string starting at the current coding position. advantages. The index of the match is transmitted to the decoder using We review some of our recent work on LZ-based, single pass, log N bits, where N is the current size of the dictionary. adaptive algorithms for the compression of digital images, taking into 2 account the theoretical optimality of these approach, and we A new pattern is introduced into the dictionary by experimentally analyze the behavior of this algorithm with respect to concatenating the current match with the next character that the local dictionary size and with respect to the compression of bi- has to be encoded. level images. The dictionary of LZ2 continues to grow throughout the coding process. Keywords—Image compression, textual substitution methods.
    [Show full text]
  • I Introduction
    PPM Performance with BWT Complexity: A New Metho d for Lossless Data Compression Michelle E ros California Institute of Technology e [email protected] Abstract This work combines a new fast context-search algorithm with the lossless source co ding mo dels of PPM to achieve a lossless data compression algorithm with the linear context-search complexity and memory of BWT and Ziv-Lemp el co des and the compression p erformance of PPM-based algorithms. Both se- quential and nonsequential enco ding are considered. The prop osed algorithm yields an average rate of 2.27 bits per character bp c on the Calgary corpus, comparing favorably to the 2.33 and 2.34 bp c of PPM5 and PPM and the 2.43 bp c of BW94 but not matching the 2.12 bp c of PPMZ9, which, at the time of this publication, gives the greatest compression of all algorithms rep orted on the Calgary corpus results page. The prop osed algorithm gives an average rate of 2.14 bp c on the Canterbury corpus. The Canterbury corpus web page gives average rates of 1.99 bp c for PPMZ9, 2.11 bp c for PPM5, 2.15 bp c for PPM7, and 2.23 bp c for BZIP2 a BWT-based co de on the same data set. I Intro duction The Burrows Wheeler Transform BWT [1] is a reversible sequence transformation that is b ecoming increasingly p opular for lossless data compression. The BWT rear- ranges the symb ols of a data sequence in order to group together all symb ols that share the same unb ounded history or \context." Intuitively, this op eration is achieved by forming a table in which each row is a distinct cyclic shift of the original data string.
    [Show full text]
  • Dc5m United States Software in English Created at 2016-12-25 16:00
    Announcement DC5m United States software in english 1 articles, created at 2016-12-25 16:00 articles set mostly positive rate 10.0 1 3.8 Google’s Brotli Compression Algorithm Lands to Windows Edge Microsoft has announced that its Edge browser has started using Brotli, the compression algorithm that Google open-sourced last year. 2016-12-25 05:00 1KB www.infoq.com Articles DC5m United States software in english 1 articles, created at 2016-12-25 16:00 1 /1 3.8 Google’s Brotli Compression Algorithm Lands to Windows Edge Microsoft has announced that its Edge browser has started using Brotli, the compression algorithm that Google open-sourced last year. Brotli is on by default in the latest Edge build and can be previewed via the Windows Insider Program. It will reach stable status early next year, says Microsoft. Microsoft touts a 20% higher compression ratios over comparable compression algorithms, which would benefit page load times without impacting client-side CPU costs. According to Google, Brotli uses a whole new data format , which makes it incompatible with Deflate but ensures higher compression ratios. In particular, Google says, Brotli is roughly as fast as zlib when decompressing and provides a better compression ratio than LZMA and bzip2 on the Canterbury Corpus. Brotli appears to be especially tuned for the web , that is for offline encoding and online decoding of Web assets, or Android APKs. Google claims a compression ratio improvement of 20–26% over its own Zopfli algorithm, which still provides the best compression ratio of any deflate algorithm.
    [Show full text]
  • A Survey on Different Compression Techniques Algorithm for Data Compression Ihardik Jani, Iijeegar Trivedi IC
    International Journal of Advanced Research in ISSN : 2347 - 8446 (Online) Computer Science & Technology (IJARCST 2014) Vol. 2, Issue 3 (July - Sept. 2014) ISSN : 2347 - 9817 (Print) A Survey on Different Compression Techniques Algorithm for Data Compression IHardik Jani, IIJeegar Trivedi IC. U. Shah University, India IIS. P. University, India Abstract Compression is useful because it helps us to reduce the resources usage, such as data storage space or transmission capacity. Data Compression is the technique of representing information in a compacted form. The actual aim of data compression is to be reduced redundancy in stored or communicated data, as well as increasing effectively data density. The data compression has important tool for the areas of file storage and distributed systems. To desirable Storage space on disks is expensively so a file which occupies less disk space is “cheapest” than an uncompressed files. The main purpose of data compression is asymptotically optimum data storage for all resources. The field data compression algorithm can be divided into different ways: lossless data compression and optimum lossy data compression as well as storage areas. Basically there are so many Compression methods available, which have a long list. In this paper, reviews of different basic lossless data and lossy compression algorithms are considered. On the basis of these techniques researcher have tried to purpose a bit reduction algorithm used for compression of data which is based on number theory system and file differential technique. The statistical coding techniques the algorithms such as Shannon-Fano Coding, Huffman coding, Adaptive Huffman coding, Run Length Encoding and Arithmetic coding are considered.
    [Show full text]
  • Enhanced Data Reduction, Segmentation, and Spatial
    ENHANCED DATA REDUCTION, SEGMENTATION, AND SPATIAL MULTIPLEXING METHODS FOR HYPERSPECTRAL IMAGING LEANNA N. ERGIN Bachelor of Forensic Chemistry Ohio University June 2006 Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN BIOANALYTICAL CHEMISTRY at the CLEVELAND STATE UNIVERSITY July 19th, 2017 We hereby approve this dissertation for Leanna N. Ergin Candidate for the Doctor of Philosophy in Clinical-Bioanalytical Chemistry degree for the Department of Chemistry and CLEVELAND STATE UNIVERSITY College of Graduate Studies ________________________________________________ Dissertation Committee Chairperson, Dr. John F. Turner II ________________________________ Department/Date ________________________________________________ Dissertation Committee Member, Dr. David W. Ball ________________________________ Department/Date ________________________________________________ Dissertation Committee Member, Dr. Petru S. Fodor ________________________________ Department/Date ________________________________________________ Dissertation Committee Member, Dr. Xue-Long Sun ________________________________ Department/Date ________________________________________________ Dissertation Committee Member, Dr. Yan Xu ________________________________ Department/Date ________________________________________________ Dissertation Committee Member, Dr. Aimin Zhou ________________________________ Department/Date Date of Defense: July 19th, 2017 Dedicated to my husband, Can Ergin. ACKNOWLEDGEMENT I would like to thank my advisor,
    [Show full text]
  • Implementing Associative Coder of Buyanovsky (ACB)
    Implementing Associative Coder of Buyanovsky (ACB) data compression by Sean Michael Lambert A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science Montana State University © Copyright by Sean Michael Lambert (1999) Abstract: In 1994 George Mechislavovich Buyanovsky published a basic description of a new data compression algorithm he called the “Associative Coder of Buyanovsky,” or ACB. The archive program using this idea, which he released in 1996 and updated in 1997, is still one of the best general compression utilities available. Despite this, the ACB algorithm is still barely understood by data compression experts, primarily because Buyanovsky never published a detailed description of it. ACB is a new idea in data compression, merging concepts from existing statistical and dictionary-based algorithms with entirely original ideas. This document presents several variations of the ACB algorithm and the details required to implement a basic version of ACB. IMPLEMENTING ASSOCIATIVE CODER OF BUYANOVSKY (ACB) DATA COMPRESSION by Sean Michael Lambert A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science MONTANA STATE UNIVERSITY-BOZEMAN Bozeman, Montana April 1999 © COPYRIGHT by Sean Michael Lambert 1999 All Rights Reserved ii APPROVAL of a thesis submitted by Sean Michael Lambert This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies. Brendan Mumey U /l! ^ (Signature) Date Approved for the Department of Computer Science J.
    [Show full text]
  • An Analysis of XML Compression Efficiency
    An Analysis of XML Compression Efficiency Christopher J. Augeri1 Barry E. Mullins1 Leemon C. Baird III Dursun A. Bulutoglu2 Rusty O. Baldwin1 1Department of Electrical and Computer Engineering Department of Computer Science 2Department of Mathematics and Statistics United States Air Force Academy (USAFA) Air Force Institute of Technology (AFIT) USAFA, Colorado Springs, CO Wright Patterson Air Force Base, Dayton, OH {chris.augeri, barry.mullins}@afit.edu [email protected] {dursun.bulutoglu, rusty.baldwin}@afit.edu ABSTRACT We expand previous XML compression studies [9, 26, 34, 47] by XML simplifies data exchange among heterogeneous computers, proposing the XML file corpus and a combined efficiency metric. but it is notoriously verbose and has spawned the development of The corpus was assembled using guidelines given by developers many XML-specific compressors and binary formats. We present of the Canterbury corpus [3], files often used to assess compressor an XML test corpus and a combined efficiency metric integrating performance. The efficiency metric combines execution speed compression ratio and execution speed. We use this corpus and and compression ratio, enabling simultaneous assessment of these linear regression to assess 14 general-purpose and XML-specific metrics, versus prioritizing one metric over the other. We analyze compressors relative to the proposed metric. We also identify key collected metrics using linear regression models (ANOVA) versus factors when selecting a compressor. Our results show XMill or a simple comparison of means, e.g., X is 20% better than Y. WBXML may be useful in some instances, but a general-purpose compressor is often the best choice. 2. XML OVERVIEW XML has gained much acceptance since first proposed in 1998 by Categories and Subject Descriptors the World-Wide Web Consortium (W3C).
    [Show full text]
  • Improving Compression-Ratio in Backup
    Institutionen för systemteknik Department of Electrical Engineering Examensarbete Improving compression ratio in backup Examensarbete utfört i Informationskodning/Bildkodning av Mattias Zeidlitz Författare Mattias Zeidlitz LITH-ISY-EX--12/4588--SE Linköping 2012 TEKNISKA HÖGSKOLAN LINKÖPINGS UNIVERSITET Department of Electrical Engineering Linköpings tekniska högskola Linköping University Institutionen för systemteknik S-581 83 Linköping, Sweden 581 83 Linköping Improving compression-ratio in backup ............................................................................ Examensarbete utfört i Informationskodning/Bildkodning vid Linköpings tekniska högskola av Mattias Zeidlitz ............................................................. LITH-ISY-EX--12/4588--SE Presentationsdatum Institution och avdelning 2012-06-13 Institutionen för systemteknik Publiceringsdatum (elektronisk version) Department of Electrical Engineering Datum då du ämnar publicera exjobbet Språk Typ av publikation ISBN (licentiatavhandling) Svenska Licentiatavhandling ISRN LITH-ISY-EX--12/4588--SE x Annat (ange nedan) x Examensarbete Serietitel (licentiatavhandling) C-uppsats D-uppsats Engelska Rapport Serienummer/ISSN (licentiatavhandling) Antal sidor Annat (ange nedan) 58 URL för elektronisk version http://www.ep.liu.se Publikationens titel Improving compression ratio in backup Författare Mattias Zeidlitz Sammanfattning Denna rapport beskriver ett examensarbete genomfört på Degoo Backup AB i Stockholm under våren 2012. Syftet var att designa en kompressionssvit
    [Show full text]
  • Benefits of Hardware Data Compression in Storage Networks Gerry Simmons, Comtech AHA Tony Summers, Comtech AHA SNIA Legal Notice
    Benefits of Hardware Data Compression in Storage Networks Gerry Simmons, Comtech AHA Tony Summers, Comtech AHA SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA. Member companies and individuals may use this material in presentations and literature under the following conditions: Any slide or slides used must be reproduced without modification The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations. This presentation is a project of the SNIA Education Committee. Oct 17, 2007 Benefits of Hardware Data Compression in Storage Networks 2 © 2007 Storage Networking Industry Association. All Rights Reserved. Abstract Benefits of Hardware Data Compression in Storage Networks This tutorial explains the benefits and algorithmic details of lossless data compression in Storage Networks, and focuses especially on data de-duplication. The material presents a brief history and background of Data Compression - a primer on the different data compression algorithms in use today. This primer includes performance data on the specific compression algorithms, as well as performance on different data types. Participants will come away with a good understanding of where to place compression in the data path, and the benefits to be gained by such placement. The tutorial will discuss technological advances in compression and how they affect system level solutions. Oct 17, 2007 Benefits of Hardware Data Compression in Storage Networks 3 © 2007 Storage Networking Industry Association. All Rights Reserved. Agenda Introduction and Background Lossless Compression Algorithms System Implementations Technology Advances and Compression Hardware Power Conservation and Efficiency Conclusion Oct 17, 2007 Benefits of Hardware Data Compression in Storage Networks 4 © 2007 Storage Networking Industry Association.
    [Show full text]
  • The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on Iot Nodes in Smart Cities
    sensors Article The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on IoT Nodes in Smart Cities Ammar Nasif *, Zulaiha Ali Othman and Nor Samsiah Sani Center for Artificial Intelligence Technology (CAIT), Faculty of Information Science & Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia; [email protected] (Z.A.O.); [email protected] (N.S.S.) * Correspondence: [email protected] Abstract: Networking is crucial for smart city projects nowadays, as it offers an environment where people and things are connected. This paper presents a chronology of factors on the development of smart cities, including IoT technologies as network infrastructure. Increasing IoT nodes leads to increasing data flow, which is a potential source of failure for IoT networks. The biggest challenge of IoT networks is that the IoT may have insufficient memory to handle all transaction data within the IoT network. We aim in this paper to propose a potential compression method for reducing IoT network data traffic. Therefore, we investigate various lossless compression algorithms, such as entropy or dictionary-based algorithms, and general compression methods to determine which algorithm or method adheres to the IoT specifications. Furthermore, this study conducts compression experiments using entropy (Huffman, Adaptive Huffman) and Dictionary (LZ77, LZ78) as well as five different types of datasets of the IoT data traffic. Though the above algorithms can alleviate the IoT data traffic, adaptive Huffman gave the best compression algorithm. Therefore, in this paper, Citation: Nasif, A.; Othman, Z.A.; we aim to propose a conceptual compression method for IoT data traffic by improving an adaptive Sani, N.S.
    [Show full text]