Flood Hydrology Manual

Total Page:16

File Type:pdf, Size:1020Kb

Flood Hydrology Manual Flood Hydrology Manual A Water Resources Technical Publication by Arthur G. Cudworth, Jr. Surface Water Branch Earth Sciences Division FIRST EDITION 1989 United States Department of the Interior Bureau of Reclamation Denver Office As the Nation’s principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserv- ing the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through out- door recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major respon- sibility for American Indian reservation communities and for people who live in Island Territories under U.S. Administration. UNITED STATES GOVERNMENT PRINTING OFFICE DENVER: 1992 For sale by the Superintendentof Documents, U.S. Government Printing Office, Washington, DC 20402, and the Bureau of Reclamation, Denver Offie, Denver FederalCenter, P.O. Box 25007, Denver, Colorado 80225, Attention: D-7923A 024-003-00170-8. PREFACE The need for a comprehensive Flood Hydrology Manual for the Bureau of Reclamation has become apparent as increasing numbers of civil en- gineers are called upon to conduct flood hydrology studies for new and existing Bureau dams. This is particularly important because of the in- creasing emphasis that has been placed on dam safety nationwide. In general, these engineers possess varying backgrounds and levels of ex- perience in the specialty area of flood hydrology. Accordingly, the pri- mary purpose of this manual is to provide the necessary background, relationships, criteria, and procedures to allow the engineer to conduct satisfactory flood hydrology studies. As a result, these studies should reflect greater consistency and reliability of results for most of the drain- age basins encountered in Bureau projects as well as those for other water resource construction agencies. These relationships, criteria, and procedures are based on detailed analyses of hydrologic and meteorologic data and studies of observed flood and severe rainfall events that have accumulated over the years. The information contained in this manual reflects the methodologies currently used by the Bureau in performing flood hydrology studies. These methodologies have been proven to provide satisfactory results for use in the planning, design, construction, and operation of the Bu- reau’s water control facilities. However, it would be inappropriate to infer that these methods are the final solutions to hydrologic problems because other methods are constantly evolving. It can reasonably be expected that, as additional data are collected and as new and more advanced techniques emerge, these methodologies will be improved upon and modified with the passage of time. It is also expected that such modifications and improvements will be fully incorporated into future editions of this manual. The Bureau of Reclamation is primarily responsible for the development of water resources in the 17 Western States to meet agriculture, munic- ipal and industrial, power, recreation, and environmental water supply requirements. In addition, with the recent emphasis on dam safety, the Bureau has been assigned the responsibility for safety of dams studies for Department of the Interior dams throughout the nation. The Bureau has no authority, as legislated by Congress, in the area of flood control except for a few unique, specifically authorized projects. Flood control is, and has been for the past 50 years, within the purview of the United States Army Corps of Engineers. Therefore, the flood hydrology discipline, as applied to Bureau activities, deals with two prin- cipal areas: (1) determination of the upper limit or probable maximum FLOOD HYDROLOGY MANUAL flood potential at a damsite so that dams whose failure would result in loss of human life or widespread property damage can be designed to safely accommodate this flood without failure, and (2) determination of more commonly occurring floods for use in the design of diversion dams; very low hazard storage dams; cross drainage facilities for the extensive canals, aqueducts, and roads associated with the delivery of water to users; and for diversion of flood waters that may occur during the construction of dams. It should be noted that the technical hydrologic procedures used in these two principal areas are essentially the same as those used in flood hydrology studies that support the planning, design, construc- tion, and operation of flood control projects. Recognizing the Congressionally authorized function of the Bureau, this manual concentrates on three major technical aspects of flood hydrology: (1) hydrometeorology related to probable maximum precipitation de- terminations, (2) probable maximum flood hydrograph determinations, and (3) statistics and probabilities relating to the magnitude and fre- quency of flood flows. Other important, but essentially nontechnical, aspects related to flood hydrology studies are also treated. Chapter 1, “Background and Historical Perspective,” provides a brief historical perspective of the flood hydrology discipline. Included in this discussion is a general overview of procedures and philosophies that have evolved and been applied over the years, from those used in the devel- opment of early water control works to the present. Chapter 2, “Basic Hydrologic and Meteorologic Data,” provides a dis- cussion of the basic hydrologic and meteorologic data that are available for analysis in the development of criteria for upper limit or probable maximum precipitation estimates, methods of determining rainfall-run- off relationships used in deriving probable maximum flood hydrographs, and in generating flood probability estimates. The methods and equip- ment currently used for collecting these data are briefly discussed to provide the reader with a general background on the mechanics involved. The important consideration of the reliability and accuracy of these data is included in subsequent chapters dealing with the specific uses of these data to provide the reader with an appreciation of the resulting accuracies of flood magnitude and frequency estimates. This chapter concludes with a more detailed description on assessing a drainage basin’s physical fea- tures as they impact the rainfall-runoff phenomena through field reconnaissances. Chapter 3, “Hydrometeorology,” begins with a general discussion on the theories underlying basic atmospheric processes. Emphasis is placed on those processes that are important in the development of regionalized or generalized criteria used in estimating probable maximum precipi- tation amounts that are, as shown in subsequent chapters, necessary in determining probable maximum flood hydrographs. This chapter then describes the procedures used in the analysis of observed events that lead ii PREFACE to the generation of criteria used for developing estimates of probable maximum precipitation and storm levels throughout the conterminous United States. The chapter concludes with remarks on continuing Fed- eral interagency activities leading to the development of hydrometeo- rological criteria by the Bureau of Reclamation, National Weather Service, Corps of Engineers, and the Soil Conservation Service. Chapter 4, “Flood Hydrograph Determinations,” presents the theory and procedures currently used by the Bureau in converting rainfall over a drainage basin into a hydrograph of flood runoff. The hydrologic cycle is discussed as it pertains to extreme runoff phenomena up to and in- cluding the probable maximum flood. The process of infiltration losses into the soil and their effect on the runoff hydrograph is presented in more detail. Discussion on both natural and developed basins is included because development has been shown to considerably modify the hy- drograph resulting from a given amount of precipitation. The chapter concludes with an example where a hydrograph representing the prob- able maximum flood event is generated for a relatively complex basin. Chapter 5, “Flood Routings Through Reservoirs and River Channels,” provides a discussion on procedures used by the Bureau in accomplishing the channel routing and combining of flood hydrographs. These pro- cedures are needed when studying large basins that have been divided into subbasins or include one or more reservoirs. Procedures for routing flood hydrographs through reservoirs are also included. Chapter 6, “Envelope Curves of Recorded Flood Discharges,” provides a discussion on the purpose and procedures used to develop envelope curves of experienced flood discharges, both peak and volume. These curves provide a check on the adequacy of probable maximum flood hydrograph estimates. Proper procedures for segregating the data by region, season, storm type, and topography so that curves represent hom- egeneous hydrologic and meteorologic conditions are discussed in detail. Chapter 7, “Statistics and Probabilities,” provides a comprehensive pres- entation of an extremely important area of flood hydrology. The chapter includes a discussion of the basic concepts encountered in the collection and statistical analysis of streamflow data with emphasis on theoretical frequency distributions. Examples of these distributions are provided and their use in
Recommended publications
  • HMT 2019 Meeting Report
    Final Report 27 May 2020 The NOAA Hydrometeorological Testbed (HMT) is a joint OAR-NWS testbed motivated to make communities that are more resilient to the impacts of extreme precipitation on lives, property, water supply and ecosystems. HMT is co-managed by the NWS Weather Prediction Center (WPC) and the OAR Physical Sciences Laboratory (PSL) in partnership with the NWS Office of Water Prediction (OWP). The mission of HMT is “Improving forecasts of extreme precipitation and forcings for hydrologic prediction.” Hydromet Testbed Executive Oversight Council: David Novak, Director, NWS Weather Prediction Center (WPC) Robert S. Webb, Director, OAR/ESRL Physical Sciences Laboratory (PSL) Ed Clark, Director, NWS National Water Center (NWC) Report writing team: Andrea J. Ray, PSL HMT Coordinator James Correia, WPC HMT Coordinator James Nelson, Development and Training Branch Chief, WPC Acknowledgements: Barbara DeLuisi, PSL, report cover design, and Lisa Darby for comments on the report. Cover photo credits: Snow plow: USAF Flooded street: USGS Flood in Denham Springs, LA: DOD People pushing car: DLA Page | 1 Executive Summary The Nation has experienced increasing devastation from heavy precipitation events recently. In just the past 3 years, 13 precipitation-related billion-dollar disasters in the Nation have resulted in over 200 deaths. This trend has dramatically increased the demand and expectations from core decision makers for accurate, consistent, and understandable rainfall forecasts. Heavy precipitation and resulting flash flooding occur across the year with seasonal and geographic variations. The predictability of these events varies with event type, region, and season. Several ongoing NOAA efforts might aid in improving forecasts of extreme precipitation, however, precipitation forecasting from minutes to 10 days is not a focus among these efforts.
    [Show full text]
  • (P 117-140) Flood Pulse.Qxp
    117 THE FLOOD PULSE CONCEPT: NEW ASPECTS, APPROACHES AND APPLICATIONS - AN UPDATE Junk W.J. Wantzen K.M. Max-Planck-Institute for Limnology, Working Group Tropical Ecology, P.O. Box 165, 24302 Plön, Germany E-mail: [email protected] ABSTRACT The flood pulse concept (FPC), published in 1989, was based on the scientific experience of the authors and published data worldwide. Since then, knowledge on floodplains has increased considerably, creating a large database for testing the predictions of the concept. The FPC has proved to be an integrative approach for studying highly diverse and complex ecological processes in river-floodplain systems; however, the concept has been modified, extended and restricted by several authors. Major advances have been achieved through detailed studies on the effects of hydrology and hydrochemistry, climate, paleoclimate, biogeography, biodi- versity and landscape ecology and also through wetland restoration and sustainable management of flood- plains in different latitudes and continents. Discussions on floodplain ecology and management are greatly influenced by data obtained on flow pulses and connectivity, the Riverine Productivity Model and the Multiple Use Concept. This paper summarizes the predictions of the FPC, evaluates their value in the light of recent data and new concepts and discusses further developments in floodplain theory. 118 The flood pulse concept: New aspects, INTRODUCTION plain, where production and degradation of organic matter also takes place. Rivers and floodplain wetlands are among the most threatened ecosystems. For example, 77 percent These characteristics are reflected for lakes in of the water discharge of the 139 largest river systems the “Seentypenlehre” (Lake typology), elaborated by in North America and Europe is affected by fragmen- Thienemann and Naumann between 1915 and 1935 tation of the river channels by dams and river regula- (e.g.
    [Show full text]
  • Install and Maintain Stream Gauges
    Proposition 68 Projects 2019 Update California Department of Water Resources Sustainable Groundwater Management Program INSTALL AND MAINTAIN STREAM GAUGES This project focuses on inventorying, installation, and maintenance of stream gauges in high- and medium-priority basins. Building on the knowledge and successful track record of DWR’s Regional and Statewide Integrated Water Management technical assistance programs, this project supports and is aligned with the Governor’s Water Resilience Portfolio (Executive Order N-10-19), the Open and Transparent Data Act (AB 1755), and Sen. Bill Dodd’s Stream Gauges Bill (SB19). What is Proposition 68? will provide fast and reliable data. Additionally, this project supports GSP development, implementation, The California Drought, Water, Parks, Climate, Coastal and evaluation, as wells as groundwater recharge Protection and Outdoor for all Fund (Senate Bill 5, projects. This new surface water data provides Proposition 68) authorized $4 billion in general multiple benefits to programs within a variety of local, obligation bonds for state and local parks, state, and federal agencies including State Water environmental protection and restoration projects, Resources Control Board and the Department of Fish water infrastructure projects, and flood protection and Wildlife. projects. The Install and Maintain Stream Gauge project utilizes $4.95 million on data, tools, and What is New in 2019? analysis efforts for drought and groundwater Five stream gauges were recently installed throughout investments to achieve regional sustainability in the state at Bear River, Ash Creek, Owens Creek, support of the Sustainable Groundwater Management Tuolumne River, and San Luis Ray River. Act (SGMA) over a period of five years. How Does This Project Support SGMA? What are the Next Steps? In the next two years, DWR plans to install SGMA requires Groundwater Sustainability Agencies approximately 24 additional stream gauges in high- (GSAs) to monitor and assess stream depletion, water and medium-priority basins.
    [Show full text]
  • Class 14: Basic Hydrograph Analysis Class 14: Hydrograph Analysis
    Engineering Hydrology Class 14: Basic Hydrograph Analysis Class 14: Hydrograph Analysis Learning Topics and Goals: Objectives 1. Explain how hydrographs relate to hyetographs Hydrograph 2. Create DRO (direct runoff) hydrographs by separating baseflow Description 3. Relate runoff volume to watershed area and create UH (next time) Unit Hydrographs Separating Baseflow DRO Hydrographs Ocean Class 14: Hydrograph Analysis Learning Gross rainfall = depression storage + Objectives evaporation + infiltration Hydrograph + surface runoff Description Unit Hydrographs Separating Baseflow Rainfall excess = (gross rainfall – abstractions) DRO = Direct Runoff = DRO Hydrographs = net rainfall with the primary abstraction being infiltration (i.e., assuming depression storage is small and evaporation can be neglected) Class 14: Hydrograph Hydrograph Defined Analysis Learning • a hydrograph is a plot of the Objectives variation of discharge with Hydrograph Description respect to time (it can also be Unit the variation of stage or other Hydrographs water property with respect to Separating time) Baseflow DRO • determining the amount of Hydrographs infiltration versus the amount of runoff is critical for hydrograph interpretation Class 14: Hydrograph Meteorological Factors Analysis Learning • Rainfall intensity and pattern Objectives • Areal distribution of rainfall Hydrograph • Size and duration of the storm event Description Unit Physiographic Factors Hydrographs Separating • Size and shape of the drainage area Baseflow • Slope of the land surface and channel
    [Show full text]
  • River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
    River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates.
    [Show full text]
  • Chapter 3. Hydrology
    3 Hydrology Robert R. Ziemer and Thomas E. Lisle Overview transient snow packs during rain on snow events. l Streamflow is highly variable in mountainous l Removal of trees, which consume water, areas of the Pacific coastal ecoregion. The tends to increase soil moisture and base stream- timing and variability of streamflow is strongly flow in summer when rates of evapotranspira- influenced by form of precipitation (e.g., rain- tion are high. These summertime effects tend to fall, snowmelt, or rain on snow). disappear within several years. Effects of tree l High variability in runoff processes limits removal on soil moisture in winter are minimal the ability to detect and predict human-caused because of high seasonal rainfall and reduced changes in streamflow. Changes in flow are usu- rates of evapotranspiration. ally associated with changes in other watershed l The rate of recovery from land use processes that may be of equal concern. Studies depends on the type of land use and on the of how land use affects watershed responses are hydrologic processes that are affected. thus likely to be most useful if they focus on how runoff processes are affected at the site of disturbance and how these effects, hydrologic Introduction or otherwise, are propagated downstream. l Land use and other site factors affecting Streamflow is an essential variable in under- flows have less effect on major floods and in standing the functioning of watersheds and large basins than on smaller peak flows and in associated ecosystems because it supplies the small basins. Land use is more likely to affect primary medium and source of energy for the streamflow during rain on snow events, which movement of water, sediment, organic mate- usuallv produce larger floods in much of the rial, nutrients, and thermal energy.
    [Show full text]
  • 5.15 Water Pollution and Hydrologic Impacts 5.15.1 Chapter Index 5.15
    Transportation Cost and Benefit Analysis II – Water Pollution Victoria Transport Policy Institute (www.vtpi.org) 5.15 Water Pollution and Hydrologic Impacts This chapter describes water pollution and hydrologic impacts caused by transport facilities and vehicle use. 5.15.1 Chapter Index 5.15 Water Pollution and Hydrologic Impacts ........................................................... 1 5.15.2 Definitions .............................................................................................. 1 5.15.3 Discussion ............................................................................................. 1 5.15.4 Estimates: .............................................................................................. 3 Summary Table ..................................................................................... 3 Water Pollution & Combined Estimates ................................................. 4 Storm Water, Hydrology and Wetlands ................................................. 6 5.15.5 Variability ............................................................................................... 7 5.15.6 Equity and Efficiency Issues .................................................................. 7 5.15.7 Conclusion ............................................................................................. 7 5.15.8 Information Resources .......................................................................... 9 5.15.2 Definitions Water pollution refers to harmful substances released into surface or ground water,
    [Show full text]
  • Real-Time Stream Flow Gages in Montana
    REAL-TIME STREAM FLOW GAGES IN MONTANA Montana is home to over 264 real-time stream lows and improve water management practices. It gages located throughout the state. These gages can drive the understanding for other sciences and and their networks assist in delivering water data to helps inform citizens on how we can prepare for scientists and the public. While Montana’s demand changes in our water supply. It is imperative to for water continues to grow, water availability maintain as many gages as possible to preserve varies from year-to-year and can change these historical records for current and future dramatically in any given year. Managing supply and generations. demand challenges is an ongoing feature of life. REAL-TIME GAGES Accurate, near real-time, publicly accessible information on stream flows assists both day to day A real-time stream gage is used to report stream decision making and long-term planning, as well as flow (discharge) in cubic feet per second. These emergency planning and notification. This gages measure the stage (height) of the river in feet, information is generated in Montana by multiple and water temperature along with other networks of real-time stream gages operated by the environmental data. U.S. Geological Survey (USGS), the Department of Natural Resources and Conservation (DNRC), and some tribes. Within each network, the operation and maintenance of gages are financially supported by different sources including federal, state, tribal, local, and private funds. Some of the gages are funded by multiple agencies and organizations. The recorded data are essential to make informed water management decisions across the state.
    [Show full text]
  • Probabilistic Extreme Flood Hydrographs That Use Paleoflood Data for Dam Safety Applications
    Probabilistic Extreme Flood Hydrographs That Use PaleoFlood Data for Dam Safety Applications Dam Safety Office Report No. DSO-03-03 Department of the Interior Bureau of Reclamation June 2003 Contents Page Introduction................................................................................................................................... 1 1.1 Background..................................................................................................................................2 1.2 Objectives....................................................................................................................................4 1.3 Acknowledgements .....................................................................................................................4 Probabilistic Extreme Flood Hydrographs from Streamflow Sampling................................. 5 2.1 General Procedure .......................................................................................................................5 2.2 Example Applications................................................................................................................11 Probabilitic Extreme Flood Hydrographs Using Rainfall-Runoff Models............................ 18 3.1 General Procedure .....................................................................................................................19 3.2 Example Applications s.............................................................................................................20 Reservoir Routing
    [Show full text]
  • Chapter 5 Streamflow Data
    Part 630 Hydrology National Engineering Handbook Chapter 5 Streamflow Data (210–VI–NEH, Amend. 76, November 2015) Chapter 5 Streamflow Data Part 630 National Engineering Handbook Issued November 2015 The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, em- ployees, and applicants for employment on the bases of race, color, national origin, age, disabil- ity, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual’s income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Pro- gram Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/com- plaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form. You may also write a letter containing all of the information requested in the form. Send your completed complaint form or letter to us by mail at U.S. Department of Agriculture, Director, Office of Adju- dication, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, by fax (202) 690-7442 or email at [email protected] Individuals who are deaf, hard of hearing or have speech disabilities and you wish to file either an EEO or program complaint please contact USDA through the Federal Relay Service at (800) 877- 8339 or (800) 845-6136 (in Spanish).
    [Show full text]
  • Stormwater Design Manual Chapter Three
    CHAPTER 3 HYDROLOGY Chapter 3 HYDROLOGY Table of Contents 3.1 INTRODUCTION .................................................................................................... 2 3.2 HYDROLOGIC DESIGN POLICIES........................................................................ 2 3.2.1 FULLY DEVELO PED CONDITIONS......................................................................... 3 3.2.2 DRAINAG E AREA ............................................................................................... 4 3.2.3 RAINFALL DATA AND INTENSITY .......................................................................... 4 3.3 TIME OF CONCENTRATION ................................................................................. 4 3.3.1 SCS METHOD................................................................................................... 5 3.3.1.1 Lag Time .................................................................................................. 5 3.3.1.2 Travel Time .............................................................................................. 5 3.3.1.3 Sheet Flow ............................................................................................... 6 3.3.1.4 Shallow Concentrated Flow....................................................................... 7 3.3.1.5 Channelized Flow ..................................................................................... 7 3.3.2 KIRPICH EQUATION ........................................................................................... 8 3.4 RATIONAL METHOD............................................................................................
    [Show full text]
  • NRSM 385 Syllabus for Watershed Hydrology V200114 Spring 2020
    NRSM 385 Syllabus for Watershed Hydrology v200114 Spring 2020 NRSM (385) Watershed Hydrology Instructor: Teaching Assistant: Kevin Hyde Shea Coons CHCB 404 CHCB 404 [email protected] [email protected] Course Time & Location: Office Hours: (or by appointment) Tue/Thu 0800 – 0920h Kevin: Tue & Thu, 1500 – 1600h Natural Science 307 Shea: Wed & Fri, 1200 – 1300h Recommended course text: Physical Hydrology by SL Dingman, 2002 (2nd edition). Other readings as assigned. Additional course information and materials will be posted on Moodle: umonline.umt.edu Science of water resource management in the 21st Century: Sustainability of all life requires fundamental changes in hydrologic science and water resource management. Forty percent of the Earth’s ever-increasing population lives in areas of water scarcity, where the available supply cannot meet basic needs. Water pollution from human activities and increasing water withdrawals for human use impair and threaten entire ecosystems upon which human survival depends. Climate change increases environmental variability, exacerbating drought in some regions while leading to greater hydrologic hazards in others. Higher intensity and more frequent storms generate flooding that is especially destructive in densely developed areas of and where ecosystems are already compromised. Sustainable water resource management starts with scientifically sound management of forested landscapes. Eighty percent of fresh water supplies in the US originate on forested lands, providing over 60% of municipal drinking water. Forests also account for significant portions of biologically complex and vital ecosystems. Multiple land use activities including logging, agriculture, industry, mining, and urban development compromise forest ecosystems and threaten aquatic ecosystems and freshwater supplies.
    [Show full text]