Best Approximation of Orbits in Iterated Function Systems

Total Page:16

File Type:pdf, Size:1020Kb

Best Approximation of Orbits in Iterated Function Systems DISCRETE AND CONTINUOUS doi:10.3934/dcds.2021029 DYNAMICAL SYSTEMS Volume 41, Number 9, September 2021 pp. 4085{4104 BEST APPROXIMATION OF ORBITS IN ITERATED FUNCTION SYSTEMS Saisai Shi and Bo Tan∗ School of Mathematics and Statistics Huazhong University of Science and Technology, Wuhan 430074, China Qinglong Zhou School of Science Wuhan University of Technology, Wuhan 430074, China (Communicated by Sylvain Crovisier) Abstract. Let Φ = fφi : i 2 Λg be an iterated function system on a com- pact metric space (X; d), where the index set Λ = f1; 2; : : : ; lg with l ≥ 2, or Λ = f1; 2;:::g. We denote by J the attractor of Φ, and by D the subset of points possessing multiple codings. For any x 2 JnD; there is a unique integer sequence f!n(x)gn≥1 ⊂ ΛN, called the digit sequence of x; such that \ fxg = φ!1(x) ◦ · · · ◦ φ!n(x)(X): n In this case we write x = [!1(x);!2(x);:::]: For x; y 2 JnD; we define the shortest distance function Mn(x; y) as Mn(x; y) = max k 2 N: !i+1(x) = !i+1(y); : : : ;!i+k(x) = !i+k(y) for some 0 ≤ i ≤ n − k ; which counts the run length of the longest same block among the first n digits of (x; y): In this paper, we are concerned with the asymptotic behaviour of Mn(x; y) as n tends to 1: We calculate the Hausdorff dimensions of the exceptional sets arising from the shortest distance function. As applications, we study the exceptional sets in several concrete systems such as continued fractions system, L¨urothsystem, N-ary system, and triadic Cantor system. 1. Introduction. Ergodic theory is the study of the long-term behaviour of a measure-preserving system. One of the classical results is the Poincar´erecurrence theorem, which states that almost all points in a prescribed set of positive measure are infinitely recurrent. In a metric space (X; d); the theorem implies that lim inf dT n(x); x = 0 n!1 for µ-almost all x 2 X: The theorem provides a qualitative rather than quantitative description of the long-term behaviour, and the quantitative behaviour of Poincar´e recurrence has been studied by Boshernitzan [1], Ornstein & Weiss [20] and Barreira & Saussol [3]. Other notions, such as the recurrence time, hitting time, etc., have 2020 Mathematics Subject Classification. Primary: 11K55; Secondary: 37F35, 28A80. Key words and phrases. Best approximation, Shortest distance function, Iterated function systems. ∗ Corresponding author: Bo Tan. 4085 4086 SAISAI SHI, BO TAN AND QINGLONG ZHOU been introduced to study the quantitative nature of recurrence [9, 21, 22, 23, 26, 30]. Among others, let us mention the shrinking target problem introduced by Hill & Velani [11]. Let : N ! R+ be a positive function such that (n) ! 0 as n ! 1, fzngn≥1 be a sequence of points in X: Define the \well approximable" set n Wfzng T; = x 2 X : d T (x); zn < (n) for infinitely many n 2 N : n It follows that the orbits fT (x)gn≥1 can be well approximated by the sequence fzngn≥1: For an expanding rational map of a Riemann sphere acting on its Julia set, Hill & Velani [11, 12] estimated the Hausdorff dimension of the set Wfz g T; : n Li, Wang, Wu & Xu [16] computed the dimension of Wfzng T; in the dynamical system of continued fractions. Bugeaud & Wang [4] studied the case of β-dynamical systems. The metric result has been obtained by Chernov & Kleinbock [6]. They P proved that the set Wfzng T; has null µ-measure if n≥1 µ(Bn) < 1, and has full measure if X X X µ(Bn) = 1 with Rn;m ≤ C µ(Bn); n≥1 1≤n≤m≤N 1≤n≤N −n −m where Bn := B(zn; (n)), and Rn;m := µ T Bn \ T Bm) − µ(Bn)µ(Bm) is the decay of the correlations. For more information about the shrinking target problems, the readers are referred to [8, 11, 12, 24] and the references therein. n Taking zn = T (y)(n ≥ 1) for a fixed y 2 X, we would like to investigate the n n quantitative properties of the distance between fT (x)gn≥1 and fT (y)gn≥1. We study the problem in the framework of iterated function systems. Let (X; d) be a compact metric space. Let Φ = fφi : i 2 Λg be a collection of injective mappings of X, where Λ = f1; 2; : : : ; lg (l ≥ 2) or Λ = f1; 2;:::g. We call Φ a uniformly contractive iterated function system (IFS for short) if there exists 0 < ρ < 1 such that for any i 2 Λ and x; y 2 X, d(φi(x); φi(y)) ≤ ρ · d(x; y): The limit set associated with an IFS fφi : i 2 Λg can be defined as the image ∗ n 1 of the coding space. Let Λ = [n≥0Λ , the space of finite words, and let Λ be n the collection of all infinite words over Λ: For ! = (!1;!2;:::;!n) 2 Λ , we set ∗ 1 φ! = φ!1 ◦ φ!2 ◦ · · · ◦ φ!n : For ! 2 Λ [ Λ and n ≥ 1; we denote by !jn the word (!1;!2;:::;!n) (when ! is a finite word, n ≤ j!j is required, where j!j denotes 1 the length of !). For ! 2 Λ ; fφ!jn(X)gn≥1 is a nested sequence of compact sets, whose intersection is a singleton; the point in the intersection will be denoted by π(!). The limit set (or the attractor) of the IFS is 1 [ \ \ [ J = π(Λ ) = φ!jn(X) = φ!(X): !2Λ1 n≥1 n≥1 ! : !2Λn The map π :Λ1 ! J is called the coding map, which is surjective but is not 1 necessarily injective. Any ! = (!1;!2;:::) 2 Λ such that x = π(!) is called a coding of x 2 J, and a point in J may have multiple codings. Let D = fx 2 J : x has multiple codingsg: Hence, for any x 2 JnD, there is a unique coding (!1(x);!2(x);:::) such that π(!) = x, whence we write x = [!1(x);!2(x);:::]: For x = [!1(x);!2(x);!3(x);:::] 2 JnD; we define T x = T ([!1(x);!2(x);!3(x);:::]) = [!2(x);!3(x);:::]: BEST APPROXIMATION OF ORBITS IN ITERATED FUNCTION SYSTEMS 4087 n For n ≥ 1 and (!1;:::;!n) 2 Λ ; we call Jn(!1;:::;!n) = φ!1 ◦ · · · ◦ φ!n (X) an n-th order cylinder. For x 2 JnD, let Jn(x) denote the unique n-th cylinder that contains x, i.e., Jn(x) = Jn(!1(x);:::;!n(x)): The σ-algebra over J generated n by all n-th order cylinders are denoted as C0 : For x = [!1(x);!2(x);:::]; y = [!1(y);!2(y);:::] 2 JnD; we define the shortest distance function Mn(x; y) as Mn(x; y) = max k 2 N: !i+1(x) = !i+1(y); : : : ;!i+k(x) = !i+k(y) for some 0 ≤ i ≤ n − k ; which counts the longest run length of the longest same block among the first n digits of (x; y) 2 JnD × JnD: i i Remark 1. (1) Mn(x; y) = max k 2 N: T (x) 2 Jk(T (y)) for some 0 ≤ i ≤ n − k ; (2) We define a metric d on JnD: if x = [!1;!2;:::]; y = [ν1; ν2;:::] 2 JnD; the distance of x and y is defined as d(x; y) = exp − inffi ≥ 1: !i 6= νig : i i Then Mn(x; y) ≤ − log min1≤i≤n d T (x);T (y) : Let µ be a T -invariant complete Borel probability measure µ on J: We then have a measure-preserving system (J; µ, T ), and µ-almost every point x 2 J has a unique coding. For this system, we define the lower R´enyi entropy H∗ to be P 2 − log n µ(J (! ;:::;! )) (!1;:::;!n)2Λ n 1 n H∗ = lim inf ; n!1 n ∗ ∗ and define the upper R´enyi entropy H similarly. When H∗ and H coincide, we say that the R´enyi entropy exists and denote the common value as H: n m We say a system (J; µ, T ) is -mixing if for any U 2 C0 ;V 2 C0 (m; n 2 N); −(n+k) µ U \ T V − µ(U)µ(V ) ≤ (k)µ(U)µ(V ); (1) where : N ! R+ vanishes at infinity. The system (J; µ, T ) is said to be -mixing with an exponential decay if moreover the function in (1) satisfies (n + 1) lim sup < 1: n!1 (n) We mention several examples which are -mixing with an exponential decay: con- tinued fractions system, L¨urothsystem, N-ary system, triadic Cantor system (see Section 5). With the notation above, we state our main results. Theorem 1.1. Let (J; µ, T ) be a -mixing system with an exponential decay. (1) For µ ⊗ µ-almost all (x; y) 2 J × J; we have M (x; y) 1 lim sup n = : n!1 log n H∗ (2) For µ ⊗ µ-almost all (x; y) 2 J × J; we have M (x; y) 1 lim inf n = : n!1 log n H∗ 4088 SAISAI SHI, BO TAN AND QINGLONG ZHOU If the R´enyi entropy exists, then for µ ⊗ µ-almost all (x; y) 2 J × J; M (x; y) 1 lim n = : n!1 log n H 1 1 Here we use the convention that 0 = 1 and 1 = 0: Remark 2. Fix a point y0 = [!1(y0);!2(y0);:::] 2 JnD: For x = [!1(x);!2(x);:::]; we define a new quantity Mn(x; y0) similar to Mn(x; y) as follows: Mn(x; y0) = max k 2 N: !i+1(x) = !1(y0); : : : ;!i+k(x) = !k(y0) for some 0 ≤ i ≤ n − k : We call Mn(x; y0) the maximal hitting depth of x to y0; which reflects the degree how the trajectories of x can approach y0: We define the lower local entropy of y0 − log µ(Jn(y0)) to be Dµ(yo) = lim infn!1 n and define the upper local entropy Dµ(yo) similarly.
Recommended publications
  • SUBFRACTALS INDUCED by SUBSHIFTS a Dissertation
    SUBFRACTALS INDUCED BY SUBSHIFTS A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Elizabeth Sattler In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Department: Mathematics May 2016 Fargo, North Dakota NORTH DAKOTA STATE UNIVERSITY Graduate School Title SUBFRACTALS INDUCED BY SUBSHIFTS By Elizabeth Sattler The supervisory committee certifies that this dissertation complies with North Dakota State Uni- versity's regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Dr. Do˘ganC¸¨omez Chair Dr. Azer Akhmedov Dr. Mariangel Alfonseca Dr. Simone Ludwig Approved: 05/24/2016 Dr. Benton Duncan Date Department Chair ABSTRACT In this thesis, a subfractal is the subset of points in the attractor of an iterated function system in which every point in the subfractal is associated with an allowable word from a subshift on the underlying symbolic space. In the case in which (1) the subshift is a subshift of finite type with an irreducible adjacency matrix, (2) the iterated function system satisfies the open set condition, and (3) contractive bounds exist for each map in the iterated function system, we find bounds for both the Hausdorff and box dimensions of the subfractal, where the bounds depend both on the adjacency matrix and the contractive bounds on the maps. We extend this result to sofic subshifts, a more general subshift than a subshift of finite type, and to allow the adjacency matrix n to be reducible. The structure of a subfractal naturally defines a measure on R .
    [Show full text]
  • March 12, 2011 DIAGONALLY NON-RECURSIVE FUNCTIONS and EFFECTIVE HAUSDORFF DIMENSION 1. Introduction Reimann and Terwijn Asked Th
    March 12, 2011 DIAGONALLY NON-RECURSIVE FUNCTIONS AND EFFECTIVE HAUSDORFF DIMENSION NOAM GREENBERG AND JOSEPH S. MILLER Abstract. We prove that every sufficiently slow growing DNR function com- putes a real with effective Hausdorff dimension one. We then show that for any recursive unbounded and nondecreasing function j, there is a DNR function bounded by j that does not compute a Martin-L¨ofrandom real. Hence there is a real of effective Hausdorff dimension 1 that does not compute a Martin-L¨of random real. This answers a question of Reimann and Terwijn. 1. Introduction Reimann and Terwijn asked the dimension extraction problem: can one effec- tively increase the information density of a sequence with positive information den- sity? For a formal definition of information density, they used the notion of effective Hausdorff dimension. This effective version of the classical Hausdorff dimension of geometric measure theory was first defined by Lutz [10], using a martingale defini- tion of Hausdorff dimension. Unlike classical dimension, it is possible for singletons to have positive dimension, and so Lutz defined the dimension dim(A) of a binary sequence A 2 2! to be the effective dimension of the singleton fAg. Later, Mayor- domo [12] (but implicit in Ryabko [15]), gave a characterisation using Kolmogorov complexity: for all A 2 2!, K(A n) C(A n) dim(A) = lim inf = lim inf ; n!1 n n!1 n where C is plain Kolmogorov complexity and K is the prefix-free version.1 Given this formal notion, the dimension extraction problem is the following: if 2 dim(A) > 0, is there necessarily a B 6T A such that dim(B) > dim(A)? The problem was recently solved by the second author [13], who showed that there is ! an A 2 2 such that dim(A) = 1=2 and if B 6T A, then dim(B) 6 1=2.
    [Show full text]
  • A Note on Pointwise Dimensions
    A Note on Pointwise Dimensions Neil Lutz∗ Department of Computer Science, Rutgers University Piscataway, NJ 08854, USA [email protected] April 6, 2017 Abstract This short note describes a connection between algorithmic dimensions of individual points and classical pointwise dimensions of measures. 1 Introduction Effective dimensions are pointwise notions of dimension that quantify the den- sity of algorithmic information in individual points in continuous domains. This note aims to clarify their relationship to the classical notion of pointwise dimen- sions of measures, which is central to the study of fractals and dynamics. This connection is then used to compare algorithmic and classical characterizations of Hausdorff and packing dimensions. See [15, 17] for surveys of the strong ties between algorithmic information and fractal dimensions. 2 Pointwise Notions of Dimension arXiv:1612.05849v2 [cs.CC] 5 Apr 2017 We begin by defining the two most well-studied formulations of algorithmic dimension [5], the effective Hausdorff and packing dimensions. Given a point x ∈ Rn, a precision parameter r ∈ N, and an oracle set A ⊆ N, let A A n Kr (x) = min{K (q): q ∈ Q ∩ B2−r (x)} , where KA(q) is the prefix-free Kolmogorov complexity of q relative to the oracle −r A, as defined in [10], and B2−r (x) is the closed ball of radius 2 around x. ∗Research supported in part by National Science Foundation Grant 1445755. 1 Definition. The effective Hausdorff dimension and effective packing dimension of x ∈ Rn relative to A are KA(x) dimA(x) = lim inf r r→∞ r KA(x) DimA(x) = lim sup r , r→∞ r respectively [11, 14, 1].
    [Show full text]
  • Fractal Geometry
    Fractal Geometry Special Topics in Dynamical Systems | WS2020 Sascha Troscheit Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria [email protected] July 2, 2020 Abstract Classical shapes in geometry { such as lines, spheres, and rectangles { are only rarely found in nature. More common are shapes that share some sort of \self-similarity". For example, a mountain is not a pyramid, but rather a collection of \mountain-shaped" rocks of various sizes down to the size of a gain of sand. Without any sort of scale reference, it is difficult to distinguish a mountain from a ragged hill, a boulder, or ever a small uneven pebble. These shapes are ubiquitous in the natural world from clouds to lightning strikes or even trees. What is a tree but a collection of \tree-shaped" branches? A central component of fractal geometry is the description of how various properties of geometric objects scale with size. Dimension theory in particular studies scalings by means of various dimensions, each capturing a different characteristic. The most frequent scaling encountered in geometry is exponential scaling (e.g. surface area and volume of cubes and spheres) but even natural measures can simultaneously exhibit very different behaviour on an average scale, fine scale, and coarse scale. Dimensions are used to classify these objects and distinguish them when traditional means, such as cardinality, area, and volume, are no longer appropriate. We shall establish fundamen- tal results in dimension theory which in turn influences research in diverse subject areas such as combinatorics, group theory, number theory, coding theory, data processing, and financial mathematics.
    [Show full text]
  • Divergence Points of Self-Similar Measures and Packing Dimension
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Advances in Mathematics 214 (2007) 267–287 www.elsevier.com/locate/aim Divergence points of self-similar measures and packing dimension I.S. Baek a,1,L.Olsenb,∗, N. Snigireva b a Department of Mathematics, Pusan University of Foreign Studies, Pusan 608-738, Republic of Korea b Department of Mathematics, University of St. Andrews, St. Andrews, Fife KY16 9SS, Scotland, UK Received 14 December 2005; accepted 7 February 2007 Available online 1 March 2007 Communicated by R. Daniel Mauldin Abstract Rd ∈ Rd log μB(x,r) Let μ be a self-similar measure in . A point x for which the limit limr0 log r does not exist is called a divergence point. Very recently there has been an enormous interest in investigating the fractal structure of various sets of divergence points. However, all previous work has focused exclusively on the study of the Hausdorff dimension of sets of divergence points and nothing is known about the packing dimension of sets of divergence points. In this paper we will give a systematic and detailed account of the problem of determining the packing dimensions of sets of divergence points of self-similar measures. An interesting and surprising consequence of our results is that, except for certain trivial cases, many natural sets of divergence points have distinct Hausdorff and packing dimensions. © 2007 Elsevier Inc. All rights reserved. MSC: 28A80 Keywords: Fractals; Multifractals; Hausdorff measure; Packing measure; Divergence points; Local dimension; Normal numbers 1.
    [Show full text]
  • Fractal-Bits
    fractal-bits Claude Heiland-Allen 2012{2019 Contents 1 buddhabrot/bb.c . 3 2 buddhabrot/bbcolourizelayers.c . 10 3 buddhabrot/bbrender.c . 18 4 buddhabrot/bbrenderlayers.c . 26 5 buddhabrot/bound-2.c . 33 6 buddhabrot/bound-2.gnuplot . 34 7 buddhabrot/bound.c . 35 8 buddhabrot/bs.c . 36 9 buddhabrot/bscolourizelayers.c . 37 10 buddhabrot/bsrenderlayers.c . 45 11 buddhabrot/cusp.c . 50 12 buddhabrot/expectmu.c . 51 13 buddhabrot/histogram.c . 57 14 buddhabrot/Makefile . 58 15 buddhabrot/spectrum.ppm . 59 16 buddhabrot/tip.c . 59 17 burning-ship-series-approximation/BossaNova2.cxx . 60 18 burning-ship-series-approximation/BossaNova.hs . 81 19 burning-ship-series-approximation/.gitignore . 90 20 burning-ship-series-approximation/Makefile . 90 21 .gitignore . 90 22 julia/.gitignore . 91 23 julia-iim/julia-de.c . 91 24 julia-iim/julia-iim.c . 94 25 julia-iim/julia-iim-rainbow.c . 94 26 julia-iim/julia-lsm.c . 98 27 julia-iim/Makefile . 100 28 julia/j-render.c . 100 29 mandelbrot-delta-cl/cl-extra.cc . 110 30 mandelbrot-delta-cl/delta.cl . 111 31 mandelbrot-delta-cl/Makefile . 116 32 mandelbrot-delta-cl/mandelbrot-delta-cl.cc . 117 33 mandelbrot-delta-cl/mandelbrot-delta-cl-exp.cc . 134 34 mandelbrot-delta-cl/README . 139 35 mandelbrot-delta-cl/render-library.sh . 142 36 mandelbrot-delta-cl/sft-library.txt . 142 37 mandelbrot-laurent/DM.gnuplot . 146 38 mandelbrot-laurent/Laurent.hs . 146 39 mandelbrot-laurent/Main.hs . 147 40 mandelbrot-series-approximation/args.h . 148 41 mandelbrot-series-approximation/emscripten.cpp . 150 42 mandelbrot-series-approximation/index.html .
    [Show full text]
  • Sustainability As "Psyclically" Defined -- /
    Alternative view of segmented documents via Kairos 22nd June 2007 | Draft Emergence of Cyclical Psycho-social Identity Sustainability as "psyclically" defined -- / -- Introduction Identity as expression of interlocking cycles Viability and sustainability: recycling Transforming "patterns of consumption" From "static" to "dynamic" to "cyclic" Emergence of new forms of identity and organization Embodiment of rhythm Generic understanding of "union of international associations" Three-dimensional "cycles"? Interlocking cycles as the key to identity Identity as a strange attractor Periodic table of cycles -- and of psyclic identity? Complementarity of four strategic initiatives Development of psyclic awareness Space-centric vs Time-centric: an unfruitful confrontation? Metaphorical vehicles: temples, cherubim and the Mandelbrot set Kairos -- the opportune moment for self-referential re-identification Governance as the management of strategic cycles Possible pointers to further reflection on psyclicity References Introduction The identity of individuals and collectivities (groups, organizations, etc) is typically associated with an entity bounded in physical space or virtual space. The boundary may be defined geographically (even with "virtual real estate") or by convention -- notably when a process of recognition is involved, as with a legal entity. Geopolitical boundaries may, for example, define nation states. The focus here is on the extent to which many such entities are also to some degree, if not in large measure, defined by cycles in time. For example many organizations are defined by the periodicity of the statutory meetings by which they are governed, or by their budget or production cycles. Communities may be uniquely defined by conference cycles, religious cycles or festival cycles (eg Oberammergau). Biologically at least, the health and viability of individuals is defined by a multiplicity of cycles of which respiration is the most obvious -- death may indeed be defined by absence of any respiratory cycle.
    [Show full text]
  • PACKING DIMENSION and CARTESIAN PRODUCTS 1. Introduction Marstrand's Product Theorem
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 348, Number 11, November 1996 PACKING DIMENSION AND CARTESIAN PRODUCTS CHRISTOPHER J. BISHOP AND YUVAL PERES Abstract. We show that for any analytic set A in Rd, its packing dimension dimP (A) can be represented as supB dimH (A B) dimH (B) , where the { d × − } supremum is over all compact sets B in R , and dimH denotes Hausdorff dimension. (The lower bound on packing dimension was proved by Tricot in 1982.) Moreover, the supremum above is attained, at least if dimP (A) <d.In contrast, we show that the dual quantity infB dimP (A B) dimP (B) , is at least the “lower packing dimension” of A, but{ can be× strictly− greater.} (The lower packing dimension is greater than or equal to the Hausdorff dimension.) 1. Introduction Marstrand’s product theorem ([9]) asserts that if A, B Rd then ⊂ dim (A B) dim (A)+dim (B), H × ≥ H H where “dimH ” denotes Hausdorff dimension. Refining earlier results of Besicovitch and Moran [3], Tricot [14] showed that (1) dim (A B) dim (B) dim (A) , H × − H ≤ P where “dimP ” denotes packing dimension (see the next section for background). Tricot [15] and also Hu and Taylor [6] asked if this is sharp, i.e., given A,canthe right-hand side of (1) be approximated arbitrarily well by appropriate choices of B on the left-hand side? Our first result, proved in Section 3, states that this is possible. Theorem 1.1. For any analytic set A in Rd (2) sup dimH (A B) dimH (B) =dimP(A), B { × − } where the supremum is over all compact sets B Rd.
    [Show full text]
  • Ontologia De Domínio Fractal
    MÉTODOS COMPUTACIONAIS PARA A CONSTRUÇÃO DA ONTOLOGIA DE DOMÍNIO FRACTAL Ivo Wolff Gersberg Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Engenharia Civil, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Engenharia Civil. Orientadores: Nelson Francisco Favilla Ebecken Luiz Bevilacqua Rio de Janeiro Agosto de 2011 MÉTODOS COMPUTACIONAIS PARA CONSTRUÇÃO DA ONTOLOGIA DE DOMÍNIO FRACTAL Ivo Wolff Gersberg DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA CIVIL. Examinada por: ________________________________________________ Prof. Nelson Francisco Favilla Ebecken, D.Sc. ________________________________________________ Prof. Luiz Bevilacqua, Ph.D. ________________________________________________ Prof. Marta Lima de Queirós Mattoso, D.Sc. ________________________________________________ Prof. Fernanda Araújo Baião, D.Sc. RIO DE JANEIRO, RJ - BRASIL AGOSTO DE 2011 Gersberg, Ivo Wolff Métodos computacionais para a construção da Ontologia de Domínio Fractal/ Ivo Wolff Gersberg. – Rio de Janeiro: UFRJ/COPPE, 2011. XIII, 144 p.: il.; 29,7 cm. Orientador: Nelson Francisco Favilla Ebecken Luiz Bevilacqua Dissertação (mestrado) – UFRJ/ COPPE/ Programa de Engenharia Civil, 2011. Referências Bibliográficas: p. 130-133. 1. Ontologias. 2. Mineração de Textos. 3. Fractal. 4. Metodologia para Construção de Ontologias de Domínio. I. Ebecken, Nelson Francisco Favilla et al . II. Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia Civil. III. Titulo. iii À minha mãe e meu pai, Basia e Jayme Gersberg. iv AGRADECIMENTOS Agradeço aos meus orientadores, professores Nelson Ebecken e Luiz Bevilacqua, pelo incentivo e paciência.
    [Show full text]
  • Fractal Geometry Mathematical Foundations and Applications
    Introduction In the past, mathematics has been concerned largely with sets and functions to which the methods of classical calculus can be applied. Sets or functions that are not sufficiently smooth or regular have tended to be ignored as ‘pathological’ and not worthy of study. Certainly, they were regarded as individual curiosities and only rarely were thought of as a class to which a general theory might be applicable. In recent years this attitude has changed. It has been realized that a great deal can be said, and is worth saying, about the mathematics of non-smooth objects. Moreover, irregular sets provide a much better representation of many natural phenomena than do the figures of classical geometry. Fractal geometry provides ageneralframeworkforthestudyofsuchirregularsets. We begin by looking briefly at a number of simple examples of fractals, and note some of their features. The middle third Cantor set is one of the best known and most easily con- structed fractals; nevertheless it displays many typical fractal characteristics. It is constructed from a unit interval by a sequence of deletion operations; see figure 0.1. Let E0 be the interval [0, 1]. (Recall that [a,b]denotesthesetofreal numbers x such that a ! x ! b.) Let E1 be the set obtained by deleting the mid- 1 2 dle third of E0,sothatE1 consists of the two intervals [0, 3 ]and[3 , 1]. Deleting the middle thirds of these intervals gives E2;thusE2 comprises the four intervals 1 2 1 2 7 8 [0, 9 ], [ 9 , 3 ], [ 3 , 9 ], [ 9 , 1]. We continue in this way, with Ek obtained by delet- k ing the middle third of each interval in Ek 1.ThusEk consists of 2 intervals k − each of length 3− .
    [Show full text]
  • Dimensions of Self-Similar Fractals
    DIMENSIONS OF SELF-SIMILAR FRACTALS BY MELISSA GLASS A Thesis Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of MASTER OF ARTS Mathematics May 2011 Winston-Salem, North Carolina Approved By: Sarah Raynor, Ph.D., Advisor James Kuzmanovich, Ph.D., Chair Jason Parsley, Ph.D. Acknowledgments First and foremost, I would like to thank God for making me who I am, for His guidance, and for giving me the strength and ability to write this thesis. Second, I would like to thank my husband Andy for all his love, support and patience even on the toughest days. I appreciate the countless dinners he has made me while I worked on this thesis. Next, I would like to thank Dr. Raynor for all her time, knowledge, and guidance throughout my time at Wake Forest. I would also like to thank her for pushing me to do my best. A special thank you goes out to Dr. Parsley for putting up with me in class! I also appreciate him serving as one of my thesis committee members. I also appreciate all the fun conversations with Dr. Kuzmanovich whether it was about mathematics or mushrooms! Also, I would like to thank him for serving as one of my thesis committee members. A thank you is also in order for all the professors at Wake Forest who have taught me mathematics. ii Table of Contents Acknowledgments . ii List of Figures. v Abstract . vi Chapter 1 Introduction . 1 1.1 Motivation .
    [Show full text]
  • Dimensions in Infinite Iterated Function Systems Consisting of Bi-Lipschitz Mapping
    DIMENSIONS IN INFINITE ITERATED FUNCTION SYSTEMS CONSISTING OF BI-LIPSCHITZ MAPPING CHIH-YUNG CHU# AND SZE-MAN NGAI* Abstract. We study infinite iterated functions systems (IIFSs) consisting of bi-Lipschitz mappings instead of conformal contractions, focusing on IFSs that do not satisfy the open set condition. By assuming the logarithmic distortion property and some cardinality growth condition, we obtain a formula for the Hausdorff, box, and packing dimensions of the limit set in terms of certain topological pressure. By assuming, in addition, the weak separation condition, we show that these dimensions are equal to the growth dimension of the limit set. 1. Introduction The study of infinite iterated function systems form an important branch of the theory of IFSs. Mauldin and Urbanski [10] showed that fractal phenomena not exhibited by finite IFSs can appear in IIFSs, such as the existence of dimensionless limit sets, and that the box and packing dimensions are strictly greater than the Hausdorff dimension. They also showed that IIFSs can be used to study complex continued fractions. Fernau [7] showed that IIFSs have stronger descriptive power than finite ones; in fact, any closed set in a separable metric space is the attractor of some IIFS, while there exists a closed and bounded subset of a complete metric space that is the attractor of an IIFS but not of a finite IFS. The open set condition (OSC) is assumed in [10]. Dimensions of IIFSs consisting of conformal contractions, but not satisfying (OSC), are studied [11] by Tong and the second author. The conformality condition is relaxed in [3], but the IFSs studied are finite.
    [Show full text]